Denise Harrington: A Shark A Day, September 29, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Thursday, September 29, 2016

Science Log

The cruise is coming to a close. Looking back at my three experiences with NOAA, hydrography (mapping the ocean), fisheries lab work, or shark and snapper surveys,  I couldn’t decide which was my favorite.  Like the facets of a diamond, each experience gave me another perspective on our one world ocean.

Just like different geographic locations and work, each shark species give me a lens through which I can appreciate the mysteries of the ocean.  Every day, I held, measured, kissed, or released a different species of shark. In the Gulf of Mexico, there are 44 shark species frequently caught.  Fortunately, I saw quite a few, and will share some, in the order in which I met them.

Our first night fishing, we caught many Atlantic sharpnose sharks (Rhizoprionodon terraenovae).  They are named for their long flat snout and sharp nose. It seemed whenever we caught one, a bunch more followed. They were abundant and kept us busy.

p1080163

Paul Felts, Fisheries Biologist, records measurements while Kevin Rademacher, Fisheries Biologist, wrestles and measures the shark. Matt Ellis, NOAA Science Writer, took amazing pictures throughout the cruise.

Day two, we caught a deep water Cuban dogfish (Squalus cubensis).  

 

p1090143

The Cuban dogfish’s huge iridescent eyes were entrancing.

On September 2o, we almost caught a bull shark (Carcharhinus leucas).  We brought the cradle down, but the shark thrashed its way off, refusing to be studied. The bull shark, along with the tiger shark, are “one of the top three sharks implicated in unprovoked fatal attacks around the world.”

Within a couple days of catching the Cuban dogfish, we caught another shark with iridescent eyes. It turns out this similar looking shark was not a Cuban dogfish, but a rare roughskin spiny dogfish (Cirrhigaleus asper).  

p1080318

Dr. Trey Driggers, Field Party Chief, and prolific shark researcher, surprised us all when he reported this was the first roughskin spiny dogfish he had ever caught!

The beautifully mottled, sleek, immature tiger shark (Galeocerdo cuvier) caught on September 23 had remarkable skin patterns that apparently fade as the shark ages. Adult sharks can get as large as 18 feet and 2,000 pounds.  Along with the bull shark, it is one of the top three species implicated in unprovoked, fatal attacks worldwide.

September 24 we caught a fascinating scalloped hammerhead (Sphyrna lewini).  The flat extended head of this hammerhead is wavy, giving it the “scalloped” part of its name.  Its populations in the Gulf have drastically decreased since 1981, making it a species of concern.

 

img_0430

Here, Kevin measures one of several scalloped hammerhead sharks we caught on Leg IV of the survey.

We also caught a silky shark (Carcharhinus falciformis). Like other Carcharhinus sharks, the silky shark has a sharp “Carchar,” nose “hinus” (Greek derivation), but also has a silky appearance due to its closely spaced dermal denticles.

img_2294

I instantly felt the silky was the most beautiful shark I’d seen. Photo: Matt Ellis/NOAA Fisheries

 

We  saw two of the three smoothhound species present in the Gulf.  On September 25, we caught a Gulf smoothhound, (Mustelus sinusmexicanus), a species named less than 20 years ago. Much is left to learn about the ecology and biology of this recently discovered shark.

img_2575

Getting ready to weigh the gulf smoothhound, Kevin Rademacher, Fisheries Biologist, stops for a photo.                                                      Photo: Matt Ellis/NOAA Fisheries

Then, I watched the night crew catch, measure and tag a dusky shark (Carcharhinus obscurus).

OLYMPUS DIGITAL CAMERA

Photo: NOAA Fisheries

On September 26, we caught a sandbar shark (Carcharhinus plumbeus).  Despite its size,  the sandbar shark poses little threat to man.

img_2889

The sandbar shark’s large fin to body ratio and size make them a prime target for commercial fisheries. Photo: Matt Ellis/NOAA Fisheries

Due to over-fishing, sandbar shark populations are said to have dropped by as much as 2/3 between the 1970’s and the 1990’s. They are now making a comeback, whether it be from fishing regulations, or the decreased populations of larger sharks feeding on juvenile sandbar sharks.

img_3128

This sandbar shark attacked a blacknose shark that had taken our bait. Photo: Matt Ellis/NOAA Fisheries

We tagged many sharks during my two weeks on the Oregon II.  If you never catch one of those sharks again, the tag doesn’t mean anything.  But this week, we also caught a previously tagged sandbar shark!  Recapturing a wild marine animal is phenomenal.  You can learn about its migration patterns, statistically estimate population sizes, and learn much more. The many years of NOAA’s work with this species in particular demonstrates that thoughtful, long term management of a species works.

 

On September 27, we almost caught a nurse shark (Ginglymostoma cirratum). The barbels coming from its mouth reminded me of a catfish or exotic man with a mustache.

Today, September 29, was our last day of fishing, a bittersweet day for me.  That nurse shark that got away, or more likely, another one like it, came up in our cradle.

Every day we caught sharks, including a few other species not mentioned here.  Only once our line came back without a fish.  The diverse characteristics and adaptations that allow each of these species to survive in a challenging marine environment inspire biologists as they try to categorize and understand the species they research.   While catching so many different species of sharks gives me hope, many members of the crew reminisce about times gone by when fish were more abundant than they are now.

Personal Log

I am the kind of person who always struggles to return from an adventure.  I have learned so much, I don’t want to leave.  Yet I know my class at South Prairie is waiting patiently for my return. I hope to share these many marine species  with my class so that we all may view every moment with curiosity and amazement.

 

 

 

 

Denise Harrington: First Day Jitters, September 21, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Wednesday, September 21, 2016

My first day on the longline cruise seems so long ago with three days of work under my belt. The night before my first shift, just like when school starts, I couldn’t sleep. Trying to prepare was futile. I was lost, lost in the wet lab, lost in my stateroom, lost in the mess. I needed to get some gloves on and get to work, learning the best way I know how: by doing.

At noon, I stepped out the fantail, life vest, gloves, hard hat, and sunscreen on, nervous, but ready to work. The Gulf of Mexico horizon was dotted with oil rigs, like a prairie full of farmhouses. Heat waves rose from the black deck.

Fifteen minutes before arriving at our first station, our science team, Field Party Chief Dr. Trey Driggers, Field Biologist Paul Felts, Research Biologist Kevin Rademacher, NOAA Science Writer Matt Ellis, and I began to prepare for our first station by baiting the hooks with mackerel (Scomber scombrus). I learned quickly that boots and grubby clothes are ideal for this task.

p1080831

Once all the hooks were baited, Chief Boatswain Tim Martin and Paul release a high flyer, a large pole with a buoy at the bottom and a reflective metal flag on top.

The buoy, connected to the boat by the longline, bobbed off toward the horizon.

p1080429

Tim attached the first of three weights to anchor the line to the sea floor.

p1080443

As the longline stretched across the sea, Kevin attached a numbered tag to the baited hook held by Paul.

p1080326

Paul passed the baited, tagged hook to Tim, who attached 100 hooks, evenly spaced, to the one mile longline.

p1080838

On another station, Paul attached numbers to the gangion (clip, short line, and baited hook) held by Trey.  Each station we change roles, which I appreciate.

Setting the longline is rather predictable, so with Rush and Van Halen salting the air, we talked about our kids, dogs, riots in the news, and science, of course. The tags will help us track the fish we catch. After a fish is released or processed, the data is entered in the computer and shared with the scientific community. Maybe one of these tagged fish will end up in one of the many scientific papers Trey publishes on sharks each year.

The line soaked for an hour waiting for snapper, tilefish, eels, sharks, and other fish to bite. While the line soaked, Mike Conway, skilled fisherman, and I lowered the CTD, a piece of equipment that measures conductivity (salinity), temperature, and depth, into the water.  Once the biologists know how salty, cold, and deep the water is, they can make better predictions about the species of fish we will find.

We attached a bag holding a few Styrofoam cups to see how the weight of the water above it would affect the cup.  Just imagine the adaptations creatures of the deep must have developed to respond to this pressure!

The ship circled back to hook #1 to give each hook equal time in the water. After an hour, we all walked up to the well deck, toward the bow or front of the ship. We pulled in the first highflyer and weight.  We pulled in the hooks, some with bait, and some without.  After 50 hooks, the middle weight came up. We still didn’t have a fish.  I began to wonder if we’d catch anything at all.  No data is still data, I thought. “Fish on eighty three!” I heard someone yell.   I wake from my reverie, and get my gloves on.

p1080432

It was a blacknose shark (Carcharhinus acronotus), “pound for pound, the meanest shark in the water,” says Trey. He would know, he’s the shark expert. It came up fighting, but was no match for Kevin who carefully managed to get length, weight, and sex data before releasing it back into sea.

With one shark to process, the three scientists were able to analyze the sexual maturity of the male blacknose together. I learned that an adult male shark’s claspers are hard and rotate 180˚, allowing them to penetrate a female shark. An immature shark’s claspers are soft and do not rotate. For each male shark, we need to collect this data about its sex stage.

p1080172

Here, you can see Trey rotating the clasper 180 degrees.

Later, Paul talked about moments like these, where the field biologists work side by side with research biologists from all different units in the lab.  Some research biologists, he notes, never get into the field.  But Kevin, Trey, and others like them have a much more well-rounded understanding of the data collected and how it is done because of the time they spend in the field.

Fortunately, the transition from inexperienced to novice was gradual. The second line was just as easy as the first, we only brought in two fish, one shark and one red snapper (Lutjanus campechanus).

For the red snapper, we removed the otoliths, which people often call ear bones, to determine age, and gonads to determine reproductive status.  I say “we” but really the scientists accomplished this difficult feat. I just learned how to process the samples they collected and record the data as they dissected the fish.

We set the longline a third time. The highflyer bobbed toward the orange sun, low on the horizon. The ship turned around, and after an hour of soaking, we went to the well deck toward the front of the ship to pull in the longline.  The sky was dark, the stars spread out above us.

“One!” “Three!” “Seven!” “Nine!”  The numbers of tags with fish on the line were being called out faster than we could manage.  It seemed like every other hook had a shark on it.  Two hours later we had collected twenty-eight Atlantic sharpnose (Rhizoprionodon terraenovae) sharks and had one snapper to process. Too busy working to take pictures, I have nothing to document my transition from inexperienced to novice except this data sheet.  Guess who took all this data? Me!

p1080265

Personal Log

NOAA Ship Oregon II is small, every bunk is filled.  I share a stateroom with the second in command, Executive Officer (XO) Lecia Salerno, and am thankful she is such a flexible roommate, making a place for me where space is hard to come by.

Last night, as I lay in my bunk above XO Salerno and her office, I felt like Garth on Wayne’s World, the thought that “I’m not worthy” entering my head.  All members of the crew are talented, experienced, and hard-working, from the bridge, to the galley, to the engine room, and out on the deck where we work. I’ve made a few mistakes.   I took the nasty thought and threw it overboard, like the slimy king snake eels (Ophichthus rex) we pull from the deep.

o-rex

King Snake Eel (Ophichthus rex)

In the morning I grabbed a cup of coffee, facing the risk of being the least experienced, slowest crew member to learn, with curiosity and perseverance.  First day jitters gone, I’m learning by doing.

Barney Peterson: What Are We Catching? August 28, 2016

NOAA Teacher at Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHAT ARE WE CATCHING?

This is a long-line survey.  That means we go to an assigned GPS point, deploy hi-flyer buoys, add weights to hold the line down, add 100 baited hooks, leave it in place for an hour, and retrieve everything.

mackerel-bait-fish

Mackerel is used to bait the hooks.

As the equipment is pulled in we identify, measure and record everything we catch.  Sometimes, like in the case of a really large, feisty shark that struggles enough to straighten or break a hook or the lines, we try to identify and record the one that got away.  We tag each shark so that it can be identified if it is ever caught again.  We tally each hook as it is deployed and retrieved, and the computer records a GPS position for each retrieval so scientists can form a picture of how the catch was distributed along the section we were fishing.  The target catch for this particular survey was listed as sharks and red snapper.  The reality is that we caught a much wider variety of marine life.

We list our catch in two categories: Bony fish, and Sharks.  The major difference is in the skeletons.  Bony fish have just that: a skeleton made of hard bone like a salmon or halibut.  Sharks, on the other hand, have a cartilaginous skeleton, rigid fins, and 5 to 7 gill openings on each side.  Sharks have multiple rows of sharp teeth arranged around both upper and lower jaws.  Since they have no bones, those teeth are embedded in the gums and are easily dislodged.  This is not a problem because they are easily replaced as well.  There are other wonderful differences that separate sharks from bony fish.

Bony Fish we caught:

The most common of the bony fish that we caught were Red Groupers (Epinephelus morio), distinguished by of their brownish to red-orange color, large eyes and very large mouths.  Their dorsal fins, especially, have pointed spikes.

chrissy-with-enormous-grouper

Chrissy holding an enormous grouper

We also caught Black Sea Bass (Centropristus striata) which resemble the groupers in that they also have large mouths and prominent eyes.

sea-bass

Black Sea Bass

A third fish that resembles these two is the Speckled Hind (Epinephelus drummondhayi).  It has a broad body, large mouth and undershot jaw giving the face a different look.  Yes, we did catch several Red Snapper (Lutjanus campechanus), although not as many as I expected.  Snappers are a brighter color than the Red Groupers, and have a more triangular shaped head, large mouth and prominent canine teeth.

red-snapper

Red Snapper

The most exciting bony fish we caught was barracuda (Sphyraena barracuda).  We caught several of these and each time I was impressed with their sleek shape and very sharp teeth!

barracuda

TAS Barney Peterson with a barracuda

Most of the bony fish we caught were in fairly deep water.

 

Sharks:

We were fortunate to catch a variety of sharks ranging from fairly small to impressively big!

The most commonly caught were Sandbar Sharks (Carcharhinus plumbeus): large, dark-gray to brown on top and white on the bottom.

sandbar-shark

Sandbar Shark

Unless you really know your sharks, it is difficult for the amateur to distinguish between some of the various types.  Experts look at color, nose shape, fin shape and placement, and distinguishing characteristics like the hammer-shaped head of the Great Hammerhead (Sphyrna mokarran) and Scalloped Hammerhead (Sphyrna lewini) sharks that were caught on this trip.

great-hammerhead

Great Hammerhead Shark

The beautifully patterned coloring of the Tiger Shark (Galeocerdo cuvier) is fairly easy to recognize and so is the yellowish cast to the sides of the Lemon Shark (Negaprion brevirostris).

Other sharks we caught were Black-nose (Carcharhinus acrontus), Atlantic Sharp-nosed (Rhizoprionodon terraenovae), Nurse Shark (Ginglymostoma cirratum), Blacktip (Carcharhinus limbatus) and Bull Sharks (Carcharhinus leucus).

Several of the sharks we caught were large, very close to 3 meters long, very heavy and very strong!  Small sharks and bony fish were brought aboard on the hooks to be measured against a scaled board on the deck then weighed by holding them up on a spring scale before tagging and releasing them.  Any shark larger than about 1.5 meters was usually heavy and strong enough that it was guided into a net cradle that was lifted by crane to deck level where it could be measured, weighed and tagged with the least possibility of harm to either the shark or the crew members.  Large powerful sharks do not feel the force of gravity when in the water, but once out of it, the power of their weight works against them so getting them back into the water quickly is important.  Large powerful sharks are also pretty upset about being caught and use their strength to thrash around trying to escape.  The power in a swat from a shark tail or the abrasion from their rough skin can be painful and unpleasant for those handling them.

PERSONAL LOG

The Night Sky

I am standing alone on the well deck; my head is buzzing with the melodies of the Eagles and England Dan.  A warm breeze brushes over me as I tune out the hum of the ship’s engines and focus on the rhythm of the bow waves rushing past below me.  It is dark! Dark enough and clear enough that I can see stars above me from horizon to horizon: the soft cloudy glow of the Milky Way, the distinctive patterns of familiar favorites like the Big Dipper and the Little Dipper with its signature bright point, the North Star.  Cassiopeia appears as a huge “W” and even the tiny cluster of the “Seven Sisters” is distinct in the black bowl of the night sky over the Gulf of Mexico.  The longer I look the more stars I see.

This is one of the first really cloudless nights of this cruise so far.  Mike Conway, a member of the deck crew came looking for me to be sure I didn’t miss out on an opportunity to witness this amazingly beautiful show.  As I first exited the dry lab and stumbled toward the bow all I could pick out were three faint stars in the bowl of the Big Dipper.  The longer I looked, the more my eyes grew accustomed to the dark, and the more spectacular the show became.  Soon there were too many stars for me to pick out any but the most familiar constellations.

As a child I spent many summer nighttime hours on a blanket in our yard as my father patiently guided my eyes toward constellation after constellation, telling me the myths that explained each one. Many years have passed since then.  I have gotten busy seeing other sights and hearing other stories.  I had not thought about those long ago summer nights for many years.  Tonight, looking up in wonder, I felt very close to Pop again and to those great times we shared.

 

Kathleen Gibson, Sailing Away, July 27, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark/Red Snapper Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coasts
Date: July 27, 2015
Coordinates:  25o   30.755 N
                       O79o   55.736W

Weather Data from the Bridge:
Wind speed (knots): 9
Sea Temp (deg C): 31.3
Air Temp (deg C):  31.2

View from the Bow - Gulf of Mexico

View from the bow – Gulf of Mexico

Just before we left Pascagoula last Saturday, we learned that the V-Sat system was not operational and that in all likelihood we wouldn’t have internet access during the trip.  So far this prediction has been accurate.  I’ll continue to write these blogs as we go and post them all after we get to port if it doesn’t get fixed.

In my first post I wrote a bit about the area we would be surveying. I’ve since learned that during this cruise we will only be working in the Atlantic Ocean. Another change is that our final destination will be Cape Canaveral, FL rather than Jacksonville, FL.

Motoring through the Florida Keys

Motoring through the Florida Keys

Since we aren’t doing any fishing in the Gulf, we are currently following a straight track from Pascagoula to the Florida Keys. We’ve been sailing for two days and are currently off the coast of Key Biscayne, FL.  There has been one rain event that went by quickly, and otherwise it has been fair weather. While land isn’t visible, there are a good number of recreational motorboats, so land must not be too far off.

 

Science and Technology

This cruise is the first of four legs of a long-term (longitudinal) study of the distribution and abundance of shark and red snapper populations. The study began in 1995 and the research area includes U.S. waters of the Atlantic Ocean and Gulf of Mexico. The Atlantic Ocean sampling stations on this first leg are positioned at various distances offshore from Miami, FL to Cape Hatteras, NC and at different depths. Later legs will complete the survey in the Gulf of Mexico.  While this type of study can be resource and labor intensive and also time consuming, a well-designed longitudinal study can provide valuable data that tracks trends and patterns over an extended period of time. As with any investigation, numerous potential variables must be controlled, including time of year sampling occurs, sampling equipment (line and hooks) and sampling locations.

We’ve prepared three barrels of gangions (50 hooks in each). When we start fishing we will bait the hooks with mackerel and hook them on the long line.

Kristin Hannan ( left) and science volunteers preparing gangions. These will be baited and attached to the main line.

Kristin Hannan ( left) and science volunteers preparing gangions.
These will be baited and attached to the main line.

The circular hooks are designed to minimize harm.

The circular hooks are designed to minimize harm.

NOAA Careers

A successful cruise requires a significant amount of preparation as well as committed participants. Those aboard include NOAA scientists, NOAA Corps Officers, an experienced deck crew, engineers, stewards, and science team volunteers. From the moment I arrived on board it has been apparent that everyone is fully invested in this project.  They’ve been willing to share their stories of how they made their way on to this cruise of the Oregon II;  I’ll share some of their stories with you in this and future blog entries.

Career Spotlight: Kristin Hannan – Field Party Chief, NOAA Shark Unit

As Field Party Chief, Kristin is responsible for all of the scientific work done during the cruise.  She is also the watch leader for the day shift.  While Kristin was fascinated with marine science at an early age, she followed some sage academic advice for her undergraduate program: “focus on being a scientist first, include rigorous coursework, and then do marine work.”  She graduated from Virginia Tech with a degree in Biology and a minor in Chemistry and she remains a loyal Hokie fan.

Kristin Hannan taking measurements

Kristin Hannan taking measurements

She has been involved in a number of challenging marine-related projects all around the United States and has been open to unusual opportunities when they arose. One such opportunity, over 10 years ago,  was to be a volunteer with NOAA Fisheries in Pascagoula, MS.  She joined the Shark Longline cruise as a volunteer one summer, and returned in subsequent summers to participate. Kristin eventually joined NOAA permanently as a Field Biologist with the Shark Unit, and is now the Chief Scientist/Field Party Chief for this cruise–the very same one she volunteered for some years ago.

In addition to her work with NOAA, Kristin is pursuing a Master’s Degree from the University of South Alabama, where she is studying chimeras and methods used to determine their age.

Kristin’s advice to students looking to work in Marine Sciences –or any field- is to:

  1. Be open to unusual opportunities
  2. Try to make a good impression every day
  3. Work hard

Personal Log

Flying Fish Photo Credit: NOAA

Flying Fish
Photo Credit: NOAA

We’re still sailing to the sampling area, so there is plenty of free time to meet others on board, read and walk around the deck.  This will definitely change when sampling begins. Today I went out to the bow and saw flying fish for the first time and dolphins were swimming off the bow.

The science team is made up of 4 NOAA scientists and 7 volunteers with a variety of experience. Our volunteers include 2 university professors, one graduate student, three undergraduate students, and one Teacher at Sea!  The group is split into two 12-hour shifts.  I’m on the day shift which begins at noon each day and ends at midnight.  It’s likely that we will begin fishing tomorrow morning, and the night crew has begun adjusting their sleep pattern to be prepared.  I’m going to have to work at sleeping in.

Survival Suit - Perfect Fit  Photo Credit: Lecia Salerno

Survival Suit – Perfect Fit  Photo Credit: Lecia Salerno

 

The Executive Officer (XO) LT Lecia Salerno, has graciously allowed me to share her quarters, which includes her office. The cabin is on an upper level so I definitely get rocked to sleep.

A fire drill and abandon-ship drill were called on the first full day at sea.  Lecia helped me get into my survival suit and, more importantly, out of it as well.

Questions of the day for my students:

What additional variables do you think should be considered and kept constant in this study?

What is a nautical mile and how many nautical miles is it from Pascagoula, MS, to Miami, FL?

How do chimeras differ from sharks?

Tomorrow we fish!

Tomorrow we fish!

Up next… Time to Fish.

 

Liz Harrington: The Temporary Lull in the Action, August 21, 2013

NOAA Teacher At Sea
Liz Harrington
 Aboard NOAA Ship Oregon II
August 10 – 25, 2013

Mission : Shark/Red Snapper Bottom Longline
Geographical area of cruise: Western Atlantic Ocean and Gulf of Mexico
Date: August 21, 2013

Weather: current conditions from the bridge:
Partly cloudy
Lat. 29.18 °N  Lon. 84.06 °W
Temp. 75 °F (24 ° C)
Wind speed  10-15  mph
Barometer  30.04 in ( 1017.3 mb)
Visibility  10 mi

Science and Technology Log:

It has been just over a week now since I’ve been aboard the Oregon II.  The catch has not been as abundant as it was the first couple of days of fishing, but that tells the scientist something as well. So far I’ve experienced three water hauls – not one fish on any of the 100 hooks!  Even though we are not catching many fish (for now), the fishing will continue until it is time to return to port.  Don’t get me wrong, we are still catching fish, just not as many as we had been.  Occasionally we pull up something other than fish, like eels, skates, crabs or sea stars. This is called the bycatch. In the previous blog I explained how the line was set. In this one I’ll explain about the catch.

OLYMPUS DIGITAL CAMERA

“Fish On”. A Sandbar Shark is brought alongside the ship to be cradled.

crab as bycatch

This crab, part of the bycatch, wouldn’t let go of the bait.

preparing for haul back

Lead Fisherman Chris Nichols (right) and Fisherman Buddy Gould prepare to retrieve the high flyer.

Hauling in the line is similar to setting it out.  The fisherman handle the line and the science team process the fish. Our team includes a person manning the computer to keep track of the hook numbers and the condition of any remaining bait;  a person “racking” (carefully but quickly returning the gangions into the storage barrels); and a “data” person to write down information about each fish, and the rest of the team will be “wranglers” (those who handle the catch).  We all rotate through the jobs.  I like to be a wrangler, but the racker and computer folks get a nice view of the fish being brought on board.  Everything we catch is brought on board, weighed and measured.

tagging Tiger Shark

The Day Team tagging a Tiger Shark

Many species of sharks are tagged and a fin clip is taken to obtain its DNA.  They are given an injection of a chemical which will help to age the shark if it is caught again.  The entire process only takes a few minutes because they are trying to get the sharks back into the water as soon as possible. The scientists and crew are all very conscientious about doing what is best for the marine life.  What’s really nice is that we all take turns tagging the sharks.  It is just so exciting to be up close to them, especially the big ones. You can feel the strength and power beneath that sandy skin.

weighing a shark

Sometimes sharks are too heavy for the handheld scale, so they are hoisted up to be weighed. Notice the scientist to the right to get sense of its weight.

processing fish

Kristin and Cliff find otoliths at the end of the rainbow.

The boney fish that are caught are also weighed and measured. After the haul back (when the line is in, gangions are stored, high flyers returned and deck hosed down), they are brought to the back of the ship to have otoliths removed and tissue samples taken. The otoliths are boney structures in the fish’s inner ear which are sensitive to gravity and acceleration. As the fish grows, each year a new layer is added to the otoliths – similar to tree rings. By examining the otoliths under a microscope its age can be determined. I was taught how to remove the otoliths, so now (given enough time – I need plenty) I can help process the fish. Learn more about the procedure here.

Personal Log

stateroom

I have the bottom bunk in stateroom #5

It has been easy for me to acclimate to life aboard the ship because all of the people are so friendly and interesting.  The ship is always rocking but I don’t even notice it any more. It actually lulls me to sleep at night, along with the constant sound of the engine and particularly the gurgling sound of the water moving along the hull (frame of ship). I was a little worried that I might get seasick in the beginning of the cruise, but I didn’t. The only problem I had was that reading or working on the computer made me queasy, but that only lasted for a couple of days.  Quarters are tight, but they make good use of all of the space. Most of the bedrooms (called staterooms) sleep two people. We all eat in a room called the galley. It only holds twelve people at a time, so when we are done eating we leave to make room for someone else. The food on board is delicious and abundant. The chief steward, Walter Coghlan, does a great job providing a variety of choices. There is literally something for everyone.  If we have free time, there is a lounge area with a huge selection of movies.

I like to spend my free time out on the decks, if I can find a place in the shade and the breeze. I love to look out over the water. And the sky stretches from horizon to horizon in all directions, something I don’t see in the mountains of Vermont.  The cumulus clouds develop during the day and I can usually see a thunderstorm somewhere by late afternoon. It’s a beautiful view.  Yesterday we were visited briefly by a small group of dolphins. Their acrobatics were very entertaining. They were here and then gone. That seems to be the continuing theme here; you never know what you are going to see.

Dolphin visit

A small group of dolphins swim along side the ship.

thunderstorm

A distant passing thunderstorm.

Did you know?  The ship makes it own fresh water from the sea water.  There is a reverse osmosis desalination system located down in the engine room. The fresh water is stored in large tanks, so it is always available.

volunteers await a haul

Volunteers Micayla, Daniel, David and Cliff waiting to do some wrangling.

New Term

Foul Hook – when a fish is hooked in a place other than its mouth (ie -fin or body)

More examples of bycatch.

clearnose skate

Clearnose Skate

little tunny

Micayla holds a Little Tunny (yes, that’s it’s real name)

yellowedge grouper

Yellowedge Grouper ready for processing

sea star

Sea Star

Peggy Deichstetter, September 10, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 10, 2010

Well, the reason Aaron didn’t pick us up last night is that he took the Engineer to the hospital with an ear infection, apparently, it is serious. The ship will stay in port until a decision is made on whether or not we can run with only 2 engineers (12 hour shifts instead of 8). It is decided that the last day of this part of the cruise (Leg 2) is canceled. I spend the rest of the morning changing my travel plans and packing. Claudia is the first off the ship, she has friends and family here. I say good bye to everyone then start my journey home.

Beth Spear, August 28, 2010

NOAA Teacher at Sea: Beth Spear
Aboard NOAA Ship Delaware II

Mission: Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico

Date of Post: August 28, 2010

Attached are photos showing three different shark species including: sandbar, hammerhead, bull. Hammerheads are easily recognized by their distinctive heads and bull sharks have a solid grey skin, but very wide thick bodies. I am pictured below with an Atlantic sharpnose shark which grow to much smaller sizes as adults compared to the sharks species listed above.

Some sharks we caught were too large to be brought on board, so they were tagged from the ship’s deck. Tags need to be inserted almost anywhere on the dorsal surface of the shark except the fin or the gills. For each shark see if you can determine the shark type and gender. Click on the link below to access the video clips. Scroll down for the correct answer when you finish.

 

Video #2

 

Video #3


Answer: Shark / GenderShark #1
Hammerhead, maleShark #2
Bull, ?Shark #3

Sandbar, female