Emily Whalen: Trawling in Cape Cod Bay, April 29, 2015

NOAA Teacher at Sea
Emily Whalen
Aboard NOAA Ship Henry B. Bigelow
April 27 – May 10, 2015

Mission: Spring Bottom Trawl Survey, Leg IV
Geographical Area of Cruise: Gulf of Maine

Date: April 29, 2015

Weather Data:
GPS location:  4251.770’N, 07043.695’W
Sky condition:  Cloudy
Wind: 10 kts NNW
Wave height: 1-2 feet
Water temperature:  6.2○ C
Air temperature:  8.1○ C

Science and Technology Log:

On board the Henry B. Bigelow we are working to complete the fourth and final leg of the spring bottom trawl survey. Since 1948, NOAA has sent ships along the east coast from Cape Hatteras to the Scotian Shelf to catch, identify, measure and collect the fish and invertebrates from the sea floor. Scientists and fishermen use this data to assess the health of the ocean and make management decisions about fish stocks.

What do you recognize on this chart?  Do you know where Derry, NH is on the map?

This is the area that we will be trawling. Each blue circle represents one of the sites that we will sample. We are covering a LOT of ground! Image courtesy of NOAA.

Today I am going to give you a rundown of the small role that I play in this process. I am on the noon to midnight watch with a crew of six other scientists, which means that we are responsible for processing everything caught in the giant trawl net on board during those hours. During the first three legs of the survey, the Bigelow has sampled over 300 sites. We are working to finish the survey by completing the remaining sites, which are scattered throughout Cape Cod Bay and the Gulf of Maine.  The data collected on this trip will be added to data from similar trips that NOAA has taken each spring for almost 60 years.  These huge sets of data allow scientists to track species that are dwindling, recovering, thriving or shifting habitats.

The CTD ready to deploy.

The CTD ready to deploy.

At each sampling station, the ship first drops a man-sized piece of equipment called a CTD to the sea floor. The CTD measures conductivity, temperature and depth, hence its name.  Using the conductivity measurement, the CTD software also calculates salinity, which is the amount of dissolved salt in the water.  It also has light sensors that are used to measure how much light is penetrating through the water.

While the CTD is in the water,  the deck crew prepares the trawl net and streams it from the back of the ship.  The net is towed by a set of hydraulic winches that are controlled by a sophisticated autotrawl system.  The system senses the tension on each trawl warp and will pay out or reel in cable to ensure that the net is fishing properly.

Once deployed, the net sinks to the bottom and the ship tows it for twenty minutes, which is a little more than one nautical mile. The mouth of the net is rectangular so that it can open up wide and catch the most fish.  The bottom edge of the mouth has something called a rockhopper sweep on it, which is made of a series of heavy disks that roll along the rocky bottom instead of getting hung up or tangled.  The top edge of the net has floats along it to hold it wide open.   There are sensors positioned throughout the net that send data back to the ship about the shape of the net’s mouth, the water temperature on the bottom, the amount of contact with the bottom, the speed of water through the net and the direction that the water is flowing through the net.  It is important that each tow is standardized like this so that the fish populations in the sample areas aren’t misrepresented by the catch.   For example, if the net was twisted or didn’t open properly, the catch might be very small, even in an area that is teaming with fish.

Do you think this is what trawl nets looked like in 1948?

This is what the net looks like when it is coming back on board. The deck hands are guiding the trawl warps onto the big black spools. The whole process is powered by two hydraulic winches.

After twenty minutes, the net is hauled back onto the boat using heavy-duty winches.  The science crew changes into brightly colored foul weather gear and heads to the wet lab, where we wait to see what we’ve caught in the net. The watch chief turns the music up and everyone goes to their station along a conveyor belt the transports the fish from outside on the deck to inside the lab. We sort the catch by species into baskets and buckets, working at a slow, comfortable pace when the catch is small, or at a rapid fire, breakneck speed when the catch is large.

If you guessed 'sponges', then you are correct!

This is the conveyor belt that transports the catch from the deck into the wetlab. The crew works to sort things into buckets. Do you know what these chunky yellow blobs that we caught this time are?

After that, the species and weight of each container is recorded into the Fisheries Scientific Computing System (FSCS), which is an amazing software system that allows our team of seven people to collect an enormous amount of data very quickly. Then we work in teams of two to process each fish at work stations using a barcode scanner, magnetic lengthing board, digital scale, fillet knives, tweezers, two touch screen monitors, a freshwater hose, scannable stickers, envelopes, baggies, jars and finally a conveyor belt that leads to a chute that returns the catch back to the ocean.  To picture what this looks like, imagine a grocery store checkout line crossed with an arcade crossed with a water park crossed with an operating room.  Add in some music playing from an ipod and it’s a pretty raucous scene!

The data that we collect for each fish varies.  At a bare minimum, we will measure the length of the fish, which is electronically transmitted into FSCS.  For some fish, we also record the weight, sex and stage of maturity.  This also often includes taking tissue samples and packaging them up so that they can be studied back at the lab.  Fortunately, for each fish, the FSCS screen automatically prompts us about which measurements need to be taken and samples need to be kept.  For some fish, we cut out and label a small piece of gonad or some scales.  We collect the otoliths, or ear bones from many fish.

It does not look this neat and tidy when we are working!

These are the work stations in the wet lab. The cutters stand on the left processing the fish, and the recorders stand on the right.These bones can be used to determine the age of each fish because they are made of rings of calcium carbonate that accumulate over time.

Most of the samples will got back to the Northeast Fisheries Science Center where they will be processed by NOAA scientists.  Some of them will go to other scientists from universities and other labs who have requested special sampling from the Bigelow.  It’s like we are working on a dozen different research projects all at once!

 

 

 

Something to Think About:

Below are two pictures that I took from the flying bridge as we departed from the Coast Guard Station in Boston. They were taken just moments apart from each other. Why do you think that the area in the first picture has been built up with beautiful skyscrapers while the area in the second picture is filled with shipping containers and industry? Which area do you think is more important to the city? Post your thoughts in the comment section below.

Rows of shipping containers. What do you think is inside them?

Downtown Boston.  Just a mile from the shipping containers.  Why do you think this area is so different from the previous picture?

Downtown Boston. Just a mile from the shipping containers. Why do you think this area is so different from the previous picture?

 

 

 

 

 

 

 

 

 

Personal Log

Believe it or not, I actually feel very relaxed on board the Bigelow!  The food is excellent, my stateroom is comfortable and all I have to do is follow the instructions of the crew and the FSCS.  The internet is fast enough to occasionally check my email, but not fast enough to stream music or obsessively read articles I find on Twitter.  The gentle rocking of the boat is relaxing, and there is a constant supply of coffee and yogurt.  I have already read one whole book (Paper Towns by John Greene) and later tonight I will go to the onboard library and choose another.  That said, I do miss my family and my dog and I’m sure that in a few days I will start to miss my students too!

If the description above doesn’t make you want to consider volunteering on a NOAA cruise, maybe the radical outfits will.  On the left, you can see me trying on my Mustang Suit, which is designed to keep me safe in the unlikely event that the ship sinks.  On the right, you can see me in my stylish yellow foul weather pants.  They look even better when they are covered in sparkling fish scales!

Seriously, they keep me totally dry!

Banana Yellow Pants: SO 2015! Photo taken by fellow volunteer Megan Plourde.

Seriously, do I look awesome, or what?

This is a Mustang Suit. If you owned one of these, where would you most like to wear it? Photo taken by IT Specialist Heidi Marotta.

That’s it for now!  What topics would you like to hear more about?  If you post your questions in the comment section below, I will try to answer them in my next blog post.

Emily Whalen: Making Plans, April 20, 2015

NOAA Teacher at Sea
Emily Whalen
Preparing to Board NOAA Ship Henry B. Bigelow
April 27 – May 10, 2015

Mission: Spring Bottom Trawl Survey, Leg IV
Geographical Area of Cruise: Gulf of Maine

Date: April 20, 2015

Personal Log

Next week I will be boarding the Henry B. Bigelow to participate in the Spring Bottom Trawl Survey as part of the NOAA’s Teacher at Sea (TAS) program.  Before I leave, I am frantically working to assess my student’s work, plan projects for them to work on while I am gone, spending time with my family and also planting seeds in my vegetable garden so that I will return to lovely little green seedlings!   Although this is my first time participating in TAS, it is not the first time I will be headed off to sea for an adventure on a boat.  After graduating from college, I spent several years living and working on sail training vessels where my job was to take kids out sailing and get them excited about the ocean.  One of my favorite things was setting a trawl net and hauling it in by hand so that we could teach kids about whatever fish, invertebrates or plants  we caught.  I always loved the moment the net reached the surface and I could catch a first glimpse at what was inside!

Getting ready to teach kids about a giant sea hare, something we will NOT catch during the bottom trawl survey!

Getting ready to teach kids about a California Sea Hare, something we will NOT catch during the bottom trawl survey!

It was on one of these boats nearly ten years ago that I first heard of the Teacher at Sea program.  I was sailing with a group of high school students from Brooklyn, and one of their teachers had just returned from his TAS trip in Alaska.  At the time I was considering becoming a teacher, but one of the things I was struggling with was the thought of being indoors all day, every day, year after year.  Hearing about his trip made me realize that becoming a classroom teacher didn’t mean I would literally have to stay in the classroom all the time!  In the years since then, I went to graduate school, got married, moved to New Hampshire, taught middle school science for a few years, and most recently started teaching high school science at Next Charter School in Derry, NH.

Spring skiing at Mount Sunapee!

Great spring skiing is one of the perks of living in New Hampshire!

One of the great things about teaching at my school is that we spend lots of time outside the classroom.  I have been able to take kids hiking, running, snowshoeing, to museums and exhibitions, on the T into downtown Boston and even on overnight trips to an island!  In fact as I am typing this, my hands are muddy from taking our students to a state park and building a log bridge as part of an earth day initiative.  As a staff, we are constantly pushing our students to step outside their comfort zone and interact with new people, visit new places and try new things.  Hopefully they realize that this is exactly what I am doing when I head out to sea next week!

Ice skating with some of the students at Next Charter School!

Ice skating with some of the students at Next Charter School!

When I leave, I will be spending two weeks on board the Henry B. Bigelow, which is a 208-foot research vessel that was built in Mississippi and launched in 2005.  The boat has a sophisticated equipment on board that allows scientist to track, study and measure marine mammals, fish and other sea creatures.  The hull of the boat is designed to reduce noise, which allows for more accurate measurements and also prevents the animals that scientists are attempting to student from getting scared away.  I’m looking forward to learning more about the ship’s technology and how it allows us to build rich and robust picture of the species of the North Atlantic.

NOAA Research Vessel Henry B. Bigelow

A glamorous shot of the Henry B. Bigelow. Photo courtesy of NOAA.

Another cool thing about this boat is that the name was chosen by a group of high school students from my home state of New Hampshire as a prize for winning a regional NOAA contest.  When I mentioned this to my friend Forrest, who has spent lots of time on the water up and down the east coast, he suggested that the boat may have been named after the same Bigelow as Bigelow Bight, which is a geographical feature several miles east of the New Hampshire coastline.

My daughter Harper and my husband Jared looking out at Bigelow Bight from Portsmouth, NH

My daughter Harper and my husband Jared looking out at Bigelow Bight from Portsmouth, NH

After doing a little more research on my own, I learned that Henry Bryant Bigelow was a world renowned marine biologist from Massachusetts who spent his life making great contributions to the field of oceanography.  Aside from a NOAA ship, and marking on a nautical  chart, there are also over two dozen species of algae and protists as well as medal of achievement in oceanography that are named after him!

The next time I write, I will be well underway on my trip!  Please comment below with any questions you have or topics you would like me to write about!

Theresa Paulsen: Mission Accomplished, April 2, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: April 2, 2015

Weather Data from the Bridge: Partly Cloudy, 26 C, Wind speed 12 knots, Wave height 1-2ft, Swells 2-4ft.

Science and Technology Log:

What are the mappers up to?

After we completed our two priority areas of the cruise, the mappers have been using Knudson subbottom sonar to profile the bottom of the trench. Meme Lobecker, the expedition coordinator sends that data directly to the United States Geological Survey (USGS) for processing. They returned some interesting findings.

The subbottom sonar sends a loud “chirp” to the bottom. It penetrates the ocean floor. Different sediment layers reflect the sound differently so the variation and thickness of the layers can be observed. The chirp penetration depth varies with the sediments. Soft sediments can be penetrated more easily. In the picture below, provided by USGS, you can see hard intrusions with layers of sediments filling in spaces between.

image

The intrusions are basement relief, likely uplifting deformation ridges created by the subduction of the North American Plate. The subduction is now oblique, with the North American and Caribbean plates mostly sliding past each other now – sort of like the San Andreas Fault – but there is still some subduction happening. Subbottom Image and caption courtesy of USGS.

How does the bathymetry look?

In the last two days, I have been really enjoying the incredible details in the bathymetry data the multibeam sonar has gathered. We mapped over 15,000 square miles on our voyage! Using computer software we can now look at the ocean floor beneath us. I tried my hand at using Fledermaus software to make fly-over movies of the area we surveyed (or should I say swim-over movies). Check them out:

I also examined some of the backscatter data. In backscatter images soft surfaces are darker, meaning the signal return is weaker, and the hard surfaces are whiter due to stronger returns. One of the interns, Chelsea Wegner, studied the bathymetry and backscatter data for possible habitats for corals. She looked for steep slopes in the bathymetry and hard surfaces with the backscatter, since corals prefer those conditions.

Intern poster project

Intern Poster Project by Chelsea Wegner

Chelsea Wegner Poster (pdf)

On the next leg, the robotic vehicle on the ship will be used to examine some of the areas we were with high-definition cameras. You can watch the live stream here. You can also see some of the images and footage from past explorations here.
This is a short video from the 2012 expedition to the Gulf of Mexico to tempt you into tuning in for more.

Personal Log:

The people on this vessel have been blessed with adventurous spirits and exciting careers. Throughout the cruise, I heard about and then came to fully understand the difficulty of being away from family when they need us.

I would like to dedicate this last blog to my father, Tom Wichman. He passed away this morning at 80 years of age after battling more than his share of medical issues.  As I rode the ship in today I felt him beside me. Together we watched the pelicans and the boobies fly by. I am very glad I was able to take him on a “virtual” adventure to the Caribbean. He loved the pictures and the blog. I thank the NOAA Teacher at Sea program for helping me make him proud one last time.

My parents

My Parents, Tom and Kate Wichman

“To know how to wonder is the first step of the mind toward discovery” – L. Pasteur. These words decorate my classroom wall but are epitomized by the work that the NOAA Okeanos Explorer and the Office of Exploration and Research (OER) do each day.

Thank you to the Meme, the CO, XO, the science team, and the entire crew aboard the Okeanos for teaching me as much as you did and for helping me get home when I needed to be with family. I wish you all the best as you continue to explore our vast oceans! My students and I will be watching and learning from you!

I would also like to thank all of the people who followed this blog. Your support and interest proves that you too are curious by nature. Life is much more interesting if you hold on to that sense of wonder, isn’t it?

Answers to My Previous Questions of the Day Polls:

1.  Bathymetry is the study of ocean depths and submarine topography.

2. The deepest zone in the ocean is called the hadal zone, after Hades the Greek God of the underworld.

3.  It takes the vessel 19 hours and 10 minutes to make enough water for 46 people each using 50 gallons per day if each of the two distillers makes 1 gallon per minute.

4.  NOAA line offices include:

  • National Environmental Satellite, Data, and Information Service
  • National Marine Fisheries Service
  • National Ocean Service
  • National Weather Service
  • Office of Marine & Aviation Operations
  • Office of Oceanic and Atmospheric Research

5. The pressure on the a diver at 332.35m is 485 pounds per square inch!

6.  The deepest part of the Puerto Rico Trench is known as the Milwaukee Deep.

Thank you for participating!  I hope you learned something new!

Theresa Paulsen: Where There is a Will, There is a Way! April 1, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: April 1, 2015

Weather Data from the Bridge:  Partly Cloudy, 26˚C, waves 1-3ft, swells 3-6ft.

Science and Technology Log:

Dr. Wilford (Bill) Schmidt has demonstrated the saying, “Where there is a will, there is a way,” throughout this  entire cruise.  He knew this voyage would put his new free vehicle design to the test and he came prepared to modify this, tweak that, collaborate with the crew, confer with his university team, test, and repeat.  He is an engineer and that is the name of the game.

1.  The first deployment looked great. The vehicle reached 1000m.  The magnetometer and 3-axis accelerometer worked great.  All systems were a go.  A water sampling device was used as a dummy payload.

FV Dummy Test

The free vehicle with a water sampling device as a dummy payload.

 

Test Data

Data from the Test Deployment

 

Crossing fingers for more success.

2.  The next step was to attach a CTD (a probe that measures Conductivity, Temperature, Depth).  The deployment and retrieval process again went smoothly, this time to 2126m, but there was a problem retrieving the log file from the bottom sphere and one of the anchor burn wires did not burn.

 

FV with CTD

The free vehicle with CTD attached.

Collaboration required with folks on shore and the electronics technicians on this ship.  Tweak this, fix that.

Troubleshooting

Dave Blessing, Electronics Tech, and Bill Schmidt troubleshooting.

Bill opened the spheres to change the batteries for the satellite transponder.

Open Sphere

One of the opened spheres

Keeping a log

Zamara Fuentes keeping a log of all of the adjustments and parameters

Repressurizing the sphere

Rolf Vieten pressurizing the sphere

All systems were a go again.

3.  The crew deployed the free vehicle with the CTD to 4679 m.  It took a little longer to find and retrieve the vehicle.

FV Retrieval

Retrieval of the free vehicle

The data files indicated that the galvanic releases released the anchor prematurely, at about 100 meters from the bottom.  Both spheres worked during the mission.  Data files were retrieved from each.  During inspection water was found in the bottom sphere.  Spalling of the glass (flaking) was seen on the inside.  The leak is assumed to have taken place as the surface under low pressure conditions, otherwise the damage would have been worse.  The electronics were in good shape but the bottom sphere had to be retired.

Oh no!  Is that the end?  Not when you have great minds on board!

This is where engineering in the ocean environment gets tricky.  Bill can’t just head back to the university and make the necessary repairs.  Instead he needs to make use of the very valuable ship time by pinch-hitting.  Bill recalculated the buoyant force on the vehicle with only one sphere.  It might just work!

Tweak this, lighten that, new attachments there. Ready for a float test!

Single sphere float test

The single sphere float test was a success!

Will the single sphere allow it to ascend from the bottom fast enough for us to deploy and retrieve it during our mission?  That question required further testing.  So the crew planned to lower it into the water a short distance with the winch and allow it to float back up.  The weather would not allow it.  The seas were too rough to allow the ship to stay in one place during the vehicle test without dragging the free vehicle thereby negating the results of the test.

Operations team meeting

Operations team meeting

Plan B?  The operations team hatched a plan to tie the free vehicle to buoys on a long rope.  That allowed the vehicle to sink and be recovered easily if it rose too slowly. First a buoyancy test had to be done to make sure the buoys wouldn’t sink with the vehicle.

Buoy Float Test

Buoy float test

The vehicle rose in less than 10 minutes so the team was back on track!  With a few extras like flags for better visibility, the vehicle was ready to dive!

Preparing for the big dive to 8000+ meters!

Preparing for the big dive to 8000+ meters!

4.  The deployment into the trench went smoothly.  The crew had that routine down pat.  After 10 hours it was time for the retrieval.  Everyone gathered at the bridge to try to spot it.

FV lookout

On the lookout for the free vehicle.

Port side lookouts

Port side lookouts

Free Vehicle Returns

The free vehicle returns from the deep!

It successfully collected data down to the bottom at 8379m, a possible record for a free vehicle!

Successful Dive

Bill content with a successful dive

The CTD data was processed and looked great during the descent.

FV CTD data

Free vehicle CTD data from the Puerto Rico Trench

Inspection of the data log showed that while the vehicle was ascending from the bottom, something was triggering a mission cancel order – 28 times!  This bug required more testing and mission simulating before another deployment in the trench.  Just after 8pm, Bill announced his equipment was ready to go for a 6 am deployment the next day.

5.  The next day, the retrieval took a bit longer due to choppier sea conditions.

The crew bringing the free vehicle aboard.

The crew bringing the free vehicle aboard.

Again the vehicle logs showed “cancel mission” messages during the ascent.  It is confounding Bill and his team back home, because during mission simulations the mission goes to completion without a problem.

In all the voyage has been very constructive for Bill’s engineering team.   They successfully deployed the vehicle to the bottom of the Puerto Rico Trench known to be the deepest part of the Atlantic Ocean.  That is something to celebrate!  They have learned a great deal about what types of modifications they should make to improve the retrieval process.

This was a great first test of the free vehicle design.  The next time out at sea will come soon enough and Bill’s team will be ready!

Personal Log

As the voyage comes to an end and we travel nearer to shore, I am filled with mixed emotions.  I will miss the ocean, the feeling of being a part of an exploration expedition, and these people.  I am also very happy to be going home to my family and my students.  I am looking forward to sharing what I have learned.  I will be looking for partnerships to help get students involved in reseach on our inland sea, Lake Superior.  If you have any suggestions, please leave a comment below!

Exciting moments?  Seeing these creatures!

Whale

Small whale swimming next to the vessel.

Dolphin

A dolphin playing in our wake. Photo credit: Jossue Millan

Other great moments include driving the ship and making video fly-bys of the ocean floor with the bathymetry and backscatter data.  Very awesome!  The videos will be coming soon so stay tuned!

Did you know?

Do you remember the flying fish I wondered about a few blogs ago?  I have never seen them before.  At first I thought I was seeing things.  I thought I saw a very large dragonfly dive into the water.  Then I saw more.  – schools of them jumping away from the boat all at once.  In a blink of an eye they were gone.

A flying fish.  Image courtesy of “Bermuda: Search for Deep Water Caves 2009 Exploration,”  NOAA Ocean Explorer

According to Wikipedia, there are 64 species of flying fish!  They fly out of the water to evade predators.  That’s a pretty cool adaptation!  You can learn more here.

Question of the Day:

Theresa Paulsen: How Low Can You Go? March 29, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 29, 2015

Weather Data from the Bridge:  Partly Cloudy, 26.7˚C, waves 1-3ft, swells 2-4ft.

Science and Technology Log:

We launched and recovered a CTD earlier this week.

A CTD (Conductivity, Temperature and Depth probe) is used to study the characteristics of ocean water masses, as well as to insure data quality and accuracy from XBTs (Expendible Bathythermograph). In a previous blog, I discussed how the XBT is used to measure the temperature of the water to a depth of about 760 meters. That coupled with the conductivity sensors on the vessel are used to calculate salinity and pressure to derive a measure of the velocity of sound through water, an important factor when collecting sonar data.

An XBT can be launched while the vessel is underway without pausing the sonar, but it doesn’t collect data all the way to the bottom of the water column.

Launching an XBT

Trying my hand at launching an XBT

A CTD can go all the way to the bottom, depending on the depth of the ocean, the length of the tether cable, and the pressure rating of the frame and equipment making up the CTD.  The titanium frame and equipment making up the CTD currently aboard the Okeanos can be lowered to 6500 meters.   It is very large and requires the vessel to stay put during the entire process since it is tethered to the ship.

Since a CTD collects all three factors involved in the computation of speed of sound in water (salinity, temperature, and depth) and is therefore more accurate than an XBT which only collects temperature, it is used at least annually to provide comparison data for the XBT measurements. This is the reason our scientists used it on this cruise.  Additionally, scientists on board a vessel may want to deploy a CTD more often if water masses are expected to change, or if they are interested in studying other features of the water column such as particulates, gaseous seeps, dissolved oxygen or oxygen reduction potential, or if they want to collect water samples at different depths.

The CTD

Survey Tech, Scott Allen and the CTD.

In the above photo the small red arrow is pointing to the water sample tubes, the large blue arrow to the CTD, and the large red arrow to the altimeter which senses when the probe is within 200 meters from the bottom allowing winch operators to slow the descent to avoid damaging equipment.  Scott Allen is the Survey Tech on board.  His job is to maintain and calibrate the CTD.  He helps launch and recover the CTD and then operates the software to collect and process the data.

CTD Data

Our first CTD launch data.

The CTD software plots the temperature (green), sound velocity (pink), conductivity (yellow), and the salinity (blue) on the x-axes against depth on the y-axis.  You can see locations on the graph where the values for temperature and salinity shift in a significant way with changes in depth.  These shifts can indicate a boundary between different water masses.  The upward spikes in the data are likely caused by some error in the equipment connections.

Let’s conduct an experiment!

Have you ever wondered what would happen to a styrofoam cup if you lowered into the water 2100 meters? The folks here tell me you get some pretty interesting results, so we had to give it a try.

Problem:  Determine the effect of extreme pressure on a styrofoam cups.

Background:  Styrofoam, properly called expanded polystyrene foam, is made by infusing air into polystyrene (a synthetic polymer) using blowing agents. Learn more here.

Hypothesis:  What is your hypothesis?  What do you think will happen to the air pockets if we send the cups to the depths of the ocean?

Procedure:

1.  Decorate your cups, leaving one as a control for comparison after submersion.

Styrofoam Cups

Decorating 12 oz styrofoam cups

Cup Decorations

More cup designs

The Before Picture

2.  Place the cups in a mesh dive bag and attach to a CTD.

Cups ready

Our cups are ready to dive!

3. Lower the CTD to 2100 meters

Launching the CTD

Launching the CTD

4.  Raise the CTD and examine the cups.

Raising the CTD

Raising the cups and CTD

Analysis:

So how much pressure was exerted on the cups at 2100 meters?  We can use this formula to calculate it:

P = pgh

Pressure in a fluid = (density of water) x (acceleration due to gravity) x (height of the fluid above the object).

If the density of seawater is 1027 kg/cubic meter, the acceleration due to gravity is 9.8 m/s/s and the depth is 2100 meters, what is the pressure?

You should get 21 million Pascals (Newtons/square meters) or 21,000 kPa.  If 1 kPa = 0.145 psi, how many pounds of pressure per square inch are exerted on each cup?   About 3000 pounds per square inch.  That’s about the weight of a compact car over each square inch!  For comparison, at sea level the atmospheric pressure is 14.7 psi.

So what happened to our cups under all that pressure?  Check it out!

Cups after dive

Our cups after a dive to 2100m. They are tiny!

Shrunken cups

More shrunken cups.

Shrunken cups

Showing off my shrunken cups.

Conclusion:

Was your hypothesis supported or refuted?  What happened to the air trapped in the styrofoam?

Air extraction is the reason that Dr. Wilford Schmidt uses iron rebar rather than cement to provide the anchor for his free vehicles.  The cement crumbles as the air pockets give way and air is squeezed out.  Cement is not as flexible as the polystyrene.

Free Vehicle

The free vehicle with rebar anchor

What other materials might change under pressure?  If you don’t have access to the deep ocean or a CTD, you could always try a pressure cooker – but be safe!

Personal Log:

I am inspired by all the people working on this vessel.  They are so adventurous and have seen so much.  I wondered what inspired them to do what they do.  Here are some of their answers:

Mapping Intern, Kristin Mello:  Took a class in scuba diving and realized she loved it and wanted to learn more.  Her dive instructor encouraged her to do an internship as a research diver and she has been studying the ocean ever since.

Free Vehicle Tech, Zamara Fuentes:  Built a model of a volcano in school became very interested in geology.  Now she studies tsunami impacts on the Caribbean islands.

NOAA Corps Officer, Nick Pawlenko:  Had never really spent much time on boats as a kid, but was inspired by Clive Cussler novels to explore the ocean.

Expedition Coordinator, Meme Lobecker: Her love of the oceans made her want to put her geography skills and interest in data collection to work in the ocean environment.

Engineer, Chris Taylor:  Wanted to put his love of engineering to work for good pay.  “There is never a dull moment,” he says.

Mapping Watch Lead, Melody Ovard:  Just likes being near the ocean.  “It’s a proximity thing.  I am curious about what goes on in it,” she says.

Free Vehicle Scientist, Bill Schmidt:  Loved surfing and was interested to learn what caused the changes in the surfing conditions day-to-day.  Then he read Willard Bascom’s book, Waves and Beaches, and was hooked.

NOAA Corps Officer, Bryan Pestone:  Swimming competitively and lifeguarding on the beach led him to a degree in marine biology.

Mapping Intern, Jossue Millan:  An astrobiology poster caught his eye in his physics class, which peaked his interest in life in extreme environments.  He enjoys the interdisciplinary sciences.

Teacher at Sea, Theresa Paulsen:  I am inspired by the wonder in a kid’s eye or on a proud parent’s face and by the beauty that surrounds us from the depths of the oceans to the expanses of space.  Life is amazing – and far too short to waste, so we have to make the most of it while we can.

Sunset Image

Thanks for the inspiring conversation everyone!

What inspires you?  Post a comment and let me know!

Did You Know?

For every 10 meters you go below the surface, pressure increases by one atmosphere (14.7 psi).  Scuba instructors typically don’t recommend diving deeper than 40m to decrease the risk of decompression sickness, known as “the bends,” or equipment failures that could lead to drowning.

Question of the Day:

The deepest successful dive in the Guiness Book of World Records is currently 332.35 meters (1090ft)!  Yikes!  Read about it here.

Julia West: Putting It All Together, April 3, 2015

NOAA Teacher at Sea
Julia West
Aboard NOAA ship Gordon Gunter
March 17 – April 2, 2015

Mission: Winter Plankton Survey
Geographic area of cruise: Gulf of Mexico
Date:  April 3, 2015

The Math Challenge Answers

In case you’re wondering if you got the math right, here’s the answer to the volume of water that flowed through the each bongo net (3/29 post): 282.88 cubic meters. Your answer might vary slightly if you rounded off to fewer decimal places.

The answer to the math problem of 4/1: you can see 162.86 square nautical miles from the bridge. That’s a big area!

Coming into Port

As I finish writing this blog, I am still on the Gunter, in port. We got in this morning, and spent a few hours unloading. All of the science gear had to come off the ship. The next plankton cruise will not be on the Gunter, as she is headed north in a couple of weeks, up the east coast to New England, where she will be employed on a marine mammal research cruise. The Gunter will be in almost continuous use until late summer; that’s the next time the crew will get a break.

Breaking everything down was interesting. Both cranes were employed, and we carried a lot of things as well. Here are some photos of our arrival and unloading (click on one to get a slide show):

When we went back to the NOAA lab to unload our gear, I got another tour of the lab, and the sorting work that is being done there. One of the main projects going on now is a project for NRDA (Natural Resources Damage Assessment) project. NRDA is a department of NOAA. This project started after the BP oil spill in 2010 to study the effects of the spill on aquatic organisms, using SEAMAP data. The samples they are analyzing are from 2010 and 2011.

sorting plankton

Jessica Kirkham sorting the icthyoplankton (fish) from the invertebrates

sorting plankton

Not only do they separate the plankton, but they are very good at identifying them! This is Jennifer McDonald.

I got to see some cool fish eggs and larvae from the NRDA samples, and saw some enlarged pictures from the microscope projected onto a monitor. However, I am not allowed to share them with you on this blog because of the upcoming litigation with the BP case. None of the NRDA data, photos, or anything are allowed to be shared until the court case is all over. I ventured that once it is over, there must be a lot of researchers waiting to get hold of the data, and was told that they are lining up! So if you are interested in marine science, there are definitely some research opportunities for you in the future!

Odds and Ends about the Ship

I wanted to describe a couple more interesting tidbits. I didn’t get to know the engineers, and wasn’t able to get a tour of the engine room, but I still want to thank them for getting us where we needed to go! The Gunter is a diesel electric ship. There are four generators (plus a backup) that create electricity to turn the two propellers. Usually, we are using three of them. They also generate our electricity. Not only that, but the waste heat from the generators is used to distill salt water to make fresh water. There is a brominator that is used to help purify the water, along with some chlorine I believe – neither of which I could detect in the water. There are regular tests for bromine and chlorine in the water. The salt goes out with the outflow, back into the ocean.

And where does human waste go on a ship? Surely you must be wondering! If we are at least 12 miles from shore, it is discharged into the ocean, after being treated in some way (no chemicals). Food waste is thrown overboard, if we are at least 12 miles from shore. All food waste that is thrown over is measured and recorded (by the gallon). There are rules like this for organic wastes and other types of waste, specifying how far from shore they can be released. These rules clearly state that nowhere in any ocean is plastic allowed to be dumped. The ocean has enough plastic already, thanks to us.

Our Scientists

I want to thank the wonderful science team on this trip, for patiently teaching me the ropes and putting up with my unlimited questions. It is because of their knowledge that I was able to share the science work that we are doing. Likewise, thanks to the NOAA Corps officers who welcomed me and my questions on the bridge. And Jerome and the deck crew as well.

Here’s a little bit about our scientists.

GU scientists, winter plankton

There are the scientist on our cruise. From L to R: Kim Johnson, Madalyn Meaker, Chrissy Stepongzi, Andy Millett, Pam Bond (FPC), and me! Photo by LT Marc Weekley

Madalyn is a native to Mississippi. She got a degree in marine science at the University of Southern Mississippi, and started working with plankton with the Gulf Coast Research Lab (GCRL), a facility with USM. Since December, she has worked in the plankton lab at NOAA, on the NRDA project described above. If she hadn’t just gotten off the ship after working 17 days straight, she would have been at one of the microscopes in the lab when I walked through. Madalyn lives in Gulfport, MS.

Chrissy also started in the same NRDA project, but is now working with the “trawl unit.” (I’ll explain that next.) During her 5 years with NOAA, she also worked for another department, the National Seafood Inspection Laboratory. Her project there also started after the BP oil spill; it involved checking samples of fish for oil contamination. They did this in a curious way: specialized “sniffers” (these are humans) with sensitive noses were hired to detect contamination in the samples! Anyway, Chrissy is from Louisiana, and has a biology degree from Louisiana State University. She’s going to be on several research cruises this year, working with Kim. Her favorite baby fish? Istiophorids (marlins), of course – “They are so cute! Look at those big eyes!”

blue marlin larvae

Istiophorid (blue marlin) larvae, A. 12.6 mm, B. 21.0 mm, C. 22.1 mm Strasburg (1970), Gehringer (1956), and Bartlett et al. (1968) in Development of Fishes of the Mid-Atlantic Bight – U.S. Fish and Wildlife Service

Andy comes from Massachusetts, but now lives here in Ocean Springs, MS, with his wife. He has worked in the plankton unit for five years now, having started in plankton in college. (My question to everyone was, “So how long have you been in plankton?”) Andy has a BS in marine biology, and a MS in marine science. For his graduate work, he used SEAMAP data from the CUFES samples, studying community structure of invertebrates throughout the Gulf, and how they are affected by abiotic factors (such as temperature and salinity). This was interesting to me, because there is so much data available, and many options to analyze that data in new ways. Science doesn’t always mean you need to collect your own data! (See my note about the NRDA data above.) So now Andy specializes in invertebrate data analysis, using the data we collect. He is the FPC (Field Party Chief) for the spring and fall plankton research cruises this year. He and Pam take turns with that role.

Kim comes from Texas, and started with NOAA in 2001. She got a degree in marine fisheries, and through NOAA, was able to get her masters just a few years ago. NOAA offers nice opportunities for continuing education. Kim’s main focus is the juvenile fish – the size up from what we are working with here. They do summer groundfish surveys, which involve trawling. They catch things like commercial shrimp (that go down to the bottom at night), as well as snappers that hang out at the bottom. Kim will also be very busy at sea this year, and somehow even finds time for her husband and four young children!

Pam, our humble, kind, and intrepid leader, grew up in the Midwest, and has been “in plankton” for 23 years now! She started as a volunteer at GCRL, got hired, and spent 7 years working there before joining NOAA in 1999. I should clarify that GCRL, and several other facilities, are all part of SEAMAP, which is a cooperative project. Pam has been an FPC since 2001, as she puts it, “since the days of DOS and data sheets.” Can you imagine manually entering all your data into the computer data base?! She lives with two cats and her husband, also a federal employee with the USDA chemistry lab, in Wiggins, MS.

(Update on 4/3) – After I arrived too late at the airport this morning and missed my flight out, Pam felt so bad that she took me out to lunch and gave me a tour of the Hurricane Katrina aftermath along the coast. She was worried that I would say bad things about her on the blog post, but I still have nothing but good things to say, Pam, if you are reading this! You are awesome!

The Big Picture

I learned a bit about how all this goes together. We have the plankton surveys, which you know about. We have the groundfish surveys, which are done by trawling (dragging a net over the bottom). That catches the juveniles, but the adults tend to outswim the net.

Groundfish survey. Photo credit: SEFSC/NOAA

Deploying the net in the groundfish survey. Photo credit: SEFSC/NOAA

groundfish survey

A full net! Photo credit: SEFSC/NOAA

You can get some strange creatures in the ocean depths!

You can get some strange creatures in the ocean depths! Photo credit: Kim Johnson/NOAA

So then we have the longline surveys to catch the adult (pelagic) fish. In a sense, we are using the same techniques commercial fishermen do, in order to study the health of the species throughout the stages of development.

When plankton research started, it was all about learning as much as possible about individual species. Now (and if you check out the NOAA FishWatch website you will understand this better), all of the data becomes important. We know that for a successful fishery, we need a healthy and diverse ecosystem. The information about non-economically important species is crucial to understanding the entire community, as well as the information about abiotic (physical) factors such as the CTD provides. I find this focus encouraging; I feel we are learning something as we try to “manage” these incredible resources. The more we understand the big picture, the more we can take care of our precious Earth.

I could get all philosophical and talk about the importance of a broad education and a global awareness in the same light, but I’ll spare you. I’ll just say that it’s really important to put together the little pieces to form the whole puzzle. It’s not that we all need to know everything. Our data collecting scientists here have their important job, but they have informed me that they don’t know all about how the results of their work have changed fishing regulations. Others down the line have their job, and they don’t know the details of how the samples are collected. However, they all have a sense of their purpose – a sense of the whole picture – even though they don’t need to know everything. Even though the deck crew and the officers who drive the ship don’t know much about plankton, but they are aware of our general purpose, and know they have a crucial part in it. It reminds me of the janitor at NASA who, when asked “what do you do for a living?” answered “I put people on the moon.”

Would I do this again? Absolutely! I learned so much! Important things like why NOAA only allows shoes with closed toes on their ships (I would have stubbed my toes a thousand times!). I learned that flying fish and mano’wars are some of the most bizarre creatures at the surface of the ocean. I learned that I’m still not so sure about the seasickness thing. There were days that were spent in a very sleepy, off-feeling mode. I need more research on that! I learned that there’s a lot going on out on our oceans that we are unaware of, like why was that oil rig that we passed the other night on fire, and has anybody reported it? And I learned that there is so very, very much more to learn. Our world is so fascinating! Never stop wondering. Thanks for following along!

Sunset from the Gordon Gunter

Sunset from the Gordon Gunter

Julia West: This Is What Drives Us, April 1, 2015

NOAA Teacher at Sea
Julia West
Aboard NOAA ship Gordon Gunter
March 17 – April 2, 2015

Mission:  Winter Plankton Survey
Geographic area of cruise: Gulf of Mexico
Date: April 1, 2015

Weather Data from the Bridge

Date: 3/31/2015; Time 2000; clouds 25%, cumulus and cirrus; Wind 205° (SSW), 15 knots; waves 1-2 ft; swells 1-2 ft; sea temp 23°C; air temp 23°C

Science and Technology Log

You’re not going to believe what we caught in our neuston net yesterday – a giant squid! We were able to get it on board and it was 23 feet long! Here’s a picture from after we released it:

giand squid

Giant Squid!

April Fools! (sorry, couldn’t resist) The biggest squid we’ve caught are about a half inch long. Image from http://www.factzoo.com/.

Let’s talk about something just as exciting – navigation. I visit the bridge often and find it all very interesting, so I got a 30 minute crash course on navigation. We joked that with 30 minutes of training, yes, we would be crashing!

From the bridge, you can see a long way in any direction. The visible range of a human eye in good conditions is 10 miles. Because the earth is curved, we can’t see that far. There is a cool little formula to figure out how far you can see. You take the square root of your “height of eye” above sea level, and multiply that by 1.17. That gives you the nautical miles that you can see.

So the bridge is 36 feet up. “Really?” I asked Dave. He said, “Here, I’ll show you,” and took out a tape measure.

Dave measuring height

ENS Dave Wang measuring the height of the bridge above sea level.

OK, 36 feet it is, to the rail. Add a couple of feet to get to eye level. 38 feet. Square root of 38 x 1.17, and there we have it: 7.2 nautical miles. That is 8.3 statute miles (the “mile” we are used to using). That’s assuming you are looking at something right at sea level – say, a giant squid at the surface. If something is sticking up from sea level, like a boat, that changes everything. And believe me, there are tables and charts to figure all that out. Last night the bridge watch saw a ship’s light that was 26 miles away! The light on our ship is at 76 feet, so they might have been able to see us as well.

Challenge Yourself

If you can see 7.2 nautical miles in any direction, what is the total area of the field of view? It’s a really amazing number!

Back to navigation

Below are some photos of the navigation charts. They can be zoomed in or out, and the officers use the computer to chart the course. You can see us on the chart – the little green boat.

navigation chart

This is a chart zoomed in. The green boat (center) is us, and the blue line and dot is our heading.

In the chart above, you’ll see that we seem to be off course. Why? Most likely because of that other ship that is headed our direction. We talk to them over the radio to get their intentions, and reroute our course accordingly.

navigation chart 2

Notice the left side, where it says “dump site (discontinued) organochlorine waste. There are a lot of these type dump sites in the Gulf. Just part of the huge impact humans have had on our oceans.

When we get close to a station, as in the first picture above, the bridge watch team sets up a circle with a one mile radius around the location of the station. See the circle, upper center? We need to stay within that circle the whole time we are collecting our samples. With the bongos and the neuston net, the ship is moving slowly, and with the CTD the ship tries maintain a stationary position. However, wind and current can affect the position. These factors are taken into account before we start the station. The officer on the bridge plans out where to start so that we stay within the circle, and our gear that is deployed doesn’t get pushed into or under the boat. It’s really a matter of lining up vectors to figure it all out – math and physics at work. But what is physics but an extension of common sense? Here’s a close-up:

setting up for station

Here is the setup for the station. The plan is that we will be moving south, probably into the wind, during the sampling. See the north-south line?

How do those other ships appear on the chart? This is through input from the AIS (Automated Information System), through which we can know all about other ships. It broadcasts their information over VHF radio waves. We know their name, purpose, size, direction, speed, etc. Using this and the radar system, we can plan which heading to take to give the one-mile distance that is required according to ship rules.

As a backup to the computer navigation system, every half hour, our coordinates are written on the (real paper) navigation chart, by hand.

Pete charting our course

ENS Pete Gleichauf is writing our coordinates on the paper navigation chart.

There are drawers full of charts for everywhere the Gunter travels!

Melissa and the nav charts

ENS Melissa Mathes showing me where all the navigation charts are kept. Remember, these are just backups!

Below is our radar screen. There are 3 other ships on the screen right now. The radar computer tells us the other vessels’ bearing and speed, and how close they will get to us if we both maintain our course and speed.

radar screen

The other vessels in the area, and their bearing, show up on the radar.

If the radar goes down, the officers know how to plot all this on paper.

maneuvering board

On this maneuvering board, officers are trained to plot relative positions just like the radar computer does.

Below is Dave showing me the rudder controls. The rudder is set to correct course automatically. It has a weather adjustment knob on it. If the weather is rough (wind, waves, current), the knob can allow for more rudder correction to stay on course. So when do they touch the wheel? To make big adjustments when at station, or doing course changes.

rudder controls

Dave’s arm – showing me the rudder controls.

These are the propulsion control throttles – one for each propeller. They control the propeller speed (in other words, the ship’s speed).

propeller speed throttles

Here are the throttles that control the engine power, which translates to propeller speed.

bow thruster control

This controls the bow thruster, which is never used except in really tight situations, such as in port. It moves the bow either direction.

And below is the Global Maritime Distress and Safety System (GMDSS). It prints out any nautical distress signal that is happening anywhere in the world!

GMDSS

Global Marine Distress and Safety System

And then, of course, there is a regular computer, which is usually showing the ships stats, and is connected to the network of computers throughout the ship.

checking the weather

ENS Kristin Johns checking the weather system coming our way.

In my post of March 17, I described the gyrocompass. That is what we use to determine direction, and here is a rather non-exciting picture of this very important tool.

gyrocompass

This is the gyrocompass, which uses the rotation of the Earth to determine true north.

As you can see, we have two gyrocompasses, but since knowing our heading is probably the most important thing on the ship, there are backup plans in place. With every watch (every 4 hours), the gyro compass is aligned the magnetic compass to determine our declination from true north. Also, once per trip, the “gyro error” is calculated, using this nifty device:

alidade

This is called the alidade. Using the position of the sun as it rises or sets, the gyro error can be computed and used to keep our heading perfectly accurate.

The reading off of the alidade, combined with the exact time, coordinates, and some fancy math, will determine the gyro error. (Click on a picture to see full captions and full size pictures.)

You can see that we have manual backups for everything having to do with navigation. We won’t get lost, and we’ll always know where we are!

driving the ship

Here I am, “driving” the ship! Watch out! Photo by ENS Pete Gleichauf

Back to Plankton!

These past two days, we have been in transit, so no sampling has been done. But here are a couple more cool micrographs of plankton that Pam shared with me.

invertebrate plankton

This picture shows several invertebrates, along with fish eggs. Madalyn and Andy, who are invertebrate people, got excited at this collection. The fat one, top left is a Doliolid. The U-shaped one is a Lucifer shrimp, the long one in center is an amphipod, at the bottom is a mycid, etc. There are crabs in different stages of development, and the multiple little cylinders are copepods! You can also see the baby fish inside the eggs. Photo credit Pamela Bond/NOAA

red snapper larvae

These are larval red snapper, a fall spawning fish species of economic interest. Notice the scale! You have to admit baby fish are awfully cute. Photo credit: Pamela Bond/NOAA

Interesting Fish Facts

Our main fish of interest in the winter plankton sampling are the groupers. There are two main species: gag groupers and red groupers. You can learn all about them on the NOAA FishWatch Website. Groupers grow slowly and live a long time. Interestingly, some change from female to male after about seven years – they are protogynous hermaphrodites.

red grouper

Red grouper. Image credit: NOAA

In the spring plankton research cruise, which goes out for all of May, the main species of interest is the Atlantic bluefin tuna. This species can reach 13 feet long and 2000 lbs, and females produce 10 million eggs a year!

school of bluefin tuna

School of Atlantic bluefin tuna. Photo credit: NOAA

The fall plankton research focuses on red snapper. These grow up to about 50 pounds and live a long time. You can see from the map of their habitat that it is right along the continental shelf where the sampling stations are.

red snapper

Red snapper in Gray’s Reef National Marine Sanctuary. Image credit: NOAA

The NOAA FishWatch website is a fantastic resource, not only to learn about the biology, but about how they are managed and the history of each fishery. I encourage you to look around. You can see that all three of these fish groups have been overfished, and because of careful management, and research such as what we are doing, the stocks are recovering – still a long way from what they were 50 years ago, but improving.

I had a good question come in: how long before the fish larvae are adults? Well, fish are interesting creatures; they are dependent on the conditions of their environment to grow. Unlike us, fish will grow throughout their life! Have you ever kept goldfish in an aquarium or goldfish bowl? They only grow an inch or two long, right? If you put them in an outdoor pond, you’ll see that they will grow much larger, about six inches! It all depends on the environment (combined with genetics).

“Adult” generally means that they are old enough to reproduce. That will vary by species, but with groupers, it is around 4 years. They spawn in the winter, and will remain larvae for much longer than other fish, because of the cooler water.

Personal Log

I’ve used up my space in this post, and didn’t even get to tell you about our scientists! I will save that for next time. For now, I want to share just a few more pictures of the ship. (Again, click on one to get a slide show.)

 

Terms to Learn

What is the difference between a nautical mile and a statute mile? How about a knot?

Do you know what I mean when I say “invertebrate?” It is an animal without a backbone. Shrimp and crabs, are invertebrates; we are vertebrates!