Clare Wagstaff, September 18, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Key West
Date: Saturday, September 18, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny Visibility (nautical miles): 10
Wind Speed (knots): 0 (in port)
Wave Height (feet): <1
Sea Water Temp (0C): 30.4
Air Temp (0C): 32

Science and Technology Log 

Right: Black-band Disease on Montastraea annularis. Photo courtesy of Mike Henley

Black-band Disease on Montastraea annularis. Photo courtesy of Mike Henley

With the last dive of the cruise over, the group has completed 175 dives, which equates to 7.5 days underwater! Most of the planned coral reef sites have been surveyed even with our lack of a third small boat. The weather has stayed relatively calm and has been surprisingly supportive of our cruise. The mad rush is now to input all the remaining data before we disembark the ship later today.

An area that I have only briefly referred to in previous logs, are the types of coral diseases present and being studied. Chief Scientist, Scott Donahue, commented to me that there has been a trend over the last decade of decreasing coral coverage. This is believed to be related to anthropogenic stresses such as water quality and climate change. By comparing spatial and temporal patterns against trends in coral reef disease, over different geographic regions and reef types, it is hoped that a greater understanding of how these patterns are related to different environmental conditions. The team was specifically looking at ten disease conditions affecting 16 species of Scleractinian corals and Gorgonian sea fans. Although I tried to identify some of the diseases, it was actually quite difficult to distinguish between individual diseases and also other causes of coral mortality.

White-band Disease on Acropora cervicornis. Photo courtesy of Mike Henley

White-band Disease on Acropora cervicornis. Photo courtesy of Mike Henley

Black-band Disease is a crescent shaped or circular band of blackish material that separates living material from white exposed skeleton. It is caused by a cyanobacteria in combination with a sulfide oxidizing bacteria and a sulfur reducing bacteria. White-band Disease displays a margin of white tissue decay. It can start at the base of a colony or in the middle. It affects branching corals and its cause is currently unknown. Corals have a pretty tough time living out in the ocean and have many problems to overcome. If its not a boat’s anchor crushing it could be any number of the following; a parrot fish (predator) eating it; deterioration of the water quality; a hurricane; an increase in major competitors like algae or tunicates, and to nicely top it all, it can always get a disease too!

Most of the scientists on the Nancy Foster are volunteers, giving up their own free time to be part of the trip. Kathy Morrow is a Ph.D. student who has extensively studied the ecology of cnidarians for the past 9 years. She is currently researching her dissertation on the community structure and stability of coral-algal-microbial associations based on studies conducted off the coast of Summerland Key, Florida and St. Thomas, U.S. Virgin Islands. On one of the last dives of the trip Kathy takes time to collect mucus samples (she refers to this fondly as coral “snot”), from a site she has previously visited numerous times over the last few years. The objective is to collect mucus samples so that they can be studied later for their bacteria composition.

Morrow collecting coral mucus. Photo courtesy of Mike Henley.

Morrow collecting coral mucus. Photo courtesy of Mike Henley.

Once Kathy has collected these samples she must process them so that they can be stored until she has the opportunity back in the lab, to analyze them. Although I was not present when Kathy was collecting the samples, I did help her in the wet lab with the final stages of storing her collection of samples. Having collected multiple mucus samples from each of the preselected coral species in syringes, the samples were then placed into a centrifuge to extract the bacteria present. This material is denser, so sinks to the bottom ad forms a darker colored pellet. My job is then to remove the excess liquid, but preserve the bacteria pellet so that it can be frozen and stored for later analysis. Back in the lab at Auburn University, Kathy will chemically breakdown the bacteria to release their DNA. This DNA is then replicated and amplified allowing for Kathy to perform analysis on the bacteria to identify the types present in the corals. Kathy will spend the next year studying these bacteria samples and many more she has collected.

Personal Log 

Here I am helping Kathy Morrow preserving coral mucus specimens. Photo courtesy of Cory Walter

Here I am helping Kathy Morrow preserving coral mucus specimens. Photo courtesy of Cory Walter

So here we are back in port after an amazing time on the Nancy Foster. I was initially concerned about being out at sea with people I did not know, studying an area of science I really knew very little about, in an environment I knew would probably make me sick, but didn’t thank goodness! But everything turned out to be a thousand times better than I could have imagined. I have had seen so much and learnt an amazing amount that my head is spinning with all the ideas I have to use with my classes back at school. Yet, there are things that I just rang out of time to look more closely at and part of me wishes we had been out at sea longer. My second time as a Teacher At Sea, has left me with some wonderful memories of the most professional and dedicated scientists and crew you could wish for, but also of how amazing corals are and how much we still have to learn. Thank you everyone who was involved in making this a truly remarkable and memorable experience.

The 2009 coral research team and Teacher At Sea, Clare Wagstaff on board the Nancy

The 2009 coral research team and Teacher At Sea, Clare Wagstaff on board the Nancy Foster

Clare Wagstaff, September 16, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 16, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny with scattered showers with thunder storms
Visibility (nautical miles): 10
Wind Speed (knots): 4
Wave Height (feet): 1
Sea Water Temp (0C): 30.6
Air Temp (0C): 30

Science and Technology Log 

Elkhorn coral (Acropora palmata) and numerous Sergeant Majors (Abudefduf  saxatilis)

Elkhorn coral (Acropora palmata) and numerous Sergeant Majors (Abudefduf saxatilis)

Today I am with a new survey group. As the days go by and each of the scientists gets more dives under their belts, there is some fatigue starting to set in. So on a rotation basis, the divers are taking rest days to catch-up on sleep, emails and data entry. This morning I am with Lauri, Lonny and Sarah. The first dive site is about 33  feet deep and although I can see the bottom from our small boat, the water is extremely green and doesn’t allow me to see anything in real detail when I snorkeled. A little disappointed at the clarity of the water, I am definitely perked up by the next site, CR03. At just 8 feet deep, I can see much more and the water appears less green.

A lobster hiding in the coral

A lobster hiding in the coral

This site was something special! Even from above the water, we could observe large and impressive Acropora palmata. It looked like a large underwater forest. There was a massive diversity of fish specie present that appeared to be supported by the micro-ecosystem that the Acropora palmata created by its large lobes that fan out across the ocean floor. They provide plenty of nooks for green moray eels and multiple lobsters I saw to hide in. This coral grows approximately 10cm a year, but as with all coral species, this growth can be affected by various factors including the most recent hurricanes.

We were surveying in an area known as a Sanctuary Preservation Area or commonly a “No Take Zone”, yet a small boat located within the marking buoys appeared to be spear fishing. The Coxswain on our boat noted that the group brought numerous fish up into their boat while we were underwater. Within a short distance we also observed two other lobster pot buoys located within this zone. Lauri, called this into the Nancy Foster and asked that the Chief Scientist report this to the Marine Law Enforcement office, so that they could send a patrol boat out to investigate. This activity is not permitted in this zoned area.

Coral identification 

Diploria strigosa

Diploria strigosa

Today, I tried to indentify all the different varieties of coral I had photographed. Dr. Joshua Voss, the ship’s expert of coral identification looked over my attempt at scientifically naming 30 different photos. Much to my delight, I got 28 correct! Now I just need to remember them when I am underwater! My greatest difficulty seems to be differentiating between Montastraea spp.annularis, faveolata and franksi, as they have quite similar morphotypes. I just have to keep practicing and asking for help when I’m not sure. What makes me feel a little better is sometimes even the pro’s have trouble distinguishing between certain corals, particularly if they are trying to identify a hybrid which is a mixture of two different species.

Personal Log 

Diploria clivosa

Diploria clivosa

I am always amazed at how resourceful divers can be. Somehow duct tape comes in useful wherever you are. Today was no exception! Geoff, who forgot his dive booties (a type of neoprene sock that you wear inside you fins) has made himself a pair out of another team member’s white socks and a few lengths of duct tape. He does look very entertaining, but they do seem to be working!

Acropora palmata

Acropora palmata

I am feeling very privileged to be surrounded by so many intelligent, passionate and brilliant people. Not only are most of people on the survey teams volunteers and so not getting paid, they are also embracing each part of the cruise with a great sense of humor and consistent high spirits. Even though they are all tired (to date they have accumulated 133 dives between them this cruise), they still banter back and forth with one another in a lighthearted way. All but myself and Mike Henley are returning for their third, fourth, even 13th time, to help collect this vital data. Even though diving has many hazards and is dangerous work, these folks are real experts and I truly feel lucky to be around such inspiring people. I have been diving for five years, but I don’t think I will ever look at a reef in the same way again. They have opened my eyes, and now my job is to go back to chilly Buffalo and develop a way to get this across to my 6th and 8th grade science classes. If I can inspire even just one child, like Joshua’s science teacher did for him as a teenager, then perhaps they too will go on to become a marine biologist, who study some of the smallest, yet most important creatures on our planet.

 Montastraea annularis

Montastraea annularis

As 7pm draws close, the science group gather on the front deck to watch the sunset. It is a beautiful sky, but just to make the evening more special, along come three dolphins riding the wake of the bow of the Nancy Foster. I leap up like a child and run to the edge of the ship to get a closer look, having never seen dolphins in the wild before! They are so graceful and as we all lean over and cheer as the breach the water and splash their fins, you start to wonder, if they are actually watching us as much as we are watching them. Such grace and natural beauty brings another day aboard the Nancy Foster to an end. I’m just not sure how each day keeps topping itself, and with two left to come, who knows what adventures may become this team!

“Animals Seen Today” 

Three bottlenose dolphins (Tursiops truncates) riding the wake of the Nancy Foster 

Bottlenose dolphins riding in the Foster’s wake

Bottlenose dolphins riding in the Foster’s wake

Christine Hedge, September 15, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 15, 2009

MST2 Tom Kruger and MST3 Marshall Chaidez retrieve a meteorological buoy on September 14.

MST2 Tom Kruger and MST3 Marshall Chaidez retrieve a meteorological buoy on September 14.

Weather Data from the Bridge 
Latitude: 730 22’N
Longitude: 1560 27’W
Temperature: 310F

Science and Technology Log 

The past few days have brought much change.  The depth of the ocean changed dramatically as we got closer to Alaska. The ocean went from depths of over 3500 meters to depths of less than 100 meters.  More birds are showing up and we are getting about 9 hours of darkness each day.  This morning at about 4 AM, the watch observed the Aurora Borealis and stars!!!  I am so jealous.

FOR MY STUDENTS: Why do you think we have more hours of darkness now? 

As we head home to Barrow, the science party is busily completing their “Cruise Reports” and making sure that their data is stored safely for the trip home.  Much has been accomplished on this trip:

  • 132 XBT deployments (measures temperature, depth)
  • 8 CTD deployments (measures conductivity, temperature, depth)
  • 5 Dredge operations and hundreds of pounds of rock samples collected and catalogued
  •  1 Seaglider deployed and retrieved
  • 2 HARP instruments retrieved and 3 deployed
  • 3 Ice buoys deployed
  • 8 Sonobuoys deployed
  • 9585.0 lineal kilometers of sea floor mapped
  • 1 METBUOY retrieved (meteorological buoy)

Coast Guard Marine Science Technicians  

MST3 Marshal Chaidez operates the winch during a dredging operation.

MST3 Marshal Chaidez operates the winch during a dredging operation.

Science parties come and go on the Healy, each doing a different type of research.  A constant for all the scientific cruises is the good work done by the Coast Guard MSTs (Marine Science Technicians). Running the winch, taking daily XBT and weather measurements, working the dredge, and helping to deploy buoys are just some of the many tasks these technicians do. The scientists could not get their experiments done without the assistance of our team of MSTs.

MST3 Daniel Purse, MST2 Daniel Jarrett, MST3 Marshal Chaidez, MST2 Thomas Kruger and Chief Mark Rieg have done a masterful job of helping the science party accomplish their goals. I asked them to tell me a little about their training for this job. Each MST attends a 10-week training school in Yorktown, VA. Most of their training involves how to clean up oil spills and inspect cargo ships which means they are usually stationed at a port. Being assigned to a ship is not the norm for an MST.  But, because the mission of the Healy is specifically science, a team of MSTs is essential.

MST2 Daniel Jarrett rigging the crane.

MST2 Daniel Jarrett rigging the crane.

Personal Log 

My commute to work is different lately. We have about 9 hours of darkness each day. It gets dark around midnight and stays dark until about 8:30 in the morning.  So, walking the deck to the science lab is a bit of a challenge at 7:45. It will be strange to drive to work in a few days! On September 16th, we will depart the Healy via helicopter if all goes according to plan.  It will be strange to be on land again.

We will be back in Barrow, AK on September 16th. I cannot believe that our expedition is almost over.  I have learned so much from the members of the science party and the crew of the Healy. They have been very gracious and patient while I took their pictures and asked questions. Now comes the task of sharing what I have learned with folks back home.  I know one thing for sure; the Arctic is no longer an abstract idea for me. It is a place of beauty and mystery and a place some people call home.  I hope to convey how important it is that we continue to study this place to learn how it came to be and how it is currently changing.

Jon Pazol and I next to the bowhead whale skull in Barrow. When we return to shore the bowhead hunting season will have started.

Jon Pazol and I next to the bowhead whale skull in Barrow. When we return to shore the bowhead hunting season will have started.

Thanks to the folks at NOAA Teacher at Sea, Captain Sommer, and chief scientists Larry Mayer and Andy Armstrong for allowing me to take part in this cruise.  You can be sure that I will be following Arctic research and the adventures of the Healy for many years to come.

Clare Wagstaff, September 15, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 15, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Partially sunny, with scattered showers and thunder storms
Visibility (nautical miles): 10
Wind Speed (knots): 2
Wave Height (feet): 1
Sea Water Temp (0C): 30.6
Air Temp (0C): 30

Science and Technology Log 

I am starting to get used to the scientific names of the corals, but it is taking a while. I keep wanting to refer to them by their common name which is generally descriptive of their physical appearance, but makes little to no reference to which other coral it is more closely related to Dr. Joshua Voss, one of the scientists on board pointed out that the common names could vary depending on who is identifying them, yet the scientific name remains the same. Hence why the whole team refers to the scientific names when referring to the corals.

So what are corals? 

Parts of a coral (http://oceanservice.noaa.gov/education/kits/ corals/media/supp coral01a.html)

Parts of a coral

Corals are members of the Animal Kingdom and are classified in the Phylum Cnidaria. People often mistake    these creatures for plants, because they are attached to the rock, show little movement, and closely resemble plants. Corals consist of a polyp, which are a cup-shaped body with one opening, which is its mouth and anus.

Zooxanthellae (zoo-zan-thel-ee) are single cell plants (photosynthetic algae) that grow within the polyps’ tissue. It forms a mutalistic symbiotic relationship with the polyp. The algae gets a protected environment and the compounds it requires for photosynthesis, whilst the algae provides the polyp with the materials necessary to produce calcium carbonate, which is the hard “shell” that surrounds the polyp.

So why is this cruise surveying corals? 

Clare Wagstaff, Teacher At Sea, snorkeling

Clare Wagstaff, Teacher At Sea, snorkeling

There has been a decreasing trend in coral coverage over the last decade. One theory is that this is due to anthropogenic stress related to water quality and climate change.  Coral’s require certain environmental factors to be within sensitive boundaries, such as water temperature, salinity, clarity of water, and water movement. Although most species only grow a few centimeters each year, they are the backbone to a massive underwater ecosystem, hence their extreme importance to the success of our oceans. By studying the trends in species distribution, size and disease over various geographic regions, their corrolations can be desricbed in better detail.

Personal Log 

Palythoa spp. observed covering most of the reef at station RK02 and Watercress Alga (Halimeda opuntia). Polythoa is not a coral and in fact competes with coral for space in the reef.

Palythoa spp. observed covering most of the reef at station RK02 and Watercress Alga (Halimeda opuntia). Polythoa is not a coral and in fact competes with coral for space in the reef.

This morning I once again join Team C that composes of Dr. Joshua Voss, Kathy Morrow and Mike Henley to survey three dive sites called RK01, RK02 & RK03. We have now got into a comfortable routine and everyone seems to work well together. Unfortunately, this cannot be said for the boat, NF4! During our last dive on Monday, the boat started to leak oil and is now out of commission for the rest of the cruise. Instead we are on the much smaller and less luxurious, NF2, which also happens to be much slower! However, after the usual dive brief we set out for a day of adventures upon the open sea. The second dive site today proved to be the best for snorkeling and I was able to observe a large variety of plants and animals from on the surface.

“Did You Know?” 

Here I am pointing to the waterspout

Here I am pointing to the waterspout

Waterspouts are simply tornadoes over water. They are common in tropical areas where thunderstorms regularly occur, such as the Florida Keys! Today we saw a prime example of one within a few miles of the NANCY FOSTER.

“New Term/Phrase/Word” 

Anthropogenic – caused or produced by human activities such as industry, agriculture, mining, and construction.

The final survey site, RK03 was very shallow at around 8 ft. The dive team decided to make their observations snorkeling rather than diving. Unfortunately, Kathy was so engrossed in her work that she did not see a moon jellyfish swim right into her face! She put on a very brave front and we quickly returned to the NF2 and back to the NANCY FOSTER. The medial treatment for such a sting is to drench the area in vinegar, which neutralizes the nematocysts that may still be clinging to the skin. Luckily, Kathy made a quick recovery, even if she did smell a little like vinegar for the rest of the day!

Christine Hedge, September 14, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 14, 2009

Dr. Hall standing by the hovercraft before it is inflated

Dr. Hall standing by the hovercraft before it is inflated

Weather Data from the Bridge 
Latitude: 720 46’N
Longitude: 1580 24’W
Temperature: 350F

Science and Technology Log 

Doing science in the Arctic is challenging.  The weather is difficult, the ice is ever changing, and the expense of operating an icebreaker, aircraft, or helicopter is quite high.  So, how else can people get out onto the ice to study the ocean and the geology of the seafloor? One interesting project uses a hovercraft (think air hockey), which skims over the ice on a cushion of air. Using a hovercraft to study the most inaccessible places in the Arctic is not a new idea. But, Dr. John K. Hall, a member of our science party has taken this idea and run with it.   John has a long history of polar exploration under his belt. Including 13.5 months floating around the Arctic on a 90 square kilometer, 60-meter thick ice sheet known as Fletcher’s Ice Island (T-3) during the 1960’s. His latest project has been to purchase and equip a hovercraft to go where icebreakers cannot (areas of VERY thick ice).

Norwegian students parked on the ice doing research. The white tent protects the scientists while they collect data through a drill hole in the ice.

Norwegian students parked on the ice doing research. The white tent protects the scientists while they collect data through a drill hole in the ice.

The hovercraft was completed in 2007.  She is called the R/H Sabvabaa, which is the Inupiaq word for “flows swiftly over it.”  This hovercraft was designed specifically for doing science in Arctic conditions. It is equipped with all the comforts of home and all the latest technology.  From this research platform scientists have access to echosounding and seismic equipment to study the sea floor.  They can also park the Sabvabaa easily on a floe, get out on the ice to drill, photograph, and collect samples from under the ice.  This small 40-foot vessel (it fits in a semi-truck container) has great potential as a way for scientists to collect data in heavy ice conditions.  For more information about the Sabvabaa check out this website.

Classroom on the Ice 

Could you imagine being one of the first people to ride the hovercraft over the pack ice?  Since 2008, 16 lucky Norwegian high-school students have had that honor.  A competition was held as part of the Norwegian International Polar Year (IPY) program.  This competition set out to find Norwegian students ages 14-18 who are interested in careers in polar geophysics. A pair of students and a pair of researchers worked from the Sabavaa for one-week intervals. During their time on the Sabvabaa, the winning students participated in geophysical, geological, and oceanographic studies on drifting ice. They also had 4 encounters with polar bears!  What a great opportunity for these students. If you are interested in the student blogs from these trips (which are written in Norwegian) do a Google search for Sabavaa and have Google translate them.

FOR MY STUDENTS: Remember, not all scientists work in labs wearing white lab coats!  Many researchers lead exciting and adventurous lives. 

Paul Henkart teaching Nikki Kuenzel and Christina Lacerda.

Paul Henkart teaching Nikki Kuenzel and Christina Lacerda.

Personal Log 

As an educator, one of the best parts of this expedition has been to watch the mentoring that goes on. The scientists and professors in the science party have decades of research experience to share. It is not unusual to find one of these veteran Arctic explorers sharing their expertise with graduate students from the University of New Hampshire. Not only do these “mentor scientists” have great technical expertise. They are also really good at explaining complex ideas in a very simple way.   This has been wonderful for me since my background is in biology – so geophysics has been a challenge. The graduate students on board are not only learning science from the masters – they are hearing great adventure stories about past polar adventures before we had helpful technologies such as GPS and multibeam echosounders. Everyone on the Healy is in “learning mode”.  The Coast Guard crew, teachers at sea, scientists, and students are constantly asking questions and sharing expertise.

Christine Hedge, September 13, 2009

NOAA Teacher at Sea
Christine Hedge
Onboard USCGC Healy
August 7 – September 16, 2009 

Mission: U.S.-Canada 2009 Arctic Seafloor Continental Shelf Survey
Location: Chukchi Sea, north of the arctic circle
Date: September 13, 2009

Weather Data from the Bridge 
Latitude: 720 44’N
Longitude: 1560 59’W
Temperature: 350F

A Seasonal Ice buoy with a thermistor chain is deployed from the Healy. This buoy starts in open water and later may

A Seasonal Ice buoy with a thermistor chain is deployed from the Healy. This buoy starts in open water and later may freeze into the ice. This instrument collects ocean and air temperature data, barometric pressure data, and location data.

Science and Technology Log 

Buoys and Moorings And Gliders, Oh My!!! 
Exploring the oceans has a lot in common with exploring space.  NASA can send manned or unmanned missions into space.  Sending manned vehicles into space is more complicated than launching a probe or a telescope. The same is true for exploring the Arctic Ocean.  We can collect data on an icebreaker, manned with Coast Guard and science personnel or use instruments that can send back data remotely.  On this mission, many instruments have been deployed to send back data about the conditions in the Arctic. These instruments continue to do their work after the crew and scientists from the Healy have moved on.  Ice buoys, which float or freeze into ice floes, are one example.  The HARP instruments (High-frequency Acoustic Recording Package), which sit on the sea floor, are another.

A United States Navy team, under the supervision of Navy Commander William Sommer, has launched a very interesting instrument from the Healy called the Seaglider. We have been tracking its movements since it was launched on August 8th. The Seaglider collects information about the salinity, temperature, and optical clarity of the ocean. The Navy is interested in how sound travels through the oceans and this glider is an important tool for doing just that.

CDR Bill Sommer, AG1 Richard Lehmkuhl, and MST3 Marshal Chaidez deploy a Seaglider from the Healy in the Chukchi Sea. Data from the Seaglider will improve the performance, and aid in the evaluation, of the effectiveness of the ocean models in the Arctic. Photo courtesy of PA3 Patrick Kelley, USCG.

CDR Bill Sommer, AG1 Richard Lehmkuhl, and MST3 Marshal Chaidez deploy a Seaglider from the Healy in the Chukchi Sea. Data from the Seaglider will improve the performance, and aid in the evaluation, of the effectiveness of the ocean models in the Arctic. Photo courtesy of PA3 Patrick Kelley, USCG.

What makes the Seaglider unique is that instead of just drifting, it can be driven.  In fact, this instrument is directed via satellite from a computer lab in Mississippi!  The glider moves up and down in the water column and like an air glider it uses this up and down motion to move forward. It has a GPS and a radio so that it can communicate its location. The Seaglider deployed from the Healy in August was picked up today.

Final check of the Seaglider before it was launched.

Final check of the Seaglider before it was
launched.

The green dots indicate the path of the Navy Seaglider as it collected data in the Chukchi Sea.

The green dots indicate the path of the Navy Seaglider as it collected data in the Chukchi Sea.

Coast Guard and Navy personnel work together to retrieve the Seaglider on September 13.

Coast Guard and Navy personnel work together to retrieve the Seaglider on September 13.

Clare Wagstaff, September 13, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 13, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny with scattered showers and thunderstorms
Visibility (nautical miles): 10
Wind Speed (knots): 14
Wave Height (feet): 1-2
Sea Water Temp (0C): 29.8
Air Temp (0C): 32

Science and Technology Log 

Hermit crabs at Fort Jefferson

Hermit crabs at Fort Jefferson

Today the dive plan was to survey some of the deeper sites in the FKNMS (Florida Keys National Marine Sancturay) Tortugas Ecological Reserve, referred to as Sherwood Forest. The dive depth varied between 65 to 80 feet. That meant that snorkeling would probably result in me observing very little. My slightly sunburned forehead, needing to get some of my logs composed in more detail, as well as the diving situation, gave me a prime opportunity to stay on the boat for the majority of the day.

So this morning after the dive brief I waved off the team and set out to do some exploring of the ship and do a little more research about what happens before the team actually gets into the water.

The survey teams are planning on making two separate dives on each site to complete the whole of the radial arc transect. The amount of gas each diver requires, depends on a number of variables, including depth, level of physical fitness and amount of activity undertaken in the water. Scuba diving is also limited by a number of factors such as available air, blood nitrogen level, etc.

What is scuba diving? 

Scuba is an acronym for Self Contained Underwater Breathing Apparatus. The first commercially successful scuba was developed by Emile Gagnan and Jacques-Yves Cousteau, in 1943 and is now widely used around the world as a recreational sport. Sports divers are normally restricted to 130ft, where as technical deep divers can reach depths much greater. During this trip the maximum dive site depth will not exceed 80ft.

Dive brief – Safety First! 

The Wet Lab on the Nancy Foster

The Wet Lab on the Nancy Foster

Before each dive the cruise’s Dive Master, Sarah Fangman gives the scuba divers a brief run through of the priorities for today’s diving. As usual, this means safety is the top priority and Sarah highlights important factors, such as watching your air consumption and making sure that each diver returns with at least 500psi, that each team goes over their dive plan (how deep, for how long, what they will do during the dive), check that all equipment is functioning correctly, and that all the dive data is being recorded. This means prior to the divers getting into the water, their tanks air pressure, Nitrox percentage, name, and time of entry into the water must be logged. Once the dive has ended and the divers are back on the boat, they must once again record their tank air pressure (must be more than 500psi), their bottom depth and sometimes time in the water. Even after the dive is done, the whole team is responsible for each other and has to monitor everyone’s condition for at least the next 30 minutes.

What do the divers breath? 

The divers are breathing Nitrox. Regular scuba has a very specific ratio of nitrogen to oxygen; it tries to mimic the air found on the surface of the Earth as closely as possible. Nitrox diving, on the other hand, tweaks this mixture to maximize bottom time (i.e., the diver’s time spent underwater) and minimize surface intervals (i.e., the time the diver must stay on the surface before diving back in). Before each dive, the individual diver must check his or her own tank for the gases composition and record the oxygen content on their tank. This is because at depths oxygen can actually become toxic.

Science Data Processing 

wagstaff_log3b

A coral species count and bleaching data sheet showing the tally of Montastraea annularis

There are two main areas on the Nancy Foster designated for the science research, the wet lab and the dry lab. The dry lab is where the computers for data entry and processing are located. It is here that the survey team meetings happen every morning and afternoon to discuss which dives site will be surveyed and how the data entry process is going.

Lauri MacLaughlin is the ship’s resident expert on each dive site and gives a detailed map of each site. This includes compass bearings relating to certain underwater features and the GPS coordinates. The wet lab, is just as the name suggests, wet! This is where any experiments can be carried out and also where the scuba tanks are refilled with Nitrox.

Data entry 

wagstaff_log3cEach of the scientists has to transcribe all the data they observed at each dive site. Underwater, the two scientists that are recording data each have a clipboard with the relevant waterproof data forms attached. These forms have a standardised and detailed table, which they then write on using a regular pencil. The data collected on three sheets refers to coral disease, coral bleaching count (for quantity of each species and percentage of bleaching) and coral measurements.

Tally charts and acronyms are a plenty, making it difficult for me to understand the hand-jotted notes of the various scientist. Each of them describes the species of coral by its scientific name. However, my limited knowledge is based upon the common name for most species. I did help Lauri input some of her data today. The tally charts of the number of observed specie are simple enough that I can read and enter the data, along with the size of the first ten individuals of each species. However, after that, the real experts need to get involved! This data must be entered after each dive into a spreadsheet database so that all the information can be collaborated and processed by the end of the cruise.

Personal Log 

Geoff Cook entering data from his dive onto a central database in the dry lab.

Geoff Cook entering data from his dive onto a central database in the dry lab.

This evening our group had the chance to go for a night snorkel around the sea wall of Fort Jefferson. This use to be a fort during the civil war and in more recent years it has been a prison. The objective of the snorkel trip was to hopefully witness the coral spawn. Scientists’ observations indicate a strong connection between the coral spawn and seasonal lunar cycles. Though the polyp release cannot be guaranteed to happen on an exact date, approximately three to ten days after the full moon in late August, early September, the majority of corals in the Caribbean spawn in the late evening. Spawning is when the male and female polyps release their gametes (sperm and eggs). This synchronizing means that there is a greater chance of fertilization. Clues that spawning may take place are swelling that appears at the polyps mouth/anus, where the gametes are released from, as well as brittle stars and fire worms gathering in readiness for a feeding frenzy!

Clare Wagstaff barely visible behind two Caribbean Reef Squid. Photo courtesy of Mike Henley.

Clare Wagstaff barely visible behind two Caribbean Reef Squid. Photo courtesy of Mike Henley.

Unfortunately, we did not witness the spawning but we did observe a green moray eel, two Caribbean reef squid, a conch, a scorpion fish, and multiple sea urchins, sea stars, and moon jellyfish. Perhaps one of the most unusual sights of the night was witnessed on our way back to the dock after our snorkel. We observed a tree trunk covered in hundreds of hermit crabs, varying in size.  They made a horrible crunching sound as they climbed over each other on their way up the tree and as we accidentally stepped on them in the dark!

One of my lasting memories of the evening will be the night sky. It was the most brilliant picture I have ever seen. With no light pollution for miles and a clear evening sky, it made the most perfect picture. It looked like there wasn’t a clear inch in the sky for any more stars to fit in it. It was just beautiful and a great way to end the day!