Denise Harrington: Let Kids Be Kids, October 18, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Tuesday, October 18, 2016

Location: 45 27’19″ N  123o 50’33″ W, Tillamook, Oregon

Weather: Rainy, windy, cloudy, and cold (nothing like the Gulf of Mexico).

Meet a Scientist: Dr. William “Trey” Driggers

Trey Drigger’s passion for aquatic predators was born in a lake at his grandparents’ house in Florida, while his dad, a jet pilot, was off fighting in the war in Vietnam.  When his dad left, Trey’s mom loaded the two boys and two dogs into the car and headed north to her parents’ lakefront home in Florida.  Soon thereafter, one of the dogs, used to swimming in safer waters, got eaten by an alligator that lived in the lake.  Trey feared the gators but also must have been fascinated by the life and death struggle between two animals.

With thoughts of fighter pilots and alligators, Trey was one of those students teachers might find challenging. He had trouble focusing on the mundane.  But through books, he could get a little bit of the thrill he sought.

shark-dictionary

He knew he was destined to do something cool, just like his dad. Yet by the end of college Trey was still unsure of what he wanted to become.  One day, he was in the library when the spine of a book caught his eye: Sharks Attack.  After reading this book his childhood fascination with aquatic predators was reinvigorated. During a trip to the Smithsonian Museum of Natural History, Trey purchased a book entitled “Sharks in Question.” The last chapter was about how to become a shark specialist.  What, he thought, I can make a living studying sharks?!

sharks-in-question

Trey quickly finished up his history degree and began two years of science classes he had missed.  In Marine Science 101, the professor said “If you are here for sharks, whales, or dolphins, you can leave right now.”  Trey took the warning as a challenge, and began his now spectacular career with sharks.

img_3208

Trey and Chief Boatswain Tim Martin measure a sandbar (Carcharhinus plumbeus) shark while fisheries biologist, Paul Felts, records data.  Photo: Matt Ellis/NOAA Fisheries

His attraction to the mysteries of the deep and the written word has resulted in many discoveries, including a critical role in the discovery of a new species, the Carolina hammerhead (Sphryna gilberti). Recently, Trey’s research has focused on, among other things, examining the movement patterns of sharks. However, understanding the movement patterns of sharks is tricky.  Many have large ranges and occupy numerous habitats under the surface of the ocean that covers over 70% of our planet.  Most sharks can’t be kept in captivity.  For all these reasons and more, sharks are mysterious and fascinating creatures.

So which sharks are currently catching Trey’s attention? One of his many interests is a group of bonnethead  (Sphyrna tiburo) sharks that have been recaptured over multiple summers in specific estuaries in South Carolina.

Like other hammerhead sharks, the bonnethead shark has a cephalofoil.  Why do hammerheads look like that?

bonnethead-sphyra-tiburo

The photo of this bonnethead shark was taken in 2010 by a fellow TAS, Bruce Taterka, also aboard the Oregon II.

Theories abound about the funny looking hammerheads, whose heads look more like wings than hammers.  As Trey says, many people have speculated “the hammerhead has a cephalofoil because ….” giving a single reason.  Some say the cephalofoil acts as a dive plane, pulling the shark up or down as it swims, others say the distance between the nostrils allows it to smell better, honing in on prey, some say it is to compensate for their blind spot, and still others hypothesize that the shark uses its head to pin down prey.

 

Many people have asked this question, but very few get to work like Trey does, collecting data, making observations, and analyzing the data. He says the best part of his job is “when I figure something out that no one else knows.” One day, looking at data a friend collected in Bull’s Bay estuary, near Charleston, South Carolina, he noticed a pattern of the same sharks getting recaptured there year after year.  A small group of different aged, different size friends going to enjoy their summer together to Bull’s Bay while another group always going to the North Edisto estuary every year?  Why?

Trey hypothesizes that in the summer, blue crab abound in that spot, and are thick with eggs. The bonnetheads have the shortest gestation period of all sharks, four months, and need a lot of nutrients.  Their heads, shaped just right for holding down a blue crab, and their convergence at Bull’s Bay on the fertile female crabs, may just be the elements necessary to get a shark pup from embryo to viability.  Pretty cool!

800px-noaa_fishery_science_center_measuring_bonnethead_shark_pup

Here, a juvenile bonnethead shark is being measured.  Photo: NOAA Fisheries

With all this evidence supporting a hypotheses that the bonnethead shark cephalofoil is used for holding down prey, one might predict that Trey’s next publication on the topic will make that conclusion.

“People want to pick one answer,” Trey says, but “there is a lot more that we don’t know than we do.”   There is often more than one right answer, he continues, more than one solution to a problem.  Speaking about fishing regulation, conservationists and fishermen, Trey suggests that both sides need to understand that the other side has positive things to contribute.  He lives his life this way, moving fluidly among the deck crew, officers, stewards, and scientists looking for commonalities.  Together, all the members of the team play an essential role in keeping the ship and survey moving forward.

p1080860

Kevin, Matt Ellis, NOAA Science Writer, Paul, and Trey were the four other members of the day shift science team.  I took my christened baiting gloves home with me as a souvenir.

Personal Log

Each member of the crew shared insights and skills that I will take back to my classroom and incorporate into my life

My work as a NOAA Teacher at Sea was one of the most challenging experiences of my life. I knew very little about fish before stepping aboard the Oregon II, and from the crew have gained understanding of and appreciation for fish, other marine species, and the diversity of life on our planet.  I’ve learned that while the Gulf of Mexico is home to the world’s largest fisheries, the human impact from industries, watershed runoff, development, and other sources is unbelievable.

When the time for science arrives, or weaves its way into the other subjects as it always does, students’ eyes light up.  I know I am far from a professional scientist, but through NOAA,  I can now speak authentically and accurately about what happens in the field and why.  My students have become mini-scientists, speaking among themselves about collecting data as if it were a playground game.

As I listened to NOAA Corps Officer David Reymore share memories of a Make a Wish trip with his son to Disneyland, I learned to take each moment with a child as a gift and was also reminded of the sacrifice crew members and their families make in support of science during their weeks, months, and years at sea. Thank you, each and every NOAA crew member aboard the NOAA fleet, for your service.  With the time away from family as the only negative, I learned that the many different careers available through NOAA provide great learning opportunities, adventure, and inspiration to those who are ready for some very hard work.

What advice can you give me as a teacher, I ask Trey.  “Quote me on this,” he says with a smile, “don’t give kids so much —- homework.  Let them be kids.”

img_0463

NOAA Corps Officer Brian Yannutz wears his lucky shark hat as we bring in the long line.

Laughing, shaking my head in amazement, leafing through my journals, I have enough inspiration from these two weeks to last a lifetime.  How did I get so fortunate?

 

 

Denise Harrington: What Fish Do I Eat? October 3, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Monday, October 3, 2016

I asked Kevin Rademacher, Research Fisheries Biologist at the Pascagoula, Mississippi Lab, what fish I could eat and still support sustainable fisheries.  He answered with a question, “Have you read the book Four Fish?” When I finished reading the book by Paul Greenberg, I spoke to Kevin again. “What do you think now?” He asked.

I said “There is something about wild fish that makes me want to catch and eat them, but I worry about whether we are eating wild fish out of existence.”

img_2656

Yellowedge grouper (Epinephelus itajara). Photo: Matt Ellis/NOAA Fisheries

“Have you talked with Adam?  He’s the numbers guy,” Kevin said.  It seems like the good teachers are always sending students away in search of their own answers.

Adam Pollack is a contract Fisheries Biologist with Riverside Technology, Inc., and works on the night crew.  We sometimes cross paths at midnight or noon.  Catching him wouldn’t be easy.

OLYMPUS DIGITAL CAMERA

Here, Adam measures a shark too large to bring on deck.  Photo: NOAA Fisheries

During one of these transition times, we had a moment to talk.  I asked Adam about his earliest fish memory.  He smiled.  “At about five, I went fishing with my dad.  We had a house in the mountains surrounded by a bunch of lakes.”  Adam and his dad would sit by the lake with their lines in the water “watching the bobber disappear.”  He smiles again.  These little largemouth bass changed his life.

adam-fishing

Adam takes a selfie with a red drum (Sciaenops ocellatus).

At first, he was set on becoming a professional bass fisherman but made a practical switch to marine biology.  He took all the science electives and the hardest math classes he could.  He went on to Southampton College on Long Island, New York, where he got lots of hands-on experiences beginning in his freshman year.  He believes a good education should include lots of opportunities, as early as possible, for interactive learning in a real world environment.

Once he graduated, Adam got his dream job: working in the Gulf of Mexico during the field season and then crunching numbers the rest of the year.  He takes the data scientists collect to the SouthEast Data, Assessment, and Review (SEDAR).  SEDAR is a cooperative process through which scientists, fishermen, and policy makers look at the life history, abundance trends, and other data to determine how many fish we can catch sustainably.

Adam, and many others, also look at how catastrophic events like Hurricane Katrina and the Deepwater Horizon oil spill affect marine species in the Gulf of Mexico.  After Hurricane Katrina, he said, shrimping efforts died down by about 40%.  The effects of the oil spill are still a little murky.  Many of the biologists on board initially predicted dire and immediate effects.  Yet unlike the spill in Alaska, the warm Gulf of Mexico water is host to bacteria, plants, and other living things that might be eating up the oil.  Many questions, such as whether these living things will mitigate the effects of a spill, are still being asked. “Deepwater Horizon is always on our minds,” Adam says.  There are also naturally occurring events like harmful algal blooms and long term issues like climate change that affect fish populations.

img_1611

Oil rigs dot the horizon as Tim Martin, Chief Boatswain, gets ready to retrieve the longline. Photo: Matt Ellis/NOAA Fisheries

 

img_1372

Here, Paul Felts, Fisheries Biologist, weighs a yellowedge grouper (Hyporthodus flavolimbatus). Photo Matt Ellis/NOAA Fisheries

“Can you tell me about snapper?” I asked Adam.  Red snapper (Lutjanus campechanus), assessed every other year, is a hot button topic for commercial and recreational fishermen alike in the Gulf. The species was in decline. Recreational fishermen went from a 180 day season to catch fish to an 8 day season and from 10 to 2 fish a day per person.  Commercial fishermen weren’t happy either: they could only take 49% of the year’s quota for red snapper, while the recreational fishermen get to catch 51% of the quota.  Fairness is not just a second grade concern, it is a major sticking point in regulating fisheries world wide.

img_3226

Snapper is as tasty as it is beautiful.  Photo: Matt Ellis/NOAA Fisheries

Red snapper is a vulnerable species.  Snapper settle to the bottom of the water column from larvae.  They are at high risk of mortality from ages 0-5, the same time when they are close to human activity such as oil rigs, shrimping grounds and easy to access fishing areas.  Those who manage the fisheries are trying to get the snapper through that vulnerable stage.  Like money in the bank accruing interest, a 10 year old snapper can produce more eggs than a five year old.  Before we take snapper from the sea, we must make sure a healthy older population remains to reproduce.

img_3230

TAS Denise Harrington holds up two red snapper. Photo: Matt Ellis/NOAA Fisheries.

Once an assessment is complete, scientists determine a maximum sustainable yield:  how many fish can be taken from the population and still keep enough around to make more fish for the future.  Take a look at a shark assessment and a snapper assessment. Looking at these long and complicated assessments, I am glad we have people like Adam who is willing to patiently work with the numbers.

Gathering the best data and making it available to people who collaborate to make informed decisions is an important part of Adam’s job. We all want fish and NOAA fisheries biologists are doing their best to make that happen for us, and for generations to come.

Personal Log

My time aboard the Oregon II has come to an end.  Bundled up in my winter clothes,  I look out over a rainy Oregon landscape filled with fishermen hoping to catch a fall Chinook salmon. Two places with different weather and many different fish species.  Yet many of our challenges are the same.

Back at school, students and teachers welcome me enthusiastically.  Instead of measuring desks and books as part of our Engage NY curriculum, we measured sharks and their jaws.  Many of these students have never been out of Oregon, many have not been to the beach, even though it is only 4 miles away.  With NOAA, South Prairie Elementary students were able to learn about faraway places and careers that inspire them.

Soon these seven year old children will be in charge. I am thankful to the NOAA crews and the Teacher at Sea program staff, as they’ve prepared generations of students of all ages to collaborate and creatively face the task that lies ahead.

 

 

Denise Harrington: A Shark A Day, September 29, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Thursday, September 29, 2016

Science Log

The cruise is coming to a close. Looking back at my three experiences with NOAA, hydrography (mapping the ocean), fisheries lab work, or shark and snapper surveys,  I couldn’t decide which was my favorite.  Like the facets of a diamond, each experience gave me another perspective on our one world ocean.

Just like different geographic locations and work, each shark species give me a lens through which I can appreciate the mysteries of the ocean.  Every day, I held, measured, kissed, or released a different species of shark. In the Gulf of Mexico, there are 44 shark species frequently caught.  Fortunately, I saw quite a few, and will share some, in the order in which I met them.

Our first night fishing, we caught many Atlantic sharpnose sharks (Rhizoprionodon terraenovae).  They are named for their long flat snout and sharp nose. It seemed whenever we caught one, a bunch more followed. They were abundant and kept us busy.

p1080163

Paul Felts, Fisheries Biologist, records measurements while Kevin Rademacher, Fisheries Biologist, wrestles and measures the shark. Matt Ellis, NOAA Science Writer, took amazing pictures throughout the cruise.

Day two, we caught a deep water Cuban dogfish (Squalus cubensis).  

 

p1090143

The Cuban dogfish’s huge iridescent eyes were entrancing.

On September 2o, we almost caught a bull shark (Carcharhinus leucas).  We brought the cradle down, but the shark thrashed its way off, refusing to be studied. The bull shark, along with the tiger shark, are “one of the top three sharks implicated in unprovoked fatal attacks around the world.”

Within a couple days of catching the Cuban dogfish, we caught another shark with iridescent eyes. It turns out this similar looking shark was not a Cuban dogfish, but a rare roughskin spiny dogfish (Cirrhigaleus asper).  

p1080318

Dr. Trey Driggers, Field Party Chief, and prolific shark researcher, surprised us all when he reported this was the first roughskin spiny dogfish he had ever caught!

The beautifully mottled, sleek, immature tiger shark (Galeocerdo cuvier) caught on September 23 had remarkable skin patterns that apparently fade as the shark ages. Adult sharks can get as large as 18 feet and 2,000 pounds.  Along with the bull shark, it is one of the top three species implicated in unprovoked, fatal attacks worldwide.

September 24 we caught a fascinating scalloped hammerhead (Sphyrna lewini).  The flat extended head of this hammerhead is wavy, giving it the “scalloped” part of its name.  Its populations in the Gulf have drastically decreased since 1981, making it a species of concern.

 

img_0430

Here, Kevin measures one of several scalloped hammerhead sharks we caught on Leg IV of the survey.

We also caught a silky shark (Carcharhinus falciformis). Like other Carcharhinus sharks, the silky shark has a sharp “Carchar,” nose “hinus” (Greek derivation), but also has a silky appearance due to its closely spaced dermal denticles.

img_2294

I instantly felt the silky was the most beautiful shark I’d seen. Photo: Matt Ellis/NOAA Fisheries

 

We  saw two of the three smoothhound species present in the Gulf.  On September 25, we caught a Gulf smoothhound, (Mustelus sinusmexicanus), a species named less than 20 years ago. Much is left to learn about the ecology and biology of this recently discovered shark.

img_2575

Getting ready to weigh the gulf smoothhound, Kevin Rademacher, Fisheries Biologist, stops for a photo.                                                      Photo: Matt Ellis/NOAA Fisheries

Then, I watched the night crew catch, measure and tag a dusky shark (Carcharhinus obscurus).

OLYMPUS DIGITAL CAMERA

Photo: NOAA Fisheries

On September 26, we caught a sandbar shark (Carcharhinus plumbeus).  Despite its size,  the sandbar shark poses little threat to man.

img_2889

The sandbar shark’s large fin to body ratio and size make them a prime target for commercial fisheries. Photo: Matt Ellis/NOAA Fisheries

Due to over-fishing, sandbar shark populations are said to have dropped by as much as 2/3 between the 1970’s and the 1990’s. They are now making a comeback, whether it be from fishing regulations, or the decreased populations of larger sharks feeding on juvenile sandbar sharks.

img_3128

This sandbar shark attacked a blacknose shark that had taken our bait. Photo: Matt Ellis/NOAA Fisheries

We tagged many sharks during my two weeks on the Oregon II.  If you never catch one of those sharks again, the tag doesn’t mean anything.  But this week, we also caught a previously tagged sandbar shark!  Recapturing a wild marine animal is phenomenal.  You can learn about its migration patterns, statistically estimate population sizes, and learn much more. The many years of NOAA’s work with this species in particular demonstrates that thoughtful, long term management of a species works.

 

On September 27, we almost caught a nurse shark (Ginglymostoma cirratum). The barbels coming from its mouth reminded me of a catfish or exotic man with a mustache.

Today, September 29, was our last day of fishing, a bittersweet day for me.  That nurse shark that got away, or more likely, another one like it, came up in our cradle.

Every day we caught sharks, including a few other species not mentioned here.  Only once our line came back without a fish.  The diverse characteristics and adaptations that allow each of these species to survive in a challenging marine environment inspire biologists as they try to categorize and understand the species they research.   While catching so many different species of sharks gives me hope, many members of the crew reminisce about times gone by when fish were more abundant than they are now.

Personal Log

I am the kind of person who always struggles to return from an adventure.  I have learned so much, I don’t want to leave.  Yet I know my class at South Prairie is waiting patiently for my return. I hope to share these many marine species  with my class so that we all may view every moment with curiosity and amazement.

 

 

 

 

Denise Harrington: Spotlight on a Blacktip Shark, September 24, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Saturday, September 24, 2016

Yesterday, I was in the crew lounge, working on my next blog, when Eric Hoffmayer, Research Fishery Biologist, called me out to the fantail to see a large deceased female blacktip shark (Carcharhinus limbatus) brought in that morning.

countershade-2

(deceased) female blacktip shark

The contrast between the gray and white skin caught my eye. The countershading, a dark grey color on top, had a light bronze hue that sparkled in the light. A white band starting at its pectoral fins widened until it merged with the belly at the anal fin.

If there is a mortality, the science team uses the opportunity to dissect the fish, collecting additional information otherwise unavailable.  When we catch a shark, we release it as quickly as possible. The urgency of getting shark back in the water keeps me from carefully studying its detailed characteristics.

While I understand the loss of this particular shark touches many of us on board, understanding the species better through the loss is a practical, necessary approach to  managing the marine environment.  Without an in depth understanding of sharks, their populations, life cycle, and reproduction, there is no way we can sustainably manage fish populations.  Some may find dissection unappealing, and for those folks you may want to skip this blog, but not without first thanking the biologists who do this work compassionately. They keep our fisheries sustainable.

I rubbed my hand from the head to the tail.  It was smooth. Rubbing from the tail to the head felt just the opposite, rough like sandpaper.  Tiny dermal denticles allow sharks to move quickly through the water, an adaptation so amazing, it was put to use by designers of swimsuits in the Olympics and engineers of Navy ships.

Eric, Adam, and Chrissy, placed the shark on the table.  Eric cut the shark and pulled out a long sack that looked like empty sausage casing. At the end of the casing was a tiny shark pup. Trey joined the crew as they took data on each of the six pups.  The shark was pregnant.

The golden colored egg casing is still about six times the size of the pup, giving it plenty of room to grow.

The golden colored egg envelope is still about six times the size of the pup, giving it plenty of room to grow.

 

Here, Trey stretches out the casing demonstrating the significant amount of room left for the pup to grow,

Here, Fisheries Biologist Eric Hoffmayer stretches out the egg envelope demonstrating the significant amount of room left for the pup to grow. In the background you can see the egg envelop of another pup stretching across the table.

From the number of pups in a brood, to the possibility of immaculate shark conception, the reproduction of blacktip sharks is of interest to fishery biologists.  Without knowing all about shark reproduction, how many, and where sharks reproduce, we cannot sustainably manage this species, or fisheries in general.

Trey takes me through each stage of reproduction. The blacktip shark is viviparous, like humans. They are born alive, “vivi,” and develop within the mother getting nutrients through a placenta.

life-cycle-diagram

 

Egg

The shark life cycle begins in the female shark’s ovary with an egg.   Trey hands me an ovary that holds the eggs.  It is a large sack of many small red pinpoint size spheres with about 6 larger marble like balls from the high in the body cavity. These eggs wait to mature until the conditions are ideal for reproduction. At that time, the follicle ruptures, and the egg comes out.

Shark eggs are fertilized inside the female’s body.  The male fills his siphon sacs with seawater, and then flexes his abdomen to shoot the seawater and semen into the female shark through his clasper.

p1090186

Now I understand why we spin the clasper of a male shark to determine its maturity.  I was able to rotate this male Gulf smoothhound shark (Mustellus sinusmexicanus) clasper 180 degrees and reported it as an adult male.

Embryo/Pup

The male blacktip shark is often ready to mate in April to May but the females are often not ready to reproduce until June or July.  With many sharks, blacktip sharks included, the sperm can remain inside the female until she is ready to reproduce.  When that moment arrives, the egg slips through the ostium, down the anterior oviduct, and into the oviducal gland where it is fertilized by the sperm. For the blacktip shark, usually 4-6 eggs will be fertilized and develop into shark pups.  Females usually reproduce every other year.

 

large-yolk-little-shark

Note that different sharks have different modes of reproduction.  For example, Cuban dogfish (Squalus cubensis) reproduce through aplacental viviparity or ovoviviparity. The tiny pups you see here nourish themselves with the yolk “ovo” and have no placental connection to their mother.  They are born live “vivi,” and able to feed and protect themselves. Some sharks are oviparous, which means they lay eggs  that hatch later.

Initially,  the blacktip shark embryo uses the nutrients from a yolk sac for about 10-11 weeks. For the remaining time inside the mother, the pup increasingly gets nutrients from the mother through a placenta.  They are viviparous and remain inside the mother for approximately 10 months until they can survive on their own.  I held a pup, still connected to its mother by the umbilical cord. The similarities between human reproduction and blacktip shark reproduction surprised me so much I began to question the classification of viviparous sharks as fish.

 

holding-pup

I held a pup, still connected to its mother by the umbilical cord.

Immature Shark/Juvenile

For approximately two months after it is born, the immature shark has an umbilicus (like a bellybutton) that is still open.  During this phase of the life cycle it is called a neonate, or newborn.  It is otherwise just like a miniature adult blacktip shark.  It can hunt and hide from predators (including its mother).

immature-blacktip

Here, Eric and Evan Pettis, Texas Parks and Wildlife Fisheries Biologist, tag, measure, and release an immature blacktip shark.

 Mature Shark/Adult

Individual sharks even within a species mature at different rates, just like humans.  Generally, a male blacktip shark matures between 4-5 years of age, and females between 7-8 years.

p1080498

This 1385 mm male mature blacktip shark was brought in our second day of the survey.

How does the shark’s life cycle affect fisheries?

Evolutionarily speaking, placental viviparity gave the blacktip shark and others like it an advantage; the shark is born able to survive independently.  But this adaptation has also has a downside:  the females only produce a small brood, unlike other fish that use broadcast fertilization.

During gestation, the female shark we caught most likely migrated to our current location just off the coast of the Mississippi from deeper waters.  Called the Fertile Fisheries Crescent, the Mississippi Sound is one the most productive seafood areas in the nation.  Another risk to this species is pollution and over-fishing in the fragile estuarine habitat, the juvenile shark’s nursery.

There is demand for the high quality blacktip shark meat, the fins, and even the carcasses for fishmeal. The work NOAA Fisheries does to collect information about shark populations over time and over a wide geographic area not only helps keep blacktip shark populations sustainable, it also gives us valuable information about the ocean’s health in general.

 

Personal Log

Today I reached the half way point in my time on the longline crew.  I finally feel like I am getting into the groove, finding my way around the ship, and meeting people beyond my fishing buddies.  Valerie  McCaskill, Chief Steward, and her cousin, Ava Speights cook amazing seafood, grilled veggies, and au gratin everything. Ava showed me a great piece of exercise equipment, Jacob’s Ladder, to allow me to enjoy the great food guilt free.

Each station, each day, a new adventure.

Denise Harrington: First Day Jitters, September 21, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Wednesday, September 21, 2016

My first day on the longline cruise seems so long ago with three days of work under my belt. The night before my first shift, just like when school starts, I couldn’t sleep. Trying to prepare was futile. I was lost, lost in the wet lab, lost in my stateroom, lost in the mess. I needed to get some gloves on and get to work, learning the best way I know how: by doing.

At noon, I stepped out the fantail, life vest, gloves, hard hat, and sunscreen on, nervous, but ready to work. The Gulf of Mexico horizon was dotted with oil rigs, like a prairie full of farmhouses. Heat waves rose from the black deck.

Fifteen minutes before arriving at our first station, our science team, Field Party Chief Dr. Trey Driggers, Field Biologist Paul Felts, Research Biologist Kevin Rademacher, NOAA Science Writer Matt Ellis, and I began to prepare for our first station by baiting the hooks with mackerel (Scomber scombrus). I learned quickly that boots and grubby clothes are ideal for this task.

p1080831

Once all the hooks were baited, Chief Boatswain Tim Martin and Paul release a high flyer, a large pole with a buoy at the bottom and a reflective metal flag on top.

The buoy, connected to the boat by the longline, bobbed off toward the horizon.

p1080429

Tim attached the first of three weights to anchor the line to the sea floor.

p1080443

As the longline stretched across the sea, Kevin attached a numbered tag to the baited hook held by Paul.

p1080326

Paul passed the baited, tagged hook to Tim, who attached 100 hooks, evenly spaced, to the one mile longline.

p1080838

On another station, Paul attached numbers to the gangion (clip, short line, and baited hook) held by Trey.  Each station we change roles, which I appreciate.

Setting the longline is rather predictable, so with Rush and Van Halen salting the air, we talked about our kids, dogs, riots in the news, and science, of course. The tags will help us track the fish we catch. After a fish is released or processed, the data is entered in the computer and shared with the scientific community. Maybe one of these tagged fish will end up in one of the many scientific papers Trey publishes on sharks each year.

The line soaked for an hour waiting for snapper, tilefish, eels, sharks, and other fish to bite. While the line soaked, Mike Conway, skilled fisherman, and I lowered the CTD, a piece of equipment that measures conductivity (salinity), temperature, and depth, into the water.  Once the biologists know how salty, cold, and deep the water is, they can make better predictions about the species of fish we will find.

We attached a bag holding a few Styrofoam cups to see how the weight of the water above it would affect the cup.  Just imagine the adaptations creatures of the deep must have developed to respond to this pressure!

The ship circled back to hook #1 to give each hook equal time in the water. After an hour, we all walked up to the well deck, toward the bow or front of the ship. We pulled in the first highflyer and weight.  We pulled in the hooks, some with bait, and some without.  After 50 hooks, the middle weight came up. We still didn’t have a fish.  I began to wonder if we’d catch anything at all.  No data is still data, I thought. “Fish on eighty three!” I heard someone yell.   I wake from my reverie, and get my gloves on.

p1080432

It was a blacknose shark (Carcharhinus acronotus), “pound for pound, the meanest shark in the water,” says Trey. He would know, he’s the shark expert. It came up fighting, but was no match for Kevin who carefully managed to get length, weight, and sex data before releasing it back into sea.

With one shark to process, the three scientists were able to analyze the sexual maturity of the male blacknose together. I learned that an adult male shark’s claspers are hard and rotate 180˚, allowing them to penetrate a female shark. An immature shark’s claspers are soft and do not rotate. For each male shark, we need to collect this data about its sex stage.

p1080172

Here, you can see Trey rotating the clasper 180 degrees.

Later, Paul talked about moments like these, where the field biologists work side by side with research biologists from all different units in the lab.  Some research biologists, he notes, never get into the field.  But Kevin, Trey, and others like them have a much more well-rounded understanding of the data collected and how it is done because of the time they spend in the field.

Fortunately, the transition from inexperienced to novice was gradual. The second line was just as easy as the first, we only brought in two fish, one shark and one red snapper (Lutjanus campechanus).

For the red snapper, we removed the otoliths, which people often call ear bones, to determine age, and gonads to determine reproductive status.  I say “we” but really the scientists accomplished this difficult feat. I just learned how to process the samples they collected and record the data as they dissected the fish.

We set the longline a third time. The highflyer bobbed toward the orange sun, low on the horizon. The ship turned around, and after an hour of soaking, we went to the well deck toward the front of the ship to pull in the longline.  The sky was dark, the stars spread out above us.

“One!” “Three!” “Seven!” “Nine!”  The numbers of tags with fish on the line were being called out faster than we could manage.  It seemed like every other hook had a shark on it.  Two hours later we had collected twenty-eight Atlantic sharpnose (Rhizoprionodon terraenovae) sharks and had one snapper to process. Too busy working to take pictures, I have nothing to document my transition from inexperienced to novice except this data sheet.  Guess who took all this data? Me!

p1080265

Personal Log

NOAA Ship Oregon II is small, every bunk is filled.  I share a stateroom with the second in command, Executive Officer (XO) Lecia Salerno, and am thankful she is such a flexible roommate, making a place for me where space is hard to come by.

Last night, as I lay in my bunk above XO Salerno and her office, I felt like Garth on Wayne’s World, the thought that “I’m not worthy” entering my head.  All members of the crew are talented, experienced, and hard-working, from the bridge, to the galley, to the engine room, and out on the deck where we work. I’ve made a few mistakes.   I took the nasty thought and threw it overboard, like the slimy king snake eels (Ophichthus rex) we pull from the deep.

o-rex

King Snake Eel (Ophichthus rex)

In the morning I grabbed a cup of coffee, facing the risk of being the least experienced, slowest crew member to learn, with curiosity and perseverance.  First day jitters gone, I’m learning by doing.

Denise Harrington: Joining the Longline Crew, September 17, 2016

 

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Saturday, September 17, 2016

Location: 29 2.113’ N  93o 24.5’ W

Weather from the Bridge: 28.9C (dry bulb), Wind 6 knots @ 250o, overcast, 2-3′ SE swell.

Science Log

The muggy afternoon air did not dampen my excitement as we left Galveston, Texas, aboard the National Oceanic and Atmospheric Administration (NOAA) Ship Oregon II.  I am a NOAA Teacher at Sea, participating in a  longline survey in the Gulf of Mexico, surveying sharks and bony fish.

p1080113

Fellow volunteers Leah Rucker and Evan Pettis and I bid farewell to Galveston. Evidence of human influence, such as development, oil rigs, barges, and ships, is not hard to spot. Photo: Matt Ellis, NOAA

When I tell people about the Teacher at Sea program, they assume I teach high school or college, not second grade in rural Tillamook, Oregon.  Yet spend a few moments with any seven or eight year old and you will find they demonstrate significant potential as scientists through their questions, observations, and predictions. Listen to them in action, documented by Oregon Public Broadcasting, at their annual Day at the Bay field trip.

Just as with language acquisition, exposing the young mind to the process of scientific inquiry ensures we will have a greater pool of scientists to manage our natural resources as we age.  By inviting elementary teachers to participate in the Teacher at Sea program, NOAA makes it clear that the earlier we get kids out in the field, the better.

dsc_0447

Each year, my students develop a science or engineering project based upon their interests.  Here, South Prairie Elementary students survey invertebrates along a line transect as part of a watershed program with partners at Sam Case Elementary School in Newport, Oregon.

The NOAA Teacher at Sea program will connect my students with scientists Dr. Trey Driggers, Paul Felts, Dr. Eric Hoffmayer, Adam Pollock, Kevin Rademacher, and Chrissy Stepongzi, as they catch sharks, snapper, and other fish that inhabit the Gulf of Mexico. The data they collect is part of the Red Snapper/Shark Bottom Longline Survey that began in 1995. The survey, broken into four legs or parts each year, provides life cycle and population information about many marine species over a greater geographic distance and longer period of time than any other study of its kind.

Leg IV is the last leg of the survey.  After a long season of data collection, scientists, sailors, and fishermen will be able to return to their families.

My twelve hour shift begins tomorrow, September 17, at noon, and will continue each day from noon until midnight until the most eastern station near Panama City, Florida, is surveyed.  Imagine working 12 hour shifts, daily, for two weeks straight!  The crew is working through the day and night, sleeping when they can, so shutting the heavy metal doors gently and refraining from talking in the passageways is essential.  I got lucky on the day shift:  my hours are closer to those of a teacher and the transition back to the classroom will be smoother than if I were on the night shift.

Approximately 200 stations, or geographic points, are surveyed in four legs. Assume we divide the stations equally among the legs, and the first three legs met their goal. Leg IV is twelve days in duration. How many stations do we need to survey each day (on average) to complete the data collection process?  This math problem might be a bit challenging for my second graders, but it is on my mind.

p1080124

Mulling over the enormity of our task, Skilled Fisherman Chuck Godwin and I discuss which 49 year old fisherman will end up with more wrinkles at the end of the survey. Currently, I am in the lead, but I bet he’s hiding some behind those shades. Photo: Mike Conway

I wonder what kind of sharks we will catch.  Looking back at the results of the 2015 cruise report, I learned that there was one big winner.  More than half of the sharks caught were Atlantic sharpnose (Rhizoprionodon terraenovae) sharks. Other significant populations of sharks were the blacktip (Carcharhinus limbatus) shark, the sandbar (Carcharhinus plumbeus) shark, and the blacknose (Carcharhinus acronotus) shark.

My fellow Teacher at Sea, Barney Peterson, participated in Leg II of the 2016 survey, and by reading her blog I learned that the shark they caught the most was the sandbar shark.

p1080106

In this sample data sheet from the end of Leg III, all but one of the sharks caught were the blacknose sharks.  Notice the condition of two of the fish caught: “heads only.”  Imagine what happened to them!

 

 

Personal Log

My first memory of a shark was when my brother, an avid lifetime fisherman, took several buses across the San Francisco Bay area to go fishing.  That afternoon, he came home on the bus with a huge shark he’d caught.  I was mesmerized. We were poor at the time and food was hard to come by, but mom or dad insisted sharks were not edible, and Greg was told to bury the shark in the yard.  Our dog, Pumpkin, would not comply, and dug that shark up for days after, the overpowering smell reminding us of our poor choice. I don’t have many regrets, but looking back on that day, I wish we had done something differently with the shark.

Since then, I’ve learned that shark is a popular source of protein in the diets of people around the world, and is growing in popularity in the United States.  In our survey area, Fisheries Biologist Eric Hoffmayer tells me that blacktip and sandbar sharks are the two most commercially important species. Our survey is a multispecies survey, with benefits beyond these two species and far beyond our imagination. As demand increases, so too does the need for careful management to keep fisheries sustainable. I am honored to be part of a crew working to ensure that we understand, value, and respect our one world ocean and the animals that inhabit it.

Barney Peterson: Who Works on NOAA Ship OREGON II? Part 3

NOAA Teacher a Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

DECK CREW

Tim Martin, Chief Boatswain, aboard the OREGON II, left his home near the Missouri River in Missouri for a life at sea and has never looked back.  Like many young people from the Central United States, he joined the Navy as a way to travel and see the rest of the world.  He was stationed on Whidbey Island in Washington State and when he left the Navy he became a commercial fisherman working out of Seattle to fish the in Bering Sea from Dutch Harbor, Alaska.

Tim left the west coast and the world of commercial fishing to join NOAA and worked for several years on ships out of NOAA Woods Hole Station in Massachusetts.   Eventually, through connections he made on the job, he was able to transfer to the Southeastern Fisheries group.  He has worked on several ships, but has been on the OREGON II for 12 years.  Tim likes his job for the variety and activity it provides, as well as opportunities to apply his mind to ways to make things work better or more smoothly.  He attributes much of the good working atmosphere on the ship to the stability of many crew members who have worked together for years.   As a long-time civilian mariner with NOAA he appreciates the importance of believing in what you are doing and being committed to being successful.

But, Tim Martin is not so one dimensional that you can know him as just a mariner.  Talking with him I learned that he is a voracious reader with very eclectic tastes in literature.  He devours everything from travel accounts to true adventure, biographies, and historical accounts of exploration and settlement of the world.  He has traveled broadly and uses his reading time to continue to learn about the places he has visited.  He is a licensed diver and enjoys the underwater world as much as sailing on the surface of the sea.   I was fascinated to learn that he has dived to authentic pirate wrecks…quite a change from his underwater beginnings in the dark and brackish Pascagoula River.  Tim is a great example of someone who recognizes that his only limits are the ones he sets for himself.  That is a great legacy to leave for his family.

Chris Nichols, Lead Fisherman, got into marine work for the adventures.  Growing up he read classics like “Captains Courageous” and “20,000 Leagues Under the Sea.” His years as a Boy Scout helped empower him with a can-do attitude that kept him from quitting when things got difficult.  After a mediocre high school career and his childhood years in West Palm Beach, Florida, hanging around the docks and fishing, his quest for travel and adventure led him first to commercial fishing and then to join the Navy.

After six years in the service, including training in water rescue, Chris left the Navy and started classes for work in the merchant marine industry.  As he worked toward earning his 100 ton master rating he discovered that using math, which had seemed unimportant and boring in high school, was critical for navigation.  Applying the things he was studying to real world problems made learning important.  The life-style structure of his military years helped him move fairly seamlessly into the shift work that became his routine aboard merchant ships.  The travel fed his sense of exploration and adventure.

Now, after 20 years working either on NOAA ships or for companies that contracted with NOAA, Chris still loves his job and his life style.  His experience in the merchant marine gave him the background to understand working on ships from the viewpoint of the wheel house and the deck.  He patiently explained to me that the job titles of people working on the deck crew are just positions for which eligible Able Bodied Seamen were hired.  They are not classification by skill or experience; they are job descriptions.  Each survey watch requires 3 crew members on deck to work equipment and support the scientists in deployment and retrieval of lines. Cooperation and communication are the most critical skills needed by everyone on the ship for success in carrying out their mission.

“NOAA has recently been experiencing a lack of interested, qualified applicants,” Chris told me.  “I think many young people lack the sense of adventure that makes life at sea attractive.”  He certainly demonstrates that desire for adventure: his eyes light up and an infectious grin spreads across his face as he talks about the places he’s been and the places he still wants to go.

The whole deck crew, including Chris Rawley, Mike Conway, Chuck Godwin, and James Rhue, are a lively, hard-working bunch.  They do their jobs, they have some fun doing them sometimes, and they like what they are doing.  Every time I was around them I could hear John Fogarty’s song “Rambunctious Boy” playing in my head and I ended up smiling and humming along!

the-deck-crew-chris-nichols-mike-conway-tim-martin-james-rhue-and-chris-rawley

The Deck Crew – Chris Nichols, Mike Conway, Tim Martin, James Rhue, and Chris Rawley

ENGINEERS

Thirty-six years ago Rich Brooks took the advice of his high school math and history teachers and enrolled at the Massachusetts Maritime Academy.  The strict structure of the Academy helped him develop his study habits and learn the discipline needed to raise from a low C student a B+ student who took pride in his work.  He graduated with a degree in Marine Engineering, but spent time as a substitute teacher while deciding where he wanted to go with his career.  Currently he holds 3 chief engineer licenses: steam, motor and gasoline and is qualified to operate any watercraft.

richard-brooks

Richard Brooks

Eventually he started working on ships, spending a number of years in the Merchant Marine.   He worked on merchant transport ships contracted to our government to support Operation Desert Storm and Operation Iraqi Freedom in the Persian Gulf. For 10 years he worked on independent oil tankers on the West Coast, transporting oil and gasoline to and from various ports. He has been a 1st Engineer for NOAA for 2 years.

Rich enjoys the travel and adventure that are part of his career.  He likes visiting different cities and has been through both the Suez and Panama Canals in his travels.  It has been a long journey around the world from his childhood home in Haverhill, Massachusetts to Mobile, Alabama where he made his home base for the last 25 years.  He is proud that his work as an engineer has influenced his son to pursue a career in engineering, following his father’s example of hard work and sacrifice as the way to get ahead in life. Rich hopes to see more young people turn to careers in engineering, knowing as he does that the average age of marine engineers in this country is 58 years which means there will be openings for young people as they complete their training.  As for him, when he retires several years in the future he looks forward to moving closer to his father in Florida, going fishing and playing golf.

 

THE PEOPLE I MISSED INTERVIEWING:

My roommate, Chrissy Stepongzi, is a marine biologist and the person of whom I saw the least on this cruise.  She knows her job and was always eager to answer questions.  We just did not see each other often to talk because of being on opposite shifts and sharing the room.  She slept while I worked and visa-versa.  I appreciated her quick smile and well-developed sense of humor and wish we had been able to get better acquainted.

night-crew-before-shift-change-trey-chrissy-lydia-and-toni

The Night Crew before a shift change – Trey, Chrissy, Lydia, and Toni

Fisherman Mike Conway has been working on ships for a long time.  He loves the ocean and loves the travel.  His willingness to make sure I learned and got opportunity to see things was really helpful and made me feel welcome.  Mike was always willing to grab my iPad and take pictures so I could be in them and he was the one that made sure I got to see the sky at night and appreciate the beauty of being on the ocean in one more way.

Fisherman Chris Rawley, quick to grin, but slow to talk, took some effort to get to know.  Chris was a fisherman on our shift and helped with everything from running the crane to pulling lines to wrestling sharks.  He was “born under a wandering star,” and loves to travel.  He’s a gypsy at heart.

James Rhue is another fisherman working on the deck crew.  He too was with the night shift so we didn’t cross paths often.  When we did talk he could always answer my questions and made me feel welcome.

Mike, Chris, and James are pictured in the Deck Crew photo above.

Mary Stratford was filling in on the deck crew this cruise.  She lives in Puerto Rico where she is a ceramic artist, but much of her life has been spent working in jobs that allow her to see the world.  Mary was helpful and friendly and always interesting to talk to.

2nd Engineer Darnell Doe, the quiet, friendly guy I ate breakfast with most mornings.  We shared a little conversation and watch the news over a quick bite to eat and a cup of coffee.  I never turned out into a formal interview and didn’t take notes on our casual conversations.

darnelle-doe

2nd Engineer Darnell Doe

3rd Engineer Sam Bessey was filling in a temporary vacancy.  He is a recent graduate of an academy in Maine and worked the opposite shift of mine so we had a few chances to talk a little, but not enough to call an interview.  I do know he wants to head for Hawaii and try to find work there after this cruise, but will head home to Maine to see family first.  Good luck in your new career Sam.

Roy Tolliver was our tech person.  I most often saw him walking from place to place on the decks, checking on electronic equipment and trying to troubleshoot computer problems when they arose.  Roy has worked on ships for many years and has been many places around the world.

roy-tolliver-and-sam-on-the-flying-bridge-as-we-moved-into-the-harbor-at-gulfport-mississippi

Roy Tolliver and Sam Bessey on the flying bridge as we moved into the harbor at Gulfport

O C Hill, Listed on the staff roster as a “wiper” was another one of the people who kept the ship running.  Our interactions were limited to friendly smiles and greetings.  When folks work in the engine room it is hard to find a time to talk with them, especially if shifts don’t match.

wiper-otha-hill

Otha (O.C.) Hill

Valerie McCaskill, our cook and one of the most important people on the ship.  I know she has a daughter she was eager to get home to see.  I know she had very little warning that the previous cook would not be on this voyage so she had to step in in a hurry.  I know that she has a beautiful smile and makes legendary macaroni and cheese!  She kept us very happy!

Chuck Godwin would normally be working on this ship as a skilled fisherman on the deck crew, but he worked in the kitchen with Valerie this trip to fill an important empty spot and keep us all well-fed.  His irrepressible sense of fun and lively conversation kept us all hopping.  His career has spanned time in the Coast Guard as well as years with NOAA.  His is a proud new grandpa.

valerie-mccaskill-and-chuck-godwin-in-the-galley-of-noaa-ship-oregon-ii

Valerie McCaskill and Chuck Godwin in the galley of NOAA Ship OREGON II

That I did not get to know everyone on the ship is my loss.  Everyone that I met was friendly and helpful.  It was a true pleasure to meet and work with these great people.