Alex Eilers, August 31, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 31, 2008

Alex putting glow sticks on branch line.

Alex putting glow sticks on branch line.

August 29 – Longline fishing for swordfish

Today’s major objective was to catch swordfish for tagging using a fishing method called longlining. Longline fishing uses one main line held just below the water’s surface with several buoys.  Attached to the main line are several smaller branch lines with hooks and bait.  The branch lines extent 42 feet or 7 fathoms into the ocean.

Preparing to launch the longline is quite a sight and it requires a number of individuals, each working in unison. There is a person who baits the hooks on the branch line then hooks it to the main line, another person attaches a glow stick (used to attract the swordfish), and a third person attaches the buoy to the main line.  There are also a number of people working behind the scenes sorting lines and working the winch. After all the branch lines are hooked to the main line, the line soaks in the water for several hours – in hopes that a swordfish will take the bait.

Crew setting gear

Crew setting gear

Reeling in the line took about two hours because the line was 4 miles long and held over 200 hooks.  I thought this was an extremely long line but was told that commercial fishing vessels use between 40 to 60 miles of line with thousands of branch lines. Wow!

Unfortunately, we were unable to tag any swordfish but hope to try again on Labor Day. What an incredible experience today has been.

August 30 and 31 – Rock’n and Roll’n

Whoa, Whoa… is about all you heard me say over the past two days.  We’re going through a rough patch today – high winds and swells up to 5 or 7 meters – between 15 and 20 feet.  We sure were glad the scientific equipment was secured during the first few days – because everything that wasn’t tied down went flying – including chairs, drinks and the crew.  The closest thing I could come to describing this experience would be like riding a non-stop Disney ride.  The inclinometer reading (an instrument that is use to detect the degrees a boat rolls) recorded a maximum tilt of about 36 degrees.   To put thing into perspective, I am now typing with one hand and holding the table with the other.  Unfortunately, many of the science projects were cancelled due to high seas.  We hope to be in the calmer waters of Monterey Bay area tomorrow.

Alex Eilers, August 27, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 27, 2008

Everyone! Here’s the latest from my adventures at sea.

Today the crew was busy testing equipment.  We tested both long-line fishing gear and box trawl netting!  Both

tests were successful and we are looking forward to the real thing – more to come on this subject later. The picture below shows Scott Benson holding the box trawl net “catch.”  Although it looks like group of eggs, they are actually members of the jellyfish family know as ctenophores or “comb jellies.”

Jellies

Jellies

We had a successful observation session today.  I’ll introduce you to some of the “stars” of the day.

Common Dolphins were everywhere.  We saw over 100 riding the waves on the bow of our boat.  They move with great speed – especially when you are trying to take a picture of them.

Common dolphins

Common dolphins

Risso’s Dolphins – This is an unusual looking dolphin with a rounded head – unlike the traditional dolphin we all know. These creatures have numerous scratches and scars over their body from other Risso’s and from the squid they eat.  They are gray when born and gradually become white with age.

Fin Whales – OK – I must admit – We didn’t actually see the Fin Whale but we did see the whale spouts from the three that we spotted.

Jelly Fish – We were excited to see so many Jellies – a favorite food of the Leatherback.  Most looked like “Moon Jellies” but without catching them we cannot be sure of the type since there are many species.

To Do… Research one or more of the animals highlighted above.

Alex Eilers, August 24, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

In the picture, the “Big Eyes” are covered and on the left side of the picture, the antennas are directly above me.

In the picture, the “Big Eyes” are covered and on the left side of the picture, the antennas are directly above me.

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 24, 2008

Today we were in assembly mode and I spent the majority of my time on the flying bridge (top deck). With the help of several scientists, we cleaned and replaced the viewing seats, installed the “Big Eyes” – (the largest pair of binoculars I’ve ever seen), and assembled and tested the Turtle tracking antennas.  The “Big Eyes” will be used to help track and identify marine mammals, leatherbacks and birds near the boat.  This is especially important prior to and during the times scientists have equipment in the water so we don’t catch or injure these animals. The receiver will be used to track the Leatherback Sea Turtles who have a transmitter attached to their carapace. The good news is we are receiving reports that there is a Leatherback approximately 110 miles off the coast of Monterey – the bad news is he may not be there when we arrive.

Safety training During our first true “day at sea” we had two practice safety drills; a fire in the galley (kitchen) and an abandon ship.  The crew handled both drills quickly and efficiently.  The abandon ship drill was exciting. When the bell rang, everyone was responsible for his or her own billet (job duty). My billet required me to grab my life preserver and survival suit and muster to the O1 deck (report to an area for role call).

Survival suit

Survival suit

Training to be a VO – visual observer We started the day on the flying bridge. Karin Forney, marine mammal researcher, trained us on how to be a marine animal visual observer or VO for short.  During the first observing session, we only saw a few animals – sea lions and various birds.

I’m getting fairly good at spotting kelp beds (seaweed), however, the scientists are not interested in them, so I still need more practice identifying marine mammals.

By the afternoon, we started to see more marine life.  A large pod of common dolphins swam playfully near the ship.  This was a beautiful sight to see but not ideal for net testing. We waited 30 minutes without a mammal sighting then successfully tested the nets. As the scientists were pulling the nets aboard we spotted another smaller pod of common dolphins, some California sea lions and a small mola mola (sun fish).  All in all it was a good day!

Watching for kelp

Watching for kelp

Patricia Donahue, August 23, 2008

NOAA Teacher at Sea
Patricia Donahue
Onboard NOAA Ship Rainier 
August 19-23, 2008

Mission: Hydrographic Survey of Bear Cove, AK
Geographical Area: Kachemak Bay, Alaska, 59.43.7 N, 151.02.9 W
Date
: August 23, 2008

 NOAA Ship Fairweather

NOAA Ship Fairweather

Weather on the Bridge at 14:00 
Overcast (8/8)
Visibility 11 to 27 nautical miles
Winds light and variable
Seas calm at 10˚C
Air pressure 1000.5 millibars and rising slightly
Dry Bulb 14.4˚C, Wet Bulb 11.1˚C

Science and Technology Log 

Getting a ship ready for inspection or for showing it off to the public is a busy process. All day seamen and women have been scrubbing – sometimes literally on their hands and knees – decorating, and setting up displays to make Rainier look her best. Their pride in the ship and in their work shows. The Fairweather, pictured above, is also here. She pulled in this morning along the same dock. It was amazing to watch her move toward the dock sideways! Once docked stern to stern, both ships were decorated with bunting made from signal flags. There is a flag for each letter of the alphabet and for numbers as well. A ship can identify itself by showing the signal flags for its call sign. Rainier’s call sign is WTEF. You can use this chart to draw Rainier’s call sign.

International code signals for ships

International code signals for ships

Every member of the crew was on hand for the open house.The Fairweather crew signed people in and checked their identification. Altogether, nearly 90 people toured the ships during the 2 hour open house. There were similar stations on each ship’s tour. As visitors arrived, they were taken in small groups to the bridge. After learning about the navigation and communication systems, they moved on to the Plot Room where many displays had been set up, including some marvelous computer graphics. The next tour stop was the fantail to see the small boats, then on to the diving lockers. Everyone had a chance to see a state room and finally the ward room where many brochures, books, and pamphlets were available for taking. NOAA’s Teacher At Sea book was a very popular choice! One of the visitors was a home school teacher from Texas. I think she took 2 copies! Even seasoned seamen on the tour each took a copy of the book.  

Rainier crewmembers get ready for the tours.

Rainier crewmembers get ready for the tours.

By taking the tour, I learned a few more things about the Rainier. The bridge is equipped with an infrared camera for night vision. When running at night, all of the portholes must be closed so that crewmembers on the bridge can see into the dark without light interference. Only a few “running lights” are kept on so that other vessels can see the Rainier. Another thing I learned has to do with the windows on the bridge. All but one has ordinary windshield wipers but one pane is also equipped with a clear view screen that provides a field of vision in case of heavy rain, seas, or snow. The center of the window spins very quickly like a centrifuge to dislodge water, snow, or ice. This allows the helmsman to see outside into a storm. Our guide told us that if this feature is in use, you know the weather is very bad! Lastly, I learned that the surveyors sometimes take samples of the ocean floor. They collect a small amount of material from the sea floor surface only. I was reminded of another ship called the JOIDES Resolution that drills deep into the Earth’s crust and brings up complete cores of subsurface sediment and rock. For more information about his ship, visit here.

Computer graphics like this were displayed in the the ship.

Computer graphics like this were displayed in the the ship.

A crewmember of the Rainier gives children a tour of the ship.

A crewmember of the Rainier gives children a tour of the ship.

Personal Log 

Visitors began the tour by walking up the ship’s gangway.

Visitors began the tour by walking up the ship’s gangway.

There are two aspects of life aboard the Rainier that I was impressed by. One is the conscientiousness of the crew regarding recycling. Labeled containers are available to separate the various waste streams and everyone complies. When in port, the separated recyclables are put ashore for pick up. While this may seem a small matter, it accentuates NOAA’s commitment to stewardship of the natural environment. The other item I noticed was the frequent hand washing or use of antibacterial hand cleaners. With so many people in such close quarters, stopping the spread of diseases is important. Every crewmember did their part to keep their germs to themselves. I wish my students would do the same!

The Seafarer’s Memorial at Homer Spit

The Seafarer’s Memorial at Homer Spit

I had a little extra time today so I took a walk along the famous Homer Spit and stopped at the Seafarer’s Memorial. People had brought shells, driftwood and kelp to decorate the statue. The stones of the floor were engraved with the names of sailors lost at sea. People had taped flowers to certain stones. The place had a quiet dignity.

Animals Seen Today 

There were fewer gulls at the dock than when the ship was last here. The nesting season is nearly over. Almost all of the young have fledged. The few that remain are grown, and able but unwilling to fly. An exasperated parent stood over each of these few, guarding but refusing to feed their recalcitrant offspring. Having a son that age, I understood how these birds felt!

Making Connections 

Representatives of the Kasitsna Bay Laboratory of the Center for Coastal Fisheries and Habitat Research were on hand for the open house. They and other interested parties, such as the University of Alaska and the state’s fisheries and wildlife management authorities, are very excited about NOAA’s survey work. The data NOAA collects will be beneficial for identifying crab habitat and managing these and other resources to ensure their sustainability.

At the end of the tour, visitors were able to take home books, brochures, and pamphlets.

At the end of the tour, visitors were able to take home books, brochures, and pamphlets.

A NOAA employee from Kasitsna Bay Laboratory

A NOAA employee from Kasitsna Bay Laboratory

Rebecca Bell, August 23, 2008

NOAA Teacher at Sea
Rebecca Bell
Onboard NOAA Ship Delaware II 
August 14-28, 2008

Mission: Ecosystems Monitoring Survey
Geographical Area: North Atlantic
Date: August 23, 2008

Alison, Shrinky Cup Project Director, with the cups before being sent beneath the water.

Alison, Shrinky Cup Project Director, with the cups before being sent under.

Weather Data from the Bridge 
Time: 1919(GMT)
Latitude: 4219.5N Longitude: 6812.5 W
Air Temp 0C: 20.7
Sea Water Temp 0C: 19.6

Science and Technology Log 

The Shrinky Cup Caper 

A trip to sea is not complete without the classic experiment on ocean depth and pressure— Styrofoam cup shrinking. Styrofoam cups are decorated with markers, and then lowered in a bag attached to the cable during a vertical cast. In our experiments, pressure is measured in decibars (dbar). This means that 1 dbar equals about 1 meter of depth. So 100 dbars = 100 meters; 1000 dbars =1000 meters. For every 10m (33ft) of water depth, the pressure increases by about 15 pounds per square inch (psi). At depth, pressure from the overlying ocean water becomes very high, but water is only slightly compressible. At a depth of 4,000 meters, water decreases in volume only by 1.8 percent. Although the high pressure at depth has only a slight effect on the water, it has a much greater effect on easily compressible materials such as Styrofoam.

Attaching the bag of cups to cable Over they go!

Attaching the cups

Styrofoam has air in it. As the cups go down, pressure forces out the air. See the results of the experiment for yourself. The depth of the cast was 200 meters or about 600 feet. (You can now calculate the total lbs of pressure on the cups). Addendum: Alison discovered that putting one of the shrunken cups down a second time resulted in an even smaller cup. The cups were sent to 200 meters again. Below right is a photo of the result of reshrinking the cup. Apparently, time has something to do with the final size as well. Resources: NOAA Ocean Explorer Web site – Explorations; Submarine Ring of Fire. AMNH Explore the Deep Oceans Lessons.

Over they go!

Over they go!

Personal Log 

There is a noticeable difference in the amount of plankton we pull in at different depths and temperatures. I can fairly well predict what we will net based on the depth and temperature at a sample site. I’ve also noticed that the presence of sea birds means to start looking for whales and dolphins. I assume that where there is a lot of plankton (food) there are more fish and other lunch menu items for birds and dolphins. A high population of plankton means we are more likely to see more kinds of larger animals.

Animals Seen Today 

  • Salps
  • Krill
  • Amphipods
  • Copepods
  • Ctenophores
  • Chaetognaths (arrow worms)
  • Fish larvae
  • Atlantic White-sided Dolphins
  • Terns
  • Minke whales
  • Pilot whales
  • Mola mola (4)
The results of what happened to the cups at a depth of 200 meters. The white cups are the original size.

The results of what happened to the cups at a depth of 200 meters. The white cups are the original size.

Left, a cup shrunk 2 times; center 1 time; and right, the original size

Left, a cup shrunk 2 times; center 1 time; and right,
the original size

Patricia Donahue, August 22, 2008

NOAA Teacher at Sea
Patricia Donahue
Onboard NOAA Ship Rainier 
August 19-23, 2008

Mission: Hydrographic Survey of Bear Cove, AK
Geographical Area: Kachemak Bay, Alaska, 59.43.7 N, 151.02.9 W
Date
: August 22, 2008

One of the Rainier’s small boats, also called a launch

One of the Rainier’s small boats, also called a launch

Science and Technology Log 

Much of today had to do with technology. The small boat I went out on, pictured to the right, was filled with computer equipment. Each day at the survey technology department meetings, I’ve listened but not entirely understood the reports of computer issues on the small boats.  This morning I witnessed one such incident. Something didn’t work. Fortunately, there was a work-around and the data collection proceeded smoothly.

I was reminded of the early 18th century efforts to determine longitude. The problem was so pressing that kings of various countries offered rewards for the development of a clock that could keep time at sea. In 1772, James Cook, for whom Cook Inlet in Alaska is named, sailed with the first marine chronometer. The chronometer was a clock that kept accurate time for the home port. On board Cook’s ship, Resolution, there was another clock that kept local time.

Sonar equipment is lowered into the water.

Sonar equipment is lowered into the water.

Since the Earth turns 15 degrees of longitude each hour, by using the difference between the two clocks, seamen would know how far east or west they had traveled. They already knew how to determine latitude with an instrument called a sextant so by using the marine chronometer they could actually plot their coordinates. Now, of course, we take GPS for granted. Many people even have GPS in their cars. These devices and the hand held ones I use with my students at school are accurate to within 4 to 10 meters. Well, the boat I was on today has DGPS, which is even better. It is accurate to within 5 centimeters! With this high-tech equipment, NOAA is able to take very accurate measurements and make very accurate maps.

This graph depicts the velocity of sound through water.

This graph depicts the velocity of sound through water.

The boat I was on today used multi-beam sonar to determine the depth of the ocean floor. This is similar in concept to the single beam in that ping return-times are used. The multi-beam uses a lot more pings, sometimes as many as 200 per second. In the picture above, the sonar equipment is being lowered into the ocean. I learned that salinity, temperature and depth (which is another way of saying pressure) determine the electrical conductivity and density of the water. These two factors then determine the sound velocity.  In the graph, depth is on the Y axis and velocity is on the X axis. Notice the bulge in the plotted line. This represents an area nearer the surface where glacial melt water and ocean water are mixing. The velocity of sound through this water is slower than deeper down where it’s mostly salt water.

This graph displays the pitch, roll, and heave of the boat.

This graph displays the pitch, roll, and heave of the boat.

Measurements of salinity, temperature, electrical conductivity, depth and density were taken 27 times today. This data will be used to adjust the sound velocity to get the most accurate picture of the ocean bottom. The movement of the boat also has an effect on the sonar equipment. NOAA is using the moving vessel profiler or MVP to eliminate the interference caused by the boat’s movement. A boat has a pitch, roll and heave. The computer screen to the left shows graphs of these three types of movement. What do you think was happening on the boat at about halfway across the graph? Remember, the boat is “mowing the lawn” as it collects data. Lastly, the tides also affect the data. Upon return to Rainier, the data is processed and also corrected for the effect of the tides.

TAS Donahue gets a chance to drive the launch.

TAS Donahue gets a chance to drive the launch.

Personal Log 

Several crewmembers have tried fishing from the boat and we’ve seen many small boats with fishermen aboard but no one has caught anything. Using the binoculars aboard the small boat today I watched someone land a fish. I think it was a halibut, which makes sense since we’re in Halibut Cove. The most exciting part of the day was driving the small boat. Data was not collected from a small piece of sea bottom so the boat had to make one last pass over it with the sonar equipment. I’ve driven many different vehicles, even a motorcycle, but a boat is different. I couldn’t make it stay straight!

The scariest thing that happened today didn’t happen to us at all. The United States Coast Guard broadcast a message all afternoon over the marine radio. The message would also start with “pan, pan, pan,” which is the appropriate way to begin a distress call. Most of us have heard of “may day” calls. Those are used when there is immediate danger. A “pan” call is more similar to a warning. A boat carrying two adults and one child had not returned as expected and was missing. The Coast Guard was asking all other boaters to keep an eye out for them. I hope they’ve been found and that everyone is okay.

Animals Seen Today 

A raft of otters, Common Murres, Marbled Murrelets, and Barrow’s Goldeneye

Vocabulary of the Day 

The coxswain is the person who drives the boat.

Challenge Yourself What is 5 cm in inches? What types of movements are pitch, roll and heave?

 

Rebecca Bell, August 22, 2008

NOAA Teacher at Sea
Rebecca Bell
Onboard NOAA Ship Delaware II 
August 14-28, 2008

Mission: Ecosystems Monitoring Survey
Geographical Area: North Atlantic
Date: August 22, 2008

Weather Data from the Bridge 
Latitude: 4224.2 N Longitude: 6659.1 W
Sea Surface Temperature: 21.2 C
Depth: 202m

Becky proudly displays her drifter buoy before its deployment!

Becky proudly displays her drifter buoy before its deployment!

Science and Technology Log 

It’s a buoy! Today has been busy—a vertical cast, baby bongos and the big bongos. But let me tell you about the other things. First of all, Alison and I deployed my very own buoy. NOAA has an Adopt-A-Drifter (buoy) program. Jerry Prezioso, our Chief Scientist, thoughtfully signed me up for it before we sailed. We deployed it today at George’s Bank, the deepest station we will reach.

The deployment consisted of picking up the basketball-sized buoy and throwing it over the side. There is a transmitter in the black float which will allow us to track the buoy’s motion for years. NOAA uses these buoys to assemble weather reports, monitor climate changes, etc. The buoy consists of the round ball with the transmitter and a “drogue” a long “tube” of cloth that fills with water. The purpose of the tube is to make sure it is the ocean current that moves the buoy, not wind.

With a little help, Becky gets ready to throw her drifter into the ocean

With a little help, Becky gets ready to throw her drifter into the ocean

There is a diagram on the Adopt-A-Drifter site. The ball and drogue (sounds like an English pub) are attached to a metal ring which anchors the drogue and the ball. Here I am with the MSDE-decorated buoy. You can barely see the metal ring. The drogue is the green thing, folded up. You throw the whole thing overboard. The paper and tape dissolve and the drogue unfurls. It has to be kept tied up so you don’t go overboard with the drifter.  NOAA’s Office of Climate Observation sponsors the “Adopt-A- Drifter” program.  According to the Web site: “The “Adopt-A- Drifter” program (allows you to access) information about drifting buoys (drifters) that move with the ocean currents around the globe. The drifter floats in the ocean water and is powered by batteries located in the dome. The drifter data that are collected, including location with a GPS, are sent to a satellite and then to a land station where everyone can access the data.

And off it goes on its long journey

And off it goes on its long journey

Drifters are continually being deployed from ships around the world. They last for a number of years unless they collide with something like an island in the middle of the ocean or a continent. Each drifter receives aWMO ID # (World Meteorological Organization Identification Number) so the data can be archived. The purpose of the drifters is to gather the information necessary for countries to: 1) forecast and assess climate variability and change, and 2) effectively plan for and manage response to climate change.”

This map indicates where the drifty buoy was deployed: where the Labrador Current, the Gulf Stream, and the North Atlantic current converge

This map indicates where the drifty buoy was deployed: where the Labrador Current, the Gulf Stream, and the North Atlantic current converge

We will release it in George’s Basin at 4224.2 N latitude; 6659.1 W longitude. This is an interesting area because of the way currents converge near this site.  Above is a map of the area.  Below it is a diagram showing the major currents.

A map showing the area where the drifter buoy was deployed from the Delaware II

A map showing the area where the drifter buoy was deployed from the Delaware II

As you can see, the buoy was deployed where the Labrador Current, the Gulf Stream and the North Atlantic Current encounter each other. There is a chance that the buoy will travel into the Gulf Stream or through the Northeast Channel into the North Atlantic Current. It might also just stay within the basin, caught in the large gyre within the Basin. You can get on-line and track the buoy to see what happens to it.

More from the Web site:

“The Adopt-A- Drifter program provides an opportunity for teachers to infuse ocean observing system data into their curriculum. An educational sticker from each school is adhered to the drifter before deployment and teachers and their students access sea surface temperature and/or sea surface pressure data from the drifter online. Students plot the coordinates of the drifter on a tracking chart as it moves freely across the ocean and make connections between the data accessed on line and other maps showing ocean currents and winds. Drifter data are used to track major ocean currents and eddies globally, ground truth data from satellites, build models of climate and weather patterns and predict the movement of pollutants if dumped or accidentally spilled into the sea. It is important for teachers and students to understand how the data are measured, how often data are downloaded, and what data are available for schools and the general public to access.”

Source: Modified from Follow the world’s ocean currents with NOAA’s Adopt a Drifter Program 

Stanitski, D.M.; Hammond, J. OCEANS, 2005. Proceedings of MTS/IEEE

Personal Log 

As we move further north, our nets started pulling in krill. I hoped that whales were not far behind. I was not disappointed. Yesterday we encountered dolphins on three separate occasions. One group came very near the ship and I have some good video of them “porpoising” through the waves. We also spotted a whale spout, but I could not see the whale. Later in the day, during our safety drill, I was looking out to sea just as a pilot whale leaped straight into the air. We were able to see that there were a number of these whales feeding in that area. Towards afternoon, we saw a group of Minke whales. In late afternoon, another spout was spotted and we saw a huge tail disappear under the water- probably a humpback whale.

For More Information 

NOAA’s Adopt-A- Drifter Program

NOAA Lesson plans: Ocean Currents

Climate Observation System

Ocean Explorer related lesson: Islands in the Stream- How geologic feature(s) in the structure of the ocean floor may cause an eddy to form in the current above it

NOAA National Environmental, Satellite, Data and Information Service Lesson on the dynamics of the ocean using satellite data; Investigating the Gulf Stream 

NASA Lesson: Global Winds

Climate and Weather Animations Educypedia

NOAA Office of Climate Observation

NOAA Buoy and Drifter Oceanography