Trevor Hance: Life, As You (Already) Know It… June 21, 2015

NOAA Teacher at Sea
Trevor Hance
Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: June 21, 2015

Teacher at Sea?

Teacher at Sea?

Science and Technology Log

The rhythm of a ship rocking and rolling through varied wave heights while catching some zzzz’s in a small, curtain-enclosed bunk provides an opportunity to get some really amazing deep sleep.  Last night I had a dream that one of my childhood friends married Dan Marino.  It seemed completely bizarre until I remembered we saw lots of dolphins yesterday.

Dan? Mrs. Marino? Is that you?

Dan? Mrs. Marino? Is that you?

Seas have calmed substantially from the ride we had a couple of days ago, and for the past few days the ride has been so smooth I feel more like a “Teacher at Pond” than “Teacher at Sea.”  Unfortunately, it looks like that awful weather system my friends and family have been dealing back home in Texas is about to make its way to us here off the coast of New England (what many Texans consider “the southern edge of Santa-land”) and there’s even a chance today might be our last full day at sea.

At the helm: Estoy El Jefe!

At the helm: Estoy El Jefe!

Operations

Operationally, we’ve shifted back and forth from dredge to HabCam work and it is a decidedly different experience, and as with everything, there are pros and cons.

HabCam

As mentioned in an earlier blog, the HabCam requires two people to monitor two different stations as pilot and co-pilot, each with several monitors to help keep the system running smoothly and providing updates on things like salinity, depth and water temperature (currently 4.59 degrees Celsius – yikes!!!).

Views of the screens we monitor: from 6 o’clock, moving clockwise:  the winch, altitude monitor, cameras of back deck, sonar of the sea floor and photos being taken as we travel

Views of the screens we monitor: from 6 o’clock, moving clockwise: the winch, altitude monitor, cameras of back deck, sonar of the sea floor and photos being taken as we travel

The pilot gets to drive the HabCam with a joystick that pays-out or pulls in the tow-wire, trying to keep the HabCam “flying” about 2 meters off the sea floor.  Changes in topography, currents, and motion of the vessel all contribute to the challenge. The co-pilot primarily monitors and annotates the photographs that are continually taken and fed into one of the computers in our dry-lab.  I’ll share more about annotating in the next blog-post, but essentially, you have to review, categorize and sort photos based on the information each contains.

The winch has its own monitor

The winch has its own monitor

Driving the HabCam gives you a feeling of adventure – I find myself imagining I am driving The Nautilus and Curiosity, but, after about an hour, things get bleary, and it’s time to switch and let one of the other crew members take over.  My rule is to tap-out when I start feeling a little too much like Steve Zissou.

Dredge

Dredge work involves dropping a weighted ring bag that is lined with net-like material to the sea floor and towing it behind the vessel, where it acts as a sieve and filters out the smallest things and catches the larger things, which are sorted, weighed and measured in the wet lab on the back deck.

Close up of the dredge material

Close up of the dredge material; HabCam in the background

Dredge work is a little like the “waves-crashing-across-the-deck” stuff that you see on overly dramatized TV shows like “Deadliest Catch.”  As my students know, I like getting my hands dirty, so I tend to very much enjoy the wind, water and salty experience associated with a dredge.

Yours truly, sporting my homemade jolly roger t-shirt after a successful dredge

Yours truly, after a successful dredge, sporting my homemade Jolly Roger t-shirt

While the dredge is fun, my students and I use motion-triggered wildlife cameras to study the life and systems in the Preserve behind our school, and I fully realize the value those cameras provide — especially in helping us understand when we have too much human traffic in the Preserve. The non-invasive aspects of HabCam work provide a similar window, and a remarkable, reliable data source when you consider that the data pertaining to one particular photograph could potentially be reviewed thousands of times for various purposes.  The sheer quantity of data we collect on a HabCam run is overwhelming in real-time, and there are thousands of photos that need to be annotated (i.e. – reviewed and organized) after each cruise.

More Science

Anyway, enough of the operational stuff we are doing on this trip for now, let’s talk about some science behind this trip… I’m going to present this section as though I’m having a conversation with a student (student’s voice italicized).

Life needs death; this is a shot of 8 or 9 different crabs feasting on a dead skate that settled at the bottom. Ain't no party like a dead skate party...

Life needs death; this is a shot of 8 or 9 different crabs feasting on a dead skate that settled at the bottom. Ain’t no party like a dead skate party…

Mr. Hance, can’t we look at pictures instead of having class?  I mean, even your Mom commented on your blog and said this marine science seems a little thick.

We’ll look at pictures in a minute, but before we do, I need you to realize what you already know.

The National Wildlife Federation gives folks a chance to support biodiversity by developing a “Certified Wildlife Habitat” right in their own backyard.  We used NWF’s plan in our class as a guideline as we learned that the mammals, amphibians, reptiles and birds we study in our Preserve need four basic things for survival:  water, food, shelter and space (note:  while not clearly stated in NWF’s guidelines, “air” is built in.)

This same guide is largely true for marine life, and because we are starting small and building the story, we should probably look at some physics and geology to see some of the tools we are working with to draw a parallel.

Ugh, more water and rocks?  I want to see DOLPHINS, Mr. Hance!

Sorry, kid, but we’re doing water and rocks before more dolphins.

Keep in mind the flow of currents around Georges Bank and the important role they play in distributing water and transporting things, big and small.  Remember what happened to Nemo when he was hanging out with Crush? You’ll see why that sort of stuff loosely plays in to today’s lesson.

Let There Be Light! And Heat!

Let There Be Light! And Heat!

As I mentioned in an earlier post, Georges Bank is a shallow shoal, which means the sea floor has a lot more access to sunlight than the deeper areas around it, which is important for two big reasons. First, students will recall that “light travels in a straight line until it strikes an object, at which point it….” (yada, yada, yada).  In this case, the water refracts as it hits the water (“passes through a medium”) and where the water is really shallow, the sunlight can actually reflect off of the sea floor (as was apparent in that NASA photo I posted in my last blog.)

Also important is the role the sun plays as the massive energy driver behind pretty much everything on earth.  So, just like in our edible garden back at school, the sun provides energy (heat and light), which we know are necessary for plant growth.

Okay, so we have energy, Mr. Hance, but what do fish do for homes?

The substrate, or the sediment(s) that make-up the sea floor on Georges Bank consists of material favorable for marine habitat and shelter.  The shallowest areas of Georges Bank are made mostly of sand or shell hash (“bits and pieces”) that can be moved around by currents, often forming sand waves.  Sand waves are sort of the underwater equivalent of what we consider sand dunes on the beach.  In addition to the largely sandy areas, the northern areas of the Bank include lots of gravel left behind as glaciers retreated (i.e. – when Georges Bank was still land.)

Moving currents and the size of the sediment on the sea floor are important factors in scallop population, and they play a particularly significant role relating to larval transportation and settlement.  Revisiting our understanding of Newton’s three laws of motion, you’ll recognize that the finer sediment (i.e. – small and light) are easily moved by currents in areas of high energy (i.e. – frequent or strong currents), while larger sediment like large grains of sand, gravel and boulders get increasingly tough to push around.

Importantly, not all of Georges Bank is a “high energy” area, and the more stable areas provide a better opportunity for both flora and fauna habitat.  In perhaps simpler terms, the harder, more immobile substrates provide solid surfaces as well as “nooks and crannies” for plants to attach and grow, as well as a place for larvae (such as very young scallop) to attach or hide from predators until they are large enough to start swimming, perhaps in search of food or a better habitat.

With something to hold on to, you might even see what scientists call “biogenic” habitat, or places where the plants and animals themselves make up the shelter.

Substrate samples from one of our dredges; sand, rocks/gravel/pebbles,

Substrate samples from one of our dredges; shells, sand, rocks/gravel/pebbles, “bio-trash” and a very young crab

There is one strand of a plant growing off of this rock we pulled up.  Not much, but it's something to hold on to!

There is one strand of a plant growing off of this rock we pulled up. Not much, but it’s something to hold on to!

Hmmmmmmmmmmmmm, rocks and one weed, huh… I wonder what’s happening at the pool…

Whoa, hold on, don’t quit — you’re half way there!

Before you mind drifts off thinking that there are coral reefs or something similar here, it is probably important that I remind you that the sea floor of Georges Bank doesn’t include a whole lot of rapid topography changes – remember, we are towing a very expensive, 3500 lb. steel framed camera at about 6 knots, and it wouldn’t make sense to do that in an area where we might smash it into a bunch of reefs or boulders.  Here, things are pretty flat and relatively smooth, sand waves and the occasional boulder being the exceptions.

Okay, our scallops now have a place to start their life, but, what about breathing and eating, and why do they need “space” to survive?  Isn’t the ocean huge?

As always, remember that we are trying to find a balance, or equilibrium in the system we are studying.

One example of a simple system can be found in the aquaponics systems we built in our classroom last year. Aquaponics is soil-less gardening, where fish live in a tank below a grow bed and the water they “pollute” through natural bodily functions (aka – “poop”) is circulated to the grow bed where the plants get the nutrients they need, filter out the waste and return good, healthy water back to the fish, full of the micronutrients the fish need to survive.  I say our system is simple because we are “simply” trying to balance ammonia, nitrates and phosphates and not the vast number of variables that exist in the oceans that cover most of our Earth’s surface.  Although the ocean is much larger on the spatial scale, the concept isn’t really that much different, the physical properties of matter are what they are, and waste needs to be processed in order for a healthy system to stay balanced.

Our simple classroom system

Our simple classroom system

Another aspect of our aquaponics system that provides a parallel to Georges Bank lies in our “current,” which for us is the pump-driven movement of water from the fish to the plants, and the natural, gravity-driven return of that water to the fish.  While the transportation of nutrients necessary to both parties is directionally the exact opposite of what happens here on Georges Bank (i.e. – the currents push the nutrients up from the depths here), the idea is the same and again, it is moving water that supports life.

But, Mr. Hance, where do those “nutrients” come from in the first place, and what are they feeding?

Remember, systems run in repetitive cycles; ideally, they are completely predictable.  In a very basic sense where plants and animals are concerned, that repetitive cycle is “life to death to life to death, etc…”  This is another one of those “here, look at what you already know” moments.

When marine life dies, that carbon-based organic material sinks towards the bottom of the ocean and continues to break down while being pushed around at depth along the oceans currents. Students will recognize a parallel in “The Audit” Legacy Project from this spring when they think about what is happening in those three compost bins in our edible garden; our turning that compost pile is pretty much what is happening to all of those important nutrients getting rolled around in the moving water out here – microscopic plants and animals are using those as building blocks for their life.

Our new compost system

Our new compost system

Oh wait, so, this is all about the relationship between decomposers, producers and consumers?  But, Mr. Hance, I thought that was just in the garden?

Yes, “nutrient rich” water is the equivalent of “good soil,” but, we have to get it to a depth appropriate for marine life to really start to flourish.  Using your knowledge of the properties of matter, you figured out how and why the currents behave the way they do here.  You now know that when those currents reach Georges Bank, they are pushed to the surface and during the warm summer months, they get trapped in this shallow(ish), warm(ish) sunlit water, providing a wonderful opportunity for the oceans’ primary producers, phytoplankton, to use those nutrients much like we see in our garden.

Ohhhhhhhhhhhh, I think I’m starting to see what you mean. Can you tell me a little more about plankton?

The term plankton encompasses all of the lowest members of the food chain (web), and can be further divided into “phytoplankton” and “zooplankton.”  Yes, “phyto” does indeed resemble “photo,” as in “photosynthesis”, and does indeed relate to microscopic plant-like plankton, like algae.  Zooplankton pertains to microscopic animal-like plankton, and can include copepods and krill.

Plankton are tiny and although they might try to swim against the current, they aren’t really strong enough, so they get carried along, providing valuable nutrients to bigger sea creatures they encounter.  Just like on land, there are good growing seasons and bad growing seasons for these phytoplankton, and on Georges Bank, the better times for growing coincide with the spring-summer currents.

Dude, Mr. Hance, I didn’t know I already knew that…. Mind…. Blown.

Yeah little dude, I saw the whole thing. First, you were like, whoa! And then you were like, WHOA! And then you were like, whoa…  Sorry, I got carried away; another Nemo flashback. While I get back in teacher-mode, why don’t you build the food web. Next stop, knowledge…

You've got some serious thrill issues, dude

You’ve got some serious thrill issues, dude

But, Mr. Hance, you are on a scallop survey.  How do they fit into the food web? You told us that you, crabs and starfish are their primary natural predators, but, what are they eating, and how?

Scallops are animals, complete with muscles (well, one big, strong one), a digestive system, reproductive system, and nervous system.  They don’t really have a brain (like ours), but, they do have light-sensing eyes on their mantle, which is a ring that sits on the outer edge of their organ system housed under their protective shell.  Acting in concert, those eyes help scallops sense nearby danger, including predators like those creepy starfish.

Predators

Predators

Scallops are filter feeders who live off of plankton, and they process lots of water.  With their shells open, water moves over a filtering structure, which you can imagine as a sort of sieve made of mucus that traps food.  Hair-like cilia transport the food to the scallop’s mouth, where it is digested, processed, and the waste excreted.

DSCN0154

The text is small, but, it describes some of the anatomy of the scallop. Click to zoom.

DSCN0158

But, Mr. Hance, do they hunt? How do they find their food?

Remember, scallops, unlike most other bivalves such as oysters, are free-living, mobile animals; in other words, they can swim to dinner if necessary.  Of course, they’d prefer to just be lazy and hang out in lounge chairs while the food is brought to them (kind of like the big-bellied humans in my favorite Disney film, Wall-E), so can you guess what they look for?

Gee, Mr. Hance…. Let me guess, water that moves the food to them?

Yep, see, I told you this was stuff you already knew.

I highlighted the shadows in one of the HabCam photos to show you proof that scallop swim.

I highlighted the shadows in one of the HabCam photos to show you proof that scallop swim.

While plankton can (and do!) live everywhere in the shallow(ish) ocean, because they are helpless against the force of the current, they get trapped in downwellings, which is a unique “vertical eddy,” caused by competing currents, or “fronts.”  Think of a downwelling as sort of the opposite of a tug-o-war where instead of pulling apart, the two currents run head-on into one another.  Eventually, something’s gotta give, and gravity is there to lend a hand, pushing the water down towards the sea floor and away, where it joins another current and continues on.

Those of you who have fished offshore will recognize these spots as a “slick” on the top of the water, and there is often a lot of sea-foam (“bubbles”) associated with a downwelling because of the accumulation of protein and “trash” that gets stuck on top as the water drops off underneath it.

Those

Those “smooth as glass” spots are where currents are hitting and downwellings are occurring

This particularly large group of birds gathered together atop a downwelling, likely because the water helped keep them together (and because fishing would be good there!)

This particularly large group of birds gathered together atop a downwelling, likely because the water helped keep them together (and because fishing would be good there!)

Because plankton aren’t strong enough to swim against the current, they move into these downwellings in great numbers.  You can wind up with an underwater cloud of plankton in those instances, and it doesn’t take long for fish and whales to figure out that nature is setting the table for them.  Like our human friends in Wall-E, scallops pull up a chair, put on their bibs and settle at the base of these competing fronts, salivating like a Pavlovian pup as they wait on their venti-sized planko-latte (okay, I’m exaggerating; scallops live in salt water, so they don’t salivate, but because I’m not there to sing and dance to hold your attention while you read, I have to keep you interested somehow.)

If you become a marine scientist at Woods Hole, you’ll probably spend some time looking for the “magic” 60m isobaths, which is where you see scallop and other things congregate at these convergent fronts.

Before you ask, an isobaths is a depth line.  Depth lines are important when you consider appropriate marine life habitat, just like altitude would be when you ask why there aren’t more trees when you get off the ski lift at the top of the mountain.

Um, Mr. Hance, why didn’t you just tell us this is just like the garden!  I’m immediately bored.  What else ya got?

Well, in the next class, we’ll spend some time talking about (over-)fishing and fisheries management, but for now, how about I introduce you to another one of my new friends and then show you some pictures?

I don’t know, Mr. Hance, all of this talk about water makes me want to go swimming.  I’ll stick around for a few minutes, but this dude better be cool.

Lagniappe: Dr. Burton Shank

Today, I’ll introduce another important member of the science crew aboard the vessel, Dr. Burton Shank.  As I was preparing for the voyage, I received several introductory emails, and I regret that I didn’t respond to the one I received from Burton asking for more information.  He’s a box of knowledge.

That's Burton, on the right, sorting through a dredge with lots and lots of sand dollars.

That’s Burton, on the right, sorting through a dredge with lots and lots of sand dollars.

Burton is a Research Fishery Biologist at National Marine Fisheries Service in Woods Hole working in the populations dynamic group, which involves lots of statistical analysis (aka – Mental Abuse To Humans, or “MATH”).  Burton’s group looks at data to determine how many scallops or lobsters are in the area, and how well they are doing using the data collected through these field surveys.  One of my students last year did a pretty similar study last year, dissecting owl pellets and setting (humane) rat traps to determine how many Great Horned Owls our Preserve could support.  Good stuff.

Burton is an Aggie (Whoop! Gig ‘Em!), having received his undergraduate degree from Texas A&M at Galveston before receiving his master’s in oceanography from the University of Puerto Rico and heading off as a travelling technical specialist on gigs in Florida, Alaska and at the Biosphere in Arizona.  For those unfamiliar, the biosphere was a project intended to help start human colonies on other planets, and after a couple of unsuccessful starts, the research portion was taken over by Columbia University and Burton was hired to do ocean climate manipulations.  Unlike most science experiments where you try to maintain balance, Burton’s job was to design ways that might “wreck” the system to determine potential climate situations that could occur in different environments.

As seems to be the case with several of the folks out here, Burton didn’t really grow up in a coastal, marine environment, and in fact, his childhood years were spent in quite the opposite environment:  Nebraska, where his dad was involved in agricultural research.  He did, however, have a small river and oxbow like near his home and spent some summers in Hawaii.

It was on during a summer visit to Hawaii at about 9 years old that Burton realized that “life in a mask and fins” was the life for him.  On return to Nebraska, home of the (then!) mighty Cornhusker football team, many of his fellow fourth grade students proclaimed that they would be the quarterback at Nebraska when they grew up.  Burton said his teacher seemed to think being the Cornhusker QB was a completely reasonable career path, but audibly scoffed when he was asked what he wanted to be and said he would be a marine biologist when he grew up.  I welcome any of you young Burton’s in my class, anytime – “12th Man” or not!

Photoblog:

RSCN0090

Sheerwater, I loved the reflection on this one

Such a nice day

Such a nice day

You'll never look at them the same, will you?

You’ll never look at them the same, will you?

Cleaning up after a dredge

Cleaning up after a dredge; shot from vestibule where wet-gear is housed.  We spent lots of time changing.

So fun to see lobsters and crabs when

So fun to see lobsters and crabs when “HabCam’ing.” They rear back and raise their claws as if to dare you to get any closer.

Good night!

Good night!

Playlist:  Matisyahu, Seu Jorge, Gotan Project, George Jones

Okay, that’s it, class dismissed.  Get outta here…

Mr. Hance

Trevor Hance: Permission to Come Aboard? May 28, 2015

NOAA Teacher at Sea
Trevor Hance
Soon to be Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: May 28, 2015

Personal Log: Permission to Come Aboard?

Greetings from Austin, Texas.  In less than two weeks, my grand summer adventure begins.  I will be flying out of Austin, and heading to Boston where Peter Pan will magically transport me down the Woods (Rabbit?) Hole and out to sea aboard the R/V Hugh R. Sharp, where I will support scientists conducting a Sea Scallop Survey.

sharp_deck_copy

Photo from the NOAA Fisheries website that I’ve been using to determine how to dress!

My Real Job

I teach at a fantastic public school in Austin that incorporates student interest surveys in lesson design and enrichment opportunities across subjects.  Although we are within the city of Austin, our campus backs up to a wildlife preserve (30,000 acres, total) that was set aside as land use patterns changed, and threatened habitat and ecosystems of 2 endangered birds, 8 invertebrates and 27 other species deemed “at risk.”  We have about 5 “wildspace” acres on our actual campus property that is unfenced to the larger Balcones Canyonlands Preserve.  We use that space as our own laboratory, and over the last decade, fifth grade students at our school have designed, constructed and continue to support the ecosystem through ponds supported by rainwater collection (yes, they are quite full at the moment!), a butterfly habitat, water-harvesting shelter/outdoor classroom, grassland/wildflower prairie and a series of trails.  In the spring, I post job descriptions for projects that need work in our Preserve and students formally apply for a job (i.e. – resume/cover letter).  They spend the balance of the spring working outdoors, conducting research relating to their job, and doing their part to develop a culture and heritage of sustainability on our campus that transcends time as students move beyond our campus during their educational journey.  My path through the curriculum is rooted in constructivist learning theory (project-based, place-based and service learning) and students are always outdoors.  Parents, of course, always get a huge “thank you” at the end of the year from me for not complaining that I’ve ruined too many pairs of shoes.

Below are a few pictures from our game cameras and shots I’ve taken of my classes in action this spring.

Capture2

Texas bluebonnets are beautiful, and even more spectacular when you get close and see “the neighborhood.”

DSCN7879

Rain or shine

DSCN8205

Early morning observation in the Preserve

DSCN8303

Gambusia — my favorite!

DSCN8341

Western ribbon snake snacking at the tadpole buffet.

DSCN9907

One of our frog surveys in action

IMG_0092

So, did anyone figure out what does the fox say?

IMG_0106

Wild pigs rooting

IMG_0995

Bandits abound when the sun goes down.

 

2015 05 13 GCW top of observation area

The endangered golden cheeked warbler, taken by me early May

As I write, there are about 5 days left of this school year, which means that most of our big projects are complete and the rain has paused, so we’re spending a few days having a big “mechanical energy ball” competition (aka – “kickball”), and I get the distinct feeling that the students are quite prepared for their summer break!

My Background

I was an “oilfield kid” and grew up in Lafayette, Louisiana, the heart of Cajun Country, and about an hour’s drive to the Gulf of Mexico.  In college, I worked in the oilfield a bit, and after finishing law school, I was a maritime attorney, so I was able to spend some time aboard vessels for various purposes.  My time aboard the Hugh R. Sharp will be my longest stint aboard a vessel, and I’m quite excited for the work!

My Mission

R/V Hugh R. Sharp (btw students, it is a vessel or ship, not a “boat”) is a 146-foot general purpose research vessel owned by the University of Delaware (go Fighting Blue Hens!).  Each summer I get a travel coffee mug from the college where I attend a professional development course, and I’m hopeful I can find one with a picture of YoUDee on it this year!

GofMmap_750_272953

Photo from the Woods Hole Center for Oceans and Human Health

 

LARGEIMAGE_920423

Photo from the University of Delaware bookstore website of the mug I might pick up while traveling this summer

 

rvSharp-AcousticTrials

R/V Hugh R. Sharp

 

While aboard the vessel, we will be conducting surveys to determine the distribution and abundance of scallops.  My cruise is the third (and northernmost) leg of the surveys, and we’ll spend our time dredge surveying, doing an image based survey using a tethered tow-behind observation vehicle, and some deeper water imaging of lobster habitat.  Those of you who know me, know that I am genuinely and completely excited and grateful for the opportunity to “nerd out” on this once-in-a-lifetime get-away-from-it-all adventure!  Check back over the summer and see what I’ve been up to!

Trevor Headshot

That’s me!

Carol Glor: Lights, Camera, Action, July 7, 2014

NOAA Teacher at Sea

Carol Glor

Aboard R/V Hugh R. Sharp

July 5 – 14, 2014

Mission: Sea Scallop Survey (Third leg)

Geographical Area: Northwest Atlantic Ocean

Date: July 7, 2014

Weather Data from the bridge: Wind SW 18-20 knots, Seas 4-7 ft,  Visibility – good

Science and Technology Log: Starring the HabCam

The HabCam is a computerized video camera system. It is a non-invasive method of observing and recording underwater stereo images, and collecting oceanographic data,such as temperature,salinity, and conductivity.  The vehicle is towed at  1.5 – 2 meters from the floor of the ocean. The main objective of this mission is to survey the population of scallops as well as noting the substrate (ocean floor make-up) changes. Most substrate is made up of sand, gravel, shell hash and epifauna. We also note the presence of roundfish (eel, sea snakes, monkfish, ocean pout, and hake), flatfish (flounders and fluke), whelk, crab, and skates. Although sea stars (starfish) are a major predator of scallops, they are not included in our annotations.

HabCam

The HabCam awaiting deployment.

The crew and science staff work on alternate shifts (called watches) to ensure the seamless collection of data. The scallop survey is a 24-hour operation. The science component of the ship consists of 11 members. Six people are part of the night watch from 12am-12pm and the remaining members (myself included) are assigned to the day watch which is from 12pm until 12am. During the HabCam part of the survey all science staff members rotate job tasks during their 12-hour shift. These include:

A. Piloting the HabCam – using a joystick to operate the winch that controls the raising and lowering of the HabCam along the ocean floor. This task is challenging for several reasons. There are six computer monitors that are continually reviewed by the pilot so they can assess the winch direction and speed, monitor the video quality of the sea floor, and ensure that the HabCam remains a constant 1.5 – 2 meters from the ocean floor. The ocean floor is not flat – it consists of sand waves, drop-offs, and valleys. Quick action is necessary to avoid crashing the HabCam into the ocean floor.

HabCam pilot

Carol piloting the HabCam.

B. The co-pilot is in charge of ensuring the quality of digital images that are being recorded by the HabCam. Using a computer, they tag specific marine life and check to see if the computers are recording the data properly. They also assist the pilot as needed.

HabCam image

One of the images from the HabCam

C. Annotating is another important task on this stage of the survey. Using a computer, each image that is recorded by the HabCam is analyzed in order to highlight the specific species that are found in that image. Live scallops are measured using a line tool and fish, crabs, whelk and skates are highlighted using a boxing tool so they can be reviewed by NOAA personnel at the end of the cruise season.

Personal Log:

When not on watch there is time to sleep, enjoy beautiful ocean views, spot whales and dolphins from the bridge (captain’s control center), socialize with fellow science staff and crew members, and of course take lots of pictures. The accommodations are cozy. My cabin is a four-person room consisting of two sets of bunk beds, a sink, and desk area. The room is not meant to be used for more than sleeping or stowing gear. When the ship is moving, it is important to move slowly and purposely throughout the ship. When going up and down the stairs you need to hold onto the railing with one hand and guide the other hand along the wall for stability. This is especially important during choppy seas. The constant motion of the ship is soothing as you sleep but makes for challenging mobility when awake.

Top bunk

My home away from home.

Captain Jimmy

Captain Jimmy runs a tight ship.

 

Before heading out to sea it is important to practice safety drills. Each person is made aware of their muster station (where to go in the event of an emergency), and is familiarized with specific distress signals. We also practiced donning our immersion suits. These enable a person to be in the water for up to 72 hours (depending upon the temperature of the water). There is a specific way to get into the suit in order to do so in under a minute. We were reminded to put our shoes inside our suit in a real life emergency for when we are rescued. Good advice indeed.

immersion suit

Carol dons her immersion suit.

life jacket

Life jacket selfie.

 

Did you know?

The ship makes it’s own drinking water. While saltwater is used on deck for cleaning purposes, and in the toilets for waste removal, it is not so good for cooking, showers, or drinking. The ship makes between 600 and 1,000 gallons per day. It is triple-filtered through a reverse-osmosis process to make it safe for drinking. The downside is that the filtration system removes some important minerals that are required for the human body. It also tends to dry out the skin; so using moisturizer is a good idea when out at sea.

Photo Gallery:

Sharp

Waiting to board the RV Hugh R. Sharp

WG flag

West Genesee colors; flying high on the Sharp

Floating Frogs

Floating Frogs at the Woods Hole Biological Museum.

Seal at aquarium

Seal at the Woods Hole Aquarium – Oldest Aquarium in the US.

 

 

 

 

Carol Glor: The Adventure Continues, June 25, 2014

NOAA Teacher at Sea

Carol Glor

(Soon to be aboard) R/V Hugh R. Sharp

July 5 – 14 2014

Mission: Sea Scallop Survey, Third Leg

Geographical area of cruise: North Atlantic Ocean

Date: June 25, 2014

Personal Log:

commander

Last summer I served as the Commander for our simulated mission during my week-long adventure at Space Camp.

Hello, my name is Carol Glor and I live in Liverpool, New York (a suburb of Syracuse). I teach Home & Career Skills at Camillus Middle School and West Genesee Middle School in Camillus, New York. Last summer, I was selected to participate in Honeywell’s Educators at Space Academy at the US Space and Rocket Center in Huntsville, Alabama. It was a week-long camp full of activities that use space to become more effective educators within science, technology, engineering and math. When one of my space camp teammates told me about her experiences as a Teacher at Sea, I knew that I had to apply.

I am so excited to have been chosen by NOAA (National Oceanic and Atmospheric Administration) to be part of the 2014 Teacher at Sea field season. As a Home & Career Skills teacher, I have the opportunity to educate students about the connections between real-life skills in math, science, technology and engineering while learning about important topics such as conservation, career exploration and current events. The best way that I can learn to teach these skills is by practicing them myself. During my upcoming cruise, I will become a real scientist and learn more about the scientific research that is involved in keeping our oceans alive for generations to come.

Onondaga Lake

View from Onondaga Lake West Shore Trail Expansion.

Girls Varsity Crew

Liverpool High School Crew on Onondaga Lake

Sustainability is an important topic of concern for our oceans as well as our lakes and streams. I currently live less than a mile from Onondaga Lake. For many years it has been considered one of the most polluted bodies of water in the US. Since 2007, the Honeywell Corporation has implemented the Onondaga Lake Remediation Plan (slated for completion in 2015) to result in an eventual recovery of the lake’s habitat for fish and wildlife as well as recreational activities on and around the lake. Most recently, the West Shore Trail Extension was opened for the public to enjoy. Onondaga Lake Park has always been one of my favorite places to go to experience nature while walking, running, biking or watching my daughters’ crew races. Now I can enjoy it even more.

Science and Technology:

I will be sailing from Woods Hole, Massachusetts aboard the R/V Hugh R. Sharp to participate in an Atlantic sea scallop survey. The R/V Hugh R. Sharp is a coastal research vessel, built in 2006, is 146 feet long, and is part of the University of Delaware’s College of Earth, Ocean, and Environment fleet.

R/V Hugh R Sharp

R/V Hugh R Sharp out at sea

The purpose of a sea scallop survey is to determine the scallop population on the east coast. This survey is important to protect the sea scallop from being over-harvested. By collecting digital video data and sea scallop samples, the science crew is able to advise which areas of the east coast are open for scallop fishing.

The Atlantic Sea Scallop

The Atlantic Sea Scallop

What I hope to learn:

Recently, I had the pleasure of visiting Martha’s Vineyard, Massachusetts. While there, I experienced the beauty of the coastal island as well as savoring the bounty from the sea. As a casual observer, I noticed a few lobster boats, trawling vessels and pleasure cruisers. Each has a stake in the future abundance of sea life in the Northwest Atlantic Ocean. I would like to learn first-hand the impact of over-harvesting on sea scallops and be able to observe them in their natural habitat. My work as a scientist will give my students a taste for the vast amount of research careers that are available to them.

Edgartown Lighthouse

Edgartown Lighthouse on Martha’s Vineyard

Lobsterman

A Lobsterman hauling in his catch in Nantucket Sound.

Virginia Warren: Adios, Ciao, Shalom, Arrivederci, Adieu, Auf Weidersehen, in other words Goodbye for Now, July 17, 2013

NOAA Teacher at Sea
Virginia Warren
Aboard the R/V Hugh R. Sharp
July 9th – 17th, 2013

Mission: Leg 3 of the Sea Scallop Survey
Geographical Area of Cruise: Sailing Back to Woods Hole, Massachusetts
Date: July 17th, 2013

Weather Data from the Bridge: Mostly sunny with occasional fog and 1 to 2 foot seas (The weather was perfect for the last two days of the trip!)

Personal Log: 

I’ve had the most wonderful time on this trip and made some really great new friends! I enjoyed it so much that I almost hated to see it come to an end! I worked with an awesome group of people on my watch who were always full of information! Erin has a marine biology degree, as well as a technology graduate degree. She was great to talk to, learn from, and she always helped me make the right decisions. Adam was our watch chief on the day watch crew, which means that he was responsible for collecting data and directing the rest of the science crew as we sorted the contents of the dredge. He was always very helpful and knowledgeable about the different types of species that came up with the dredge. Jon was the chief scientist for the leg 3 sea scallop survey. Jon had a very busy job because he was in charge of both science crews, communicating with the home lab, collaborating with the ship crew, deciding on dredge spots and HabCam routes, and for showing me the ropes. I really do appreciate all the time he took out of his busy days to help me and teach me! Jared was the HabCam specialist on board for this leg of the sea scallop survey. He has an ocean engineering degree and works for WHOI, which is the Woods Hole Oceanographic Institute. Jared helped design and test the HabCam vehicle so that it would protect the camera and other equipment while underwater. He also kept our crew entertained with ‘tunes’ and laughs. This group of people was great to work with and I would do it again with them in a heartbeat. I really hope that I will get another opportunity to do something like this again in the future!

Virginia's Day Watch Crew

The day watch science crew taking the last dredge picture of the Leg 3 Sea Scallop Survey.
Pictured left to right: Erin, Virginia, Adam, Jon, and Jared

I also really enjoyed the crew of the Hugh R. Sharp. They were always welcoming and forthcoming with answers to questions about the ship. They also keep their ship clean and comfortable. My favorite place on the ship was the bridge, which is where they steer the ship. The bridge is the best place to watch for whales and sharks. It has panoramic glass all the way around it, plus you can walk right outside the bridge and feel the breeze in your face, or have some very interesting conversations with the ship’s crew.

R/V Hugh R. Sharp in Woods Hole, MA

R/V Hugh R. Sharp in Woods Hole, MA

Science and Technology Log:

As my trip came near to an end, I started wondering what were some of the differences between the research dredge we were using and the dredge a commercial scallop fisherman would use. Our research dredge was an 8 foot New Bedford style dredge, as opposed to the commercial ships who use two 15 foot dredges on either side of the ship. Scallop dredges are made up of connecting rings that keep the scallops in the dredge. The research dredge we used was made up of 2 inch rings. Commercial dredges are required to have a minimum of 4 inch rings. NOAA uses the smaller rings on their research dredges to be able to get an accurate population count of all the sizes of scallops in a given area. The commercial scallop fishermen are required to use the larger rings to allow smaller scallops to escape. The research dredge we used was equiped with a 1.5 inch streched mesh liner to keep other species, like fish, in the dredge because NOAA likes to measure and count them as well. Commercial scallop fishermen keep their dredges in for hours at a time.  NOAA only keeps their research dredge in the water for 15 minutes at a time. There are several other dredge regulations that commercial fisherman have to follow. Click here if you would like to read more about the regulations.

I also learned a lot about the anatomy of a sea scallop.

The anatomy of a sea scallop. Thanks to http://www.seattlefishnm.com/ for the anatomy  of a sea scallop chart.

The anatomy of a sea scallop. Thanks to http://www.seattlefishnm.com/ for the anatomy of a sea scallop chart.

Sea scallops are either male or female depending on the color of their reproductive gland, called the gonad. If a scallop has a red gonad, then that means it is a female scallop. If the gonad is a cream/yellow color, then that means the scallop is a male.

Inside View of a Male Scallop

Inside View of a Male Scallop

Inside View of a Female Scallop

Inside View of a Female Scallop

The scallop is connected to both sides of its shell with the large white part called the adductor muscle. This is the part that gets eaten. The adductor muscle is also the part that allows the scallop to clasp its shell shut. Scallops are also able to swim by sucking water into its shell and then quickly clasping the shell shut, which makes the scallop ‘swim’.

Sea Scallop's Adductor Muscle

The white chunk of meat is called the adductor muscle, which is the part of the scallop that most people eat.

Scallops have eyes that line the edges of both top and bottom shells. See if you can spot eyes on the scallops below.

Most of the scallops that we pulled up were only measured for individual length and cumulative weight, however some of the scallops were chosen to have their gonad and adductor muscle weighed, as well as their shells analyzed for age.

Virginia Measuring the Scallop's Meat Weight

Virginia Measuring the Scallop’s Meat Weight

Scallops are aged in a way similar to aging a tree. After the first two years of a scallop’s life, they are believed to grow a shell ring every year. In the picture below you can see how the shells age through the years.

Aged Scallops

Aged Scallops
Photo courtesy of Dvora Hart from the NMFS Sea Scallop Survey Powerpoint

Animals and Sights Seen:

 Beautiful Sunsets

Beautiful Sunset Near Nantucket

Beautiful Sunset Near Nantucket

Moonlight on the Water

Tons of Hermit Crabs:

Starfish:

Octopus:

Octopus

We put it in water to keep it alive while we finished sorting the table.

Barndoor Skate:

Dolphins:

Dolphin

This dolphin swam right up beside the ship.

Humpback Whales: The last night of the cruise we got to see the most amazing whale show. The pictures aren’t that great because they were a good ways away from the ship and it was right around sunset. I ended up putting the camera down so that I could just enjoy the show.

Extra Pictures:

Virginia Warren: Let the Dredging Begin, July 15, 2013

NOAA Teacher at Sea
Virginia Warren
Aboard the R/V Hugh R. Sharp
July 9 – 17, 2013

Mission: Leg 3 of the Sea Scallop Survey
Geographical Area of Cruise: Georges Bank
Date: July 15, 2013

Weather Data from the Bridge: South to south-west winds 10 to 20 knots, seas 4 to 6 feet, showers and scattered thunderstorms, areas of fog with visibility of 1 nautical mile or less early in the morning

Science and Technology Log:

After two days of using the HabCam to view the animals in their natural habitat, we moved to viewing the actual animals. We used a scallop dredge to bring the animals on deck so that we can count and measure them. The main goal is to find scallops, but we also sort other animals and measure them as well. In the dredge we have found sand dollars, different types of fish, crabs, sea stars, and of course scallops. The dredge gets pulled behind the ship for 15 minutes. Once the 15 minutes are up, the ship crew will pull the dredge onto the boat and then dump the contents onto the sorting table. Before sorting the contents of the dredge someone from the science crew is responsible for taking a picture of its contents. To keep the pictures separated from dredge to dredge, another person holds a white board that tells the number of the tow in front of each pile before the picture. Then the sorting begins!

Holding the Sign for the Station Picture

Holding the Sign for the Station Picture

Sorting the table can be very interesting because the things that come up depend on the location and how deep the water is. At times we sort through scallops and rocks, then the next dredge might be sand, or another time might be mostly sand dollars. While sorting the dredge contents, we sort all of the fish and skates from the scallops and put the fish and/or skates in a bucket to be sorted later. The items on the table that we are not sampling are considered to be trash. We have to keep up with each time we throw a ‘trash’ bucket overboard because a person on my crew has to count up the total amount of trash. Sometimes we also do a subsample of the number of starfish in the trash and the amount of crabs that came up in the dredge (hermit crabs not included). Crabs and starfish are natural predators  of scallops.

Once the sorting table is clear, we separate the types of fish based on species and then start weighing and measuring in the scientific ‘van’ on the ship. The watch chief takes the weights of everything and then passes it down to be measured by length. Before we can start measuring the length, we have to get the computer ready to receive the measurement data. The names of the people working the station are put into the computer and then the species is selected. To measure the length of an item, we spread it out on a measuring board starting at the beginning of the board. This board is connected to the computer and has a magnet that goes down the length of the ruler that is all the way down the middle of the board. Next, we take a hand-held magnet and press down on the board at the end of the item. The magnet picks up the measurement and sends it to the computer program. This will continue until everything that needs to be measured is complete.

Yellow Tale Flounder Being Measured

Yellow Tale Flounder Being Measured

Another station in the van is responsible for taking meat weights from a sample group of three to four scallops. The sample scallops first have to be scrubbed down with a wire brush to clean off anything growing on it. After the shell is clean, then the scallops get weighed and measured for length. Then the scallop gets shucked. The gonad gets taken out and weighed and then the muscle gets taken out and weighed. The muscle is the part of the scallop that gets eaten. Then the shells are dried off and bagged up for age testing when the ship gets back to port.

Personal Log:

It has been foggy here on Georges bank, but work still continues on a ship. This ship constantly has either the HabCam in the water, or is dredging for scallops and the science crew is responsible for keeping the science research going 24 hours a day. This is the reason for the science crew to be split into two groups. The people in my crew are great to work with and are very helpful!

Close to the beginning of one of my shifts, we came across a dredge that was full of scallops. It had at least 10 baskets full of large scallops. We only measured a subsample of four baskets, but in the subsample alone we had over 400 scallops that were measured in. Then in the very next dredge, we had another dredge that was better than the first one. The baskets of scallops filled up the side of the ship and we were actually searching for baskets to put more scallops in.

I have had several ‘firsts’ on this trip. I got my first experience being on a research vessel. This was my first time shucking a scallop. It was also my first time being brought into a fisherman’s tradition. Apparently it’s tradition for all newbie scallop shuckers to shuck their own scallop and then eat it raw. This is not the best tradition in my mind because I have a very easy gag reflex and of course I started gagging, but I was able to keep it down. The cook on the ship taught me how to fillet a fish called whiting. Then as a special treat, he took the fish and fried it up for us to snack on. This was a great treat, because the fish came straight from dredge to be filleted and cooked up to be eaten. It was fresh and delicious!

Virginia Shucking Scallops

Virginia Shucking Scallops

Virginia Holding the 20 Pound Monk FIsh

Virginia Holding the 20 Pound Monk FIsh

Did You Know… that when dredging for scallops the part of the dredge that drags the bottom of the sea floor will come up looking polished.

The Dredge Coming Up Looking Polished

Look closely at the side of the dredge facing the camera and you will see that it is polished to a silver color because it is dragged over the bottom of the ocean floor. The rest of the dredge that doesn’t touch the ocean floor looks a rusted red color.

Animals Seen Recently:

–       Dolphins

Dolphins

Dolphins

–       Blue Shark

–       Lobster

–       Octopus

–       Monk Fish

–       Skates

Winter Skate

Winter Skate

–       Basking Shark

–       Pilot Whale

Pilot Whale

Pilot Whale

–       LOTS of scallops

Extra Pictures:

Eric Velarde: Rosette C.T.D. Analysis & HabCam V4 Operation, June 15, 2013

NOAA Teacher at Sea
Eric Velarde
Aboard R/V Hugh R. Sharp
Wednesday, June 13, 2013 – Monday, June 24, 2013

Mission: Sea Scallop Survey
Geographical Area: Cape May – Cape Hatteras
Date: June 15, 2013

Weather Data from Bridge
Latitude: 38°19.0778 N
Longitude: 74°15.9625 W
Atmospheric Pressure: 30.7in
Wind Speed: 11.5 Knots
Humidity: 70%
Air Temperature: 66.4°F
Surface Seawater Temperature: 66.2°F

Science & Technology Log

Deploying the Rosette to collect the first water sample for C.T.D. analysis & flying the HabCam V4 was the focus of work on June 15, 2013. The Rosette is deployed so that water samples can be collected to analyze the Conductivity, Temperature, and Depth (C.T.D.) of the seawater, providing data on the physical aspects of the Atlantic Sea Scallop’s (Placopecten magellanicus) habitat. The engineering team assumes responsibility of the Rosette, which is carefully lowered into the ocean through winch operation on the bridge. Once the Rosette has reached near the seafloor, it collects seawater and is then carefully retrieved through winch operation on the bridge. The seawater is then collected into an individual sampling bottle for analysis & calibration of the instrument.

Rosette C.T.D. Apparatus

Rosette C.T.D. Apparatus

Digital image rendering of the C.T.D. analysis allows for graphic visualization of the gathered oceanographic information, as well as calibration of the instrument. Analyzing the information demonstrates the two distinct layers of the ocean, separated by a relatively abrupt dividing boundary, which defines them. Atlantic Sea Scallops (Placopecten magellanicus) inhabit the seafloor in the lower layer of the ocean, whereas Plankton and Sea Scallop larvae can be found in the upper layer. Presentation of the C.T.D. readout gives accurate data of the Voltage (purple), Oxygen (blue), Temperature (red), and Salinity (green) levels.

C.T.D. Readout

C.T.D. Readout

As stated in my previous post, the HabCam V4 takes a tremendous amount of teamwork in order to operate at its maximum capacity. Correspondence with the engineering team is required to launch & retrieve the HabCam V4, the pilot must remain focused on ensuring that the HabCam V4 is close enough to the seafloor for maximum image quality, while at the same time being at a safe distance to prevent accidental collision, and the co-pilot is focused on incoming images & server traffic at a 2-monitor interface. All participating members of the crew must be attentive, communicative, and actively engaged in the contributing activities of other team members at all times.

HabCam V4 Co-Pilot Interface

HabCam V4 Co-Pilot Interface

The best way to describe piloting the HabCam V4 is to compare it to a video game, albeit one that has no “extra lives”. There is a pressure sensitive fiber optic cable feed & retrieval control lever that allows the pilot to either decrease or increase the depth of the HabCam V4. It is vital to maintain a safe distance while being in close enough range of the seafloor so that the incoming images are properly exposed and recognizable for the co-pilot. The optimum range is between 1.7 – 1.9 meters +/- 0.2 meters. Piloting the HabCam V4 during satisfactory weather is nearly effortless once having become acclimated to the 5-monitor interface and the control lever. Piloting the HabCam V4 during foul weather is quite difficult, requiring constant conscious concentration on all variables (seafloor depth, HabCam V4 depth, sonar readout, and fiber optic cable feed & retrieval) in order to prevent an accidental collision with the seafloor.

HabCam V4 Piloting

HabCam V4 Piloting

Co-piloting the HabCam V4 requires attention to the incoming images, as well as server traffic. Incoming images must be screened so that identified individual species can be time-stamped and tagged for analysis. Using software, the co-pilot can either tag observed species using digital identification markers, or manually input text to identify a particularly intriguing image that they wish to highlight for analysis. It is important to ensure that incoming images are being written to the server for digital archiving and future annotation. Digital data management, a scarcely celebrated 21st century character trait, is one of the many strengths of the crew aboard this vessel.

HabCam V4 Co-Piloting

HabCamV4 Co-Piloting

Personal Log

Despite a few bouts of violent seasickness, I have been having the time of my life while aboard the R/V Hugh R Sharp. The crew possesses seemingly infinite amounts of sincerity, honesty, and intelligence. The continued operation of this wonderfully engineered human machine has occurred without error, and will continue to do so while under the watchful eyes of the leadership heads. Thus far my favorite aspect of this research experience has been co-piloting the HabCam V4. Having vast amounts of digital imagery stream before my observation makes me feel as though I am at home, screening digital images that I stumble upon for both scientific beauty & significance.

HabCam V4 Co-Piloting

HabCam V4 Co-Piloting

In addition to the technological aspects of this experience, I have also found solace in the empathetic energy provided by the ship’s captain, Jimmy Warrington. His humor, experience, and leadership create an ideal teaching & learning environment. While many may dread the monotonous nature of a safety briefing, the one provided by the Captain was both engaging and informative. Following safety briefing, newcomers to the R/V Hugh R. Sharp are required to don a safety immersion suit in less than 60 seconds. The safety immersion suit is more commonly referred as a “Gumby Suit”. The suit is quite impressive, being both insulating and buoyant. It possesses a safety whistle, flashlight, interpersonal locking hooks, and even an inflatable pillow. It is reassuring to know that above all else, safety is the primary focus of the leadership on this vessel.

Safety Immersion Suit or "Gumby Suit"

Safety Immersion Suit or “Gumby Suit”

Being on duty from Midnight-Noon causes me to miss the opportunity to observe sunsets at sea on most nights, but I have been able to experience a few and they are simply the most breathtaking sunsets that I have ever seen. Watching the night divide the day is both awe-inspiring and thought provoking. Despite my colorblindness, I feel that I am still capable of absorbing all of the electromagnetic energy that the sun provides during this hour of magic.

Sunset Storm

Sunset Storm

Dredge tows will be the focus of upcoming days, and is something that I am looking forward to. As a biologist, I find all living organisms infinitely beautiful and stimulating. I cannot wait.

-Mr. V

Did You Know?

The Atlantic Sea Scallop Fishery is the largest & most valuable scallop fishery on planet Earth, valued at $580,000,000 in 2011.