Kirk Beckendorf, July 31, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 31, 2004

Daily Log

This will be my last day in New England with NEAQS-ITCT. Tomorrow morning I leave my hotel at 3:00 AM to drive to the airport to fly home to Oregon. The past month has been an amazing experience. I have been continually amazed at the complexity, cooperation and coordination involved in this massive air quality study. I have seen that the scientists are an extremely intelligent and hardworking group of men and women. They are truly committed to obtaining a thorough and accurate understanding of our global society’s air pollution problem so that solutions can be obtained.

Today Fred took me onto the WP-3, another of NOAA’s planes being used in NEAQS. Unlike the DC-3 which only has a LIDAR on board, the P3 is packed with many different scientific instruments. To be able to make as many measurements as possible, equipment is also attached underneath the wings, under the fuselage and even sticking out from the tail is a special cloud radar. The windows and body have been modified so that specially designed tubes stick out and suck air from the outside and feed it to the instruments inside the plane. Once we have climbed up the ladder and are inside, we can barely get passed the door.

In a couple of hours the P3 will take off for a night flight, but right now the plane is not only packed with the equipment, it is also packed with scientists making last minute adjustments to their instruments. Because there are so many air quality measurement instruments on board, there is very little room for people during the flight. Therefore the instruments need to be ready to run on their own with very little supervision.

Much of the equipment is similar to that found on the BROWN, but the plane will obviously be taking measurements higher in the atmosphere and over a larger area in a shorter amount of time, than can the BROWN. Also, because the plane is traveling a lot faster than the BROWN, if a measurement is made every 30 seconds and the P3 passes through a narrow plume of pollution the plume may not even be measured. It is therefore important for the measurements to be made very quickly and often.

The flight is intentionally leaving late in the day so that most of the flight will be after sunset. Sunlight is necessary for a lot of the chemical reactions that cause pollutants to change once they are in the air. Tonight’s flight is designed largely around a single instrument measuring the specific chemicals that are more likely to be in the atmosphere at night. During the day the sunlight breaks these chemicals down, yet they are a very important part of the pollution problem.

Since the beginning of July until about the end of August, for almost two months, the men and women involved in NEAQS will be making measurements from airplanes, from the BROWN, from satellites, from the top of Mt. Washington and other spots on land. But when I asked Fred what is the one thing my students should know about this project, he said that they need to realize that the real work starts after everyone is out of the field. The “Ah-ha” moments will occur over the next 8 -12 months as the data is being analyzed, that is when the real learning and understanding will happen.

Finally I would like to thank all of the scientists who were so generous, cooperative and patient with my many questions.

Kevin McMahon, July 31, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 31, 2004

Weather Data from the Bridge
Lat. 43 deg 38.20 N
Lon. 69 deg 57.97 W
Speed 8.9 kts
Barometer 1016.68 mb
Rel Humidity 97.27%
Temp. 18.16 C

Daily Log

0835 hours. The wind speed has increased and is now at about 16 kts which lend a slight roll the ship.

We came within a couple of miles of Fletcher Point, ME. Before turning around, at present we are heading in an easterly direction.

Helped to launch an ozonesonde at 1000. The winds had kicked up to about 20 kts out of the southwest which made it somewhat tricky. In all though it was a successful launch.

I learned later that the ozonesonde made it to an altitude of 39.9 kilometers, not the record but pretty close.

I’ve been up on the bridge. The views of the Maine coastline are spectacular.

Talking to some of the men and women who operate the ship I am amazed at the complexity of the vessel. Aside form the scientific aspect, the bridge alone seems to have more in common with a Boeing 747 than it does with a ship on the sea. Gone are the ships wheel and binnacle and the entire nautical flavor as described by Melville.

The RONALD H. BROWN is as modern a ship as you will find on the ocean.

She is 274 feet in length with a beam of 52.5 feet and a draft of 19 feet.

Its diesel engines do not drive the propellers directly, rather they produce electricity which intern powers electric motors that drive the ships twin aft thrusters and single bow thruster. The ship does not have rudders but is instead maneuvered by the thrusters which have the ability to rotate 360 degrees.

The ships wheel has been replaced by a joystick type apparatus which allows for minute movement in all direction. The GPS navigational system allows the ship to maintain a fixed course over an extended period of time or, hold a steady fixed position within one meter of a desired location.

Questions

How does a GPS system work?

Does the GPS system on the ship differ from the one we use for class fieldwork?

Kirk Beckendorf, July 30, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 30, 2004

Daily Log

Besides the BROWN, the satellites, and the Airmap sites, there are thirteen different airplanes being used to collect air quality data for NEAQS. Several of these planes are currently flying out of Pease. Today, while the scientists and pilots were prepping the plane and the science instruments, I went on board the DC-3. The DC-3 is an airplane that is about 50 years old. The inside has been gutted and now there are just three seats, besides the two in the cockpit, and a LIDAR. The LIDAR is like the one that is on the BROWN but this one looks down, not up. It sends out a laser which can be used to determine the amount of ozone in the atmosphere below the plane. A large square hole, about 2 feet by two feet, has been cut through the bottom of the plane for the laser to shine down through and then for the light to bounce back into the instrument. The plane does not have a pressurized cabin so it is limited on how high it can fly. Most of the time during this flight, it will be at about 8000 ft. The DC-3 will also be flying slowly, about 100 miles per hour. This flight will take the crew and plane south and east and then out over the Atlantic, close to the BROWN.

This morning I talked to Fred . After we visited for a bit he recommended that I attend this afternoon’s planning meeting for tomorrow’s WP-3 flight. The meeting started at 5:30 with a brief discussion of the flight planned for tomorrow. Following that, in turn three of the scientists each explained to the rest of those attending the meeting what exactly each is studying and why. Remember the big elephant (from previous logs) that is being observed. Each scientist specializes on one very specific part of the pollution problem. To get a complete understanding of the problem all of these observations must be pieced together to a get a complete picture, which is the point of these science show and tells.

Kevin McMahon, July 30, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 30, 2004

Weather Data from the Bridge
Lat. 42 deg 37.86 N
Lon. 70 deg 12.37 W
Speed 8.6 kts
Barometer 1018.96 mb
Rel Humidity 93.16%
Temp. 18.9 C

The seas are calm. The skies have a distant haze. The New England atmosphere so common at this time of year. As is usual for the day, at 0700 we sent aloft a radiosonde, and then at 1000 an ozonesonde.

I was lucky enough to see a couple of finback whales; but unfortunately I had left my camera on my bunk, before beginning a discussion with Drew Hamilton about alternative power generation. Many of the scientists lead very diverse lives. Drew has a house in Seattle and wants to get off the electrical grid. He has worked for NOAA for 25 years and has seen much of the world. Thirty years ago he started out at the University of Miami, never in a thousand years dreaming he’d be involved in the kind of research he’s doing.

Ever hear of di-methyl sulfide DMS? As chemistry teacher I’d heard the name but never understood its significance to the atmospheric work the scientist aboard the ship are undertaking. It turns out that di-methyl sulfide is produced by plankton and is part of a planktons waste process. DMS is one of the major contributors of atmospheric sulfur. Overly high levels in the atmosphere can act as a reflective unit not allowing enough sunlight through our atmosphere. As a result, in certain areas the Earth does not receive the needed heat for some of the biological processes to take place.

Weather Data from the Bridge
Lat. 43 deg 17.84 N
Lon. 69 deg 33.83 W
Speed 9.3 kts
Barometer 1018.3 mb
Rel Humidity 86.16%
Temp. 20.65 C

1530 hours and there seems to be a flurry of activity among many of the scientist. A radiosonde is being rapidly readied to be sent aloft. It seems that the ship has reached a position somewhat east of Portland, ME and we have found a plume of ozone. The initial spike on the instrumentation showed 80-85 ppb (parts per billion) but then it jumped again to 101 ppb. This spike in the ozone was enough to request that another ozonesonde be readied and sent aloft. They have also requested a fly over by the DC3 out of Pease. Onboard the DC3 is a LIDAR (Light Radar) which measures atmospheric ozone. I am told that the cost of one ozonesonde is approximately one thousand dollars, so I assume that the readings on the instrumentation are justifying the expense. It will be interesting to see what they all have to say at the evening science meeting which is held each evening at 1930 hours.

We seemed to have found a large plume of ozone. It is as everyone, the science staff at least, had assumed. We have indeed found a large plume of ozone.

1930 hours. We are now heading in a westerly direction for Cape Elizabeth, ME.

Kirk Beckendorf, July 29, 2004

NOAA Teacher at Sea
Kirk Beckendorf
Onboard NOAA Ship Ronald H. Brown

July 4 – 23, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 29, 2004

Daily Log

How can you map air?

Air moves and so does pollution. Some areas of the country which produce very little pollution may actually record high levels of pollution, because pollution from somewhere else moves there. A program called Airmap is a joint program of NOAA and the University of New Hampshire is seeking to look at some of that pollution. Check out their website at http://www.airmap.unh.edu. The goal of Airmap is to learn as much as they can to try and understand New England’s changing climate and air quality. Airmap has a number of year round monitoring stations, which this summer are also part of NEAQS. Their stations measure the normal weather data as well as a number of pollutants such as ozone.

Today I visited one of those sites in northern New Hampshire, at the top of Mt. Washington, the highest mountain in New England. The mountains are a lot larger than I had expected and are very densely forested. Mt. Washington is known to have some of the worst weather in the world and the monitoring station that I visited recorded the strongest winds ever recorded on Earth, 231 miles per hour. http://www.mountwashington.org/bigwind/. The buildings at the summit are specially designed to keep from them from blowing off of the mountain. One is even chained down. The observatory building is designed to survive winds of 300 mile per hour.The monitoring station at the top of the mountain is manned by a staff of about 8 during the summer and 4-5 during the winter. Every hour the observers go outside and take weather measurements, this takes them about 15 minutes. Most of the observers are college students or recent graduates. One of those who showed me around will be a freshman in college this next year. In addition to the weather data being collected, a bank of Airmap instruments also measure pollution. Some of the instruments are the same as those I saw on the Brown. The instruments are making constant automatic measurements.

I have become well aware that pollution can travel to unpolluted areas but today, here at the top of Mt. Washington, it really struck home. I drove three hours through fairly remote forest to get to the top of this mountain in northern New Hampshire. Looking out from the top, when the fog is not blowing through, one sees very little except for forest. But at this remote spot, several times a year, ozone reaches levels higher than the amount allowed by the EPA. I ask where it comes from, the answer I receive is that a lot of the pollution seems to from the Midwest, (the Chicago and Detroit area) some also comes from Boston and New York. Part of the goal of NEAQS is to learn more about the pollution as it travels from the areas which produce the pollution, to the areas that receive it.

Questions of the Day

How far would the pollution have to travel from Detroit to Mt. Washington?

Where are the rest of the Airmap monitoring sites?

Kevin McMahon, July 29, 2004

NOAA Teacher at Sea
Kevin McMahon
Onboard NOAA Ship Ronald H. Brown

July 26 – August 7, 2004

Mission: New England Air Quality Study (NEAQS)
Geographical Area:
Northwest Atlantic Ocean
Date:
July 29, 2004

Weather Data from the Bridge
Lat. 42 deg 43.99
Lon. 70deg 02.99
Barometer 1015.71 mb
Rel Humidity 94.6%
Temp. 17.1 C
Radiosond aloft at 0710.

Daily Log

Science meeting at 0800. It has been decided that we will try to rendezvous with the J31 out of Pease at approximately 1130 and if all goes well send another radiosonde aloft.

Since I came onboard the RONALD H. BROWN on the 26th of July I have been completely amazed at how sophisticated life onboard a modern research vessel has become. On the first day waiting in line for lunch I inquired as to how long we can expect to have the fresh fruits and vegetables? Mr. Whitehead, the chief steward answered me that, “we always serve up fresh salads, very little of our produce is frozen.” When I inquired as to how they do it, I was informed that the ships refrigeration system was equipped with a device which filters out the Ethylene, a compound which causes produce to rot. As a result we can expect to have fresh salads on a daily basis.

This little tidbit of information got me to thinking about the possibility of a lesson plan which would incorporate some chemistry and some biology.

Questions

1. Can you draw the molecular structure of Ethylene?

2. What bacteria are involved in the spoilage of food and how does the elimination of ethylene play a part in this process?

Most of my time over the last 3 days has been spent getting to know the ship, the crew, and the scientific staff. It is odd in that I am being drawn more towards the operation of the vessel than I am to the scientific community. But both aspects are keeping me busy.

I have been working with Dan Wolfe, one of the main meteorologists onboard. I had thought that because I teach Earth Science, I knew something about weather forecasting. I have a long way to go. It has been an education. We have been sending aloft four radiosonde balloons per day. One every six hours. Each device is carried aloft by a balloon filled with helium. The radiosonde sends back to the ship its location, direction of travel, velocity, and altitude as a result of the barometric pressure.

Question

Which gas law equation does one use to calculate the relationship between pressure and volume?

1400 hours and I have just been informed that my hands are needed to assist with the preparation and launch of an ozonesonde. 1500 hours and we have been informed that a DC3 out of Pease will rendezvous with us in about 30 minutes. An ozonesonde has many of the characteristics of the radiosonde but also has the capability to measure ozone levels at various altitudes. It also has a longer life span and stays aloft about 2 hours and 45 minutes. The DC3 is really an aerial platform which has equipment onboard to measure ozone. I have been informed that the DC3 is nearing our location so it is time to fill the balloon.

Kathy Virdin, July 28, 2004

NOAA Teacher at Sea
Kathy Virdin
Onboard NOAA Ship Rainier

July 20 – 28, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 28, 2004

Latitude:58 degrees 01.110 N.
Longitude: 153 degrees 16.529 W.
Visibility: Less than 1 nautical mile
Wind direction: Light
Wind speed: Airs
Sea wave height: 0 ft.
Swell wave height: 0 ft.
Sea water temperature: 9.4 C.
Sea level pressure: 1003.9 mb.
Cloud cover: Cloudy/ foggy

Science and Technology Log

Today we have the exciting assignment of surveying the site of an 1860’s wreck of a Russian vessel. We’ll be making black and white images of the site of the wreck, giving archaeologists the depths of the whole area of wreckage. What makes this find so unusual, according to the Kodiak News, July 16, 2004, is that divers have already found a cylinder that spells out the name of the vessel “Kad’yak”. It is so rare to find an identifying object, that it happens in only about one out of a hundred sunken wreck findings. The Maritime Studies Program of Eastern Carolina University has a permit form the Alaska Department of Natural Resources, the National Science Foundation, and NOAA to do research on the site. They have sent down divers through the month of July and they have found a cannon, deck braces, a ballast pile, and three anchors. This has been identified as the oldest wreck ever found in Alaska waters. These samples all help to identify and date the wreck. After careful cleaning and preservation treatments, they will be put on display in various museums. Our survey will be a multi-beam swath survey, made from several of our launches, that will take several hours. We may not know much immediately from our survey, because all the data will need to be processed, cleaned and sent to the cartographers for charting. Perhaps we’ll read more about it in days to come in the newspapers or scientific journals.

Virdin 7-28-04 image1

Personal Log

I was excited to know that we were traveling through Whale Pass today and when I went out to the flying bridge to get a good look at the area, I saw a whale, quite near the ship. It was the first time I’ve seen a whale that close and it stayed on the surface for several minutes. When a whale is spotted, they make an announcement to all hands that a whale is spotted on port side or starboard side. Everyone grabs their cameras to try and get a good picture. I tried too, but I don’t know if it’ll turn out, as they are notoriously hard to film. They move through the water so gracefully and quickly that photographs are hard to come by. As we are moving through an area of straits, the weather is cloudy and foggy, but when the fog lifts, it brings a lovely view of the mountains. I’ll be headed to Homer, Alaska tomorrow for a few days of sightseeing, then home and back to the classroom. What an adventure this has been! Thank you NOAA!!

Virdin 7-28-04 image2