Peggy Deichstetter, August 31, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Day 1 August 30


Peggy Deichstetter in her Safety Suit

Peggy Deichstetter in her Safety Suit

Peggy Deichstetter in her safety suit

Peggy Deichstetter in her safety suit

Peggy Deichstetter in her safety suit

Peggy Deichstetter in her safety suit

I woke up at 2:30am. Why didn’t my alarm go off? Now, I have to get dressed with all the stuff I will need for the rest of the day without waking my roommate. I make my way to the galley for some coffee. I pour a cup and take a gulp. This is soooooo bad. This is ever stronger than Mr. D’Agostino’s coffee. I make a new pot and sit down to work on my blog.

We have not had internet access since we departed yesterday and it looks like we won’t have it until noon tomorrow. Oh, life at sea. I also found out that we have another day at sea before we get to our fishing spot.

With a controlled experiment you need to have everything the same. So the spots we will be fishing in will be the same spots that they have done for the last 20 years. Our assignment is the coast of Mexico to Galveston Texas.

In my quest to stay awake for shift I went to bed at noon. At 12:30 the abandon ship drill was sounded, a difficult challenge, wake up, get down from the upper bunk, grab my survival suit and get to muster station. Once checked for roll call I got opportunity to don my survival suit. I have included some great pictures so everyone can have a good laugh.

Caroline Singler, August 31, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy
Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean
Date of Post: 31 August 2010

Back to School – Tuesday 31 August 2010

Midnight in the Arctic Ocean

Midnight in the Arctic Ocean

Location and Weather Data from the Bridge
Date: 31 August 2010 Time of Day: 00:00 (12:00 a.m. local time); 07: UTC
Latitude: 76 º 37.6 ‘ N Longitude: 138 º 31.2 ‘ W
Ship Speed: 8.7 knots Heading: 197 º (SSW)
Air Temperature: 0.19 ºC/ 32.3 ºF
Barometric Pressure: 1009.0 mb
Humidity: 98.8 %
Winds: 6.3 knots W Wind Chill: -5.3 ºC/ 22.4 ºF
Sea Temperature: -0.3 ºC Salinity: 25.32 PSU
Water Depth: 3666.9 m
This is a special message for my new Earth Science students, members of the class of 2014 who are participating in 9th Grade Orientation at Lincoln-Sudbury Regional High School today. I am sorry that I cannot be there with you. I am excited to be your teacher this year – you are important to me, and I look forward to getting to know you when I return. You are in the caring and capable hands of Mrs. Iskandar during my absence. Please be respectful of her and thank her for agreeing to cover my classes for the next week in addition to her normal responsibilities in the Science Department.
As you can see, I am a bit too far north to get there on time. I am currently in the Arctic Ocean on board the U.S. Coast Guard Cutter Healy. The ship icon on the map below shows where I was at midnight on 31 August, which was 3 a.m. in Massachusetts. The red lines on the map show different places that we have been during the last month.
Map of Locations

Map of Locations

We left Dutch Harbor, Alaska (pictured on the right) on Monday 2 August, cruised North through the Bering Sea, and have been in the region of the Arctic known as the Beaufort Sea and the Canada Basin for the last four weeks. I am here participating in an oceanography research expedition as a representative of the NOAA Teacher at Sea program. The research mission is called the Extended Continental Shelf Project. It is an international, multiyear effort between the United States and Canada to map the seafloor and the subsurface in the Arctic Ocean off the coasts of the two countries. Healy (pictured on right) and the Canadian Coast Guard Ship Louis S. St. Laurentare both icebreaker ships designed specifically for scientific expeditions in the polar regions. We made it as far north as 82.5º North and are now moving south again. There is still ice around us now, but not as much as we saw just a few days ago. I have been taking a lot of pictures, and I can’t wait to share them with you. Here are just a few from the last couple of days.

USCGS Cutter Healy

USCGS Cutter Healy

Arctic ocean at night

Arctic ocean at night

Louis at Sunset

Louis at Sunset

A week from now, on Monday, 6 September, we will leave the Healy by helicopter at Barrow, Alaska, the northernmost town in the United States. I expect to be back at school on Friday, 10 September.

Ice

Ice

Breaking Ice

Breaking Ice

Before then, I hope you will take some time to look through my blog and read about some of the things I have seen and done. Then, I would appreciate it if you would send me a short email at this address: caroline.singler@healy.polarscience.net Introduce yourself to me and then either make a comment or ask a question about the Arctic, either based on something you read in my blog or just something you wonder about and would like to know. I will do my best to answer all your questions, and I will give you an extra credit homework grade for your effort.

Enjoy your first week of high school. Don’t get too overwhelmed by the size of the building or the crazy way the class schedule works. You will get used to it in no time. Have fun.

I’m looking forward to hearing from you. I will see you soon.
Miss Singler

Caroline Singler, August 29-31, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean
Date of Post: 31 August 2010

Under the Seafloor

Location and Weather Data from the Bridge
Date: 29 August 2010
Time of Day: 23:15 (11:15 p.m. local time); 06:15 UTC
Latitude: 79º 40.2’ N Longitude: 130º 26.2’ W
Ship Speed: 9.4 knots Heading: 254º (SW)
Air Temperature: 0.6ºC / 33.0ºF
Barometric Pressure: 1008.2 mb Humidity: 92.8 %
Winds: 10.1 knots SSW Wind Chill: -6.3ºC/20.8ºF
Sea Temperature: -1.4ºC Salinity: 27.78 PSU
Water Depth: 3505.8 m
Date: 30 August 2010 Time of Day: 22:00 (10:00 p.m. local time); 05:00 UTC
Latitude: 76º 52.8’ N Longitude: 137º 35.8’ W
Ship Speed: 9.8 knots Heading: 200.9º (SW)
Air Temperature: -0.3ºC
Barometric Pressure: 1008.5 mb Humidity: 99%
Winds: 3.2 knots W
Sea Temperature: -0.5ºC Salinity: 25.8 PSU
Water Depth:3675 mDate: 31 August 2010 Time of Day: 22:25 (10:25 p.m. local time); 05:25 UTC
Latitude: 74º 43.9’ N Longitude: 137º 26.1’ W
Ship Speed: 8.5 knots Heading: 124.8º (SE)
Air Temperature: 1.35ºC / 34.42ºF
Barometric Pressure: 1009.2 mb Humidity: 91.7%
Winds: 10.8 knots NNW Wind Chill: -4.1ºC/25.1ºF
Sea Temperature: -0.5ºC Salinity: 24.33 PSU
Water Depth:3418.4 m
Me on the deck

Me on the deck

Science and Technology Log
Most of the geology on this cruise is geophysics – we employ remote sensing techniques to generate computer images of the seafloor without direct observation. Bathymetric tools like the multibeam sonar system are valuable for oceanographers because it removes the veneer of the ocean water and reveals the shape of the underlying seafloor. It also makes a seafloor map look like a game of Candy Land – except when we are mapping in ice and it looks more like Pick Up Sticks. (One night on watch, my partner and I talked about how after a while you start to think of the seafloor as if it were colored like a rainbow!) Subbottom seismic profiles go even deeper and provide clues about the sediment and rock below the seafloor, and a trained geophysicist can read the signature reflections of different materials and make strong inferences about the subsurface. But for geologists like me, the highlight is sampling — bringing pieces of the seafloor above sea level and directly observing what is there. One reason that I was excited to join this cruise was because I visited the core library at Woods Hole Oceanographic Institution (WHOI) with the Lincoln-Sudbury NOSB team two years ago. The realization of how important such samples are to our understanding of the geological and climatological history of the earth made me eager to be present when a core was taken from the seafloor.

On a bathymetric survey expedition like this, opportunities to stop the ship for an extended period of time are few and far between, but we have had a few windows of opportunity for seafloor sampling. USGS geologists Brian Edwards and Andy Stevenson, armed with bathymetric maps and subbottom profiles from previous surveys, came on the cruise with several potential sampling targets in mind. USGS engineering technicians Jenny White and Pete dal Ferro are ready at a moment’s notice to get to work assisted by Healy’s team of marine science technicians (MSTs).

Coring the seafloor is a lot different from coring on land. The work site is the fantail (stern) of ship in the Arctic Ocean. The target is a point on the seafloor thousands of meters below, guided only by bathymetry and the ship’s navigation system. It takes more than an hour on average to lower the coring equipment on cables to the seafloor, and the water around us is moving with the current, requiring great skill on the part of the Coast Guard crew to hold station – keep the ship in a steady position – for many hours during sampling operations. Add in some wind, cold temperatures, and sometimes ice floes moving around the ship, and it’s easy to see why everyone’s energy level is cranked up a notch when coring operations are the plan of the day.

Coring Equipment

Coring Equipment

So far, we have collected core samples at three locations. A core is a long cylindrical section of seafloor. A core provides a relatively undisturbed sample of a vertical section of seafloor, preserving sediments in their natural layers with internal structures more or less intact. This provides a vertical timeline of deposition on the seafloor – the sediment at the bottom of the core represents the oldest material and the sediment at the top is the youngest. Core samples provide “ground truth” that supports the findings of remote sensing techniques like subbottom profiling. They allow scientists to “read” the history of the area. Geologists analyze the size and composition of sediment and infer depositional processes and possible sediment sources. Oceanographers and climatologists use information from the sediment and the microfossils they may contain to learn how the ocean and atmosphere has changed over time with respect to physical parameters such as water temperature and salinity.

Gravity Core on the deck

Gravity Core on the deck

We have employed two coring techniques on this core – gravity coring and piston coring. A gravity core uses a 2,000 pound weight attached to a 10-foot section of pipe. The pipe is lowered by cables and winches to the seafloor and uses the force of gravity pulling on the weight to drive it into the subsurface. A piston core is a variation on the gravity core that allows for deeper sampling by stringing together multiple sections of pipe. The main core barrel is fitted with a retractable piston in the top of the tube and the same 2,000 pound weight attached. A separate smaller coring apparatus is connected to the top of the piston core barrel by cables and a trigger arm. It hangs beside the piston core barrel, and the entireapparatus is lowered together to the seafloor. The trigger core reaches the bottom first and penetrates the surface sediments. As it falls, it triggers the mechanism at the top of the piston core which freefalls into the sediment. As the piston retracts inside the core barrel, it creates suction inside the barrel that helps pull the sediment into the core barrel and allows for collection of a longer, deeper, and potentially less disturbed sample than a gravity core.

Piston Core Apparatus

Piston Core Apparatus

Attaching Trigger Core

Attaching Trigger Core

The steel pipes used for coring are lined with plastic liners. At the end of the core barrel is a core cutter and a core catcher with metal teeth that fits into the bottom of the core barrel and holds the core in the barrel. When the core is retrieved, grab samples are collected from the core cutter and core catcher. (In the photo on the right, USGS scientists Brian Edwards and Andy Stevenson collect samples from a gravity core.) The outside of the core barrel is scraped to provide a sample that can be examined for microfauna (remains of microscopic organisms) in the sediment. The plastic liner is removed from the core barrel, starting at the bottom of the core, and is cut into sections. In this case, the preferred section length is 150 centimeters because that is the size of the containers in which the core will be stored back in the laboratory. Each section is measured, capped, sealed, and carefully labeled to indicate the top of the section and the core location. (In the photo on the bottom right, USGS scientists Brian Edwards, Andy Stevenson, and Helen Gibbons measure and cut the core sleeve from a piston core.) All information is recorded on a log in the field. The core sections are then stored horizontally in a specially built box that is kept in a refrigerator on the ship. The cores will be transported back to the USGS laboratory in California after the cruise where they will be cut, examined and logged, and then carefully stored for future reference.

Gravity Core Sample

Core Catcher and Cutter

Core Catcher and Cutter

Measuring cutting core

Measuring cutting core

Sometimes a core contains a real surprise. When the piston core from our first locationcame up on deck, we saw a white crystalline substance in the core cutter and catcher. It was gas hydrate. (Photo courtesy of Helen Gibbons, USGS Scientist.) Water molecules under high pressure may start to solidify at temperatures above the normal freezing point of water, crystallizing into a solid form of water with an internal structure that contains larger open spaces than typical ice crystals. Normally, these crystals are very unstable and will continue to cool and form the more stable molecule we know as ice. However, gases present in the environment may become incorporated into the open spaces within the solid water molecules and form a gas hydrate. This is a physical combination – there is no chemical bonding between the two – but it allows the solid to remain stable as long as it remains in a high pressure and low temperature environment. Seafloor sediments on deep continental margins and buried continental sediments in polar regions (i.e. permafrost regions) are common places where these compounds form. They contain abundant organic matter. Over time, biogenic processes (bacterial action) or thermogenic processes (high pressure and temperature) act on the organic material and produce gases, most commonly methane. These may become trapped in the solid water and form gas hydrates.

Core in reefer

Core in reefer

Methane Hydrate

Methane Hydrate

There is a lot of scientific interest in gas hydrates. Some estimates suggest that methane hydrates in permafrost and marine sediments contain more organic carbon than all other known naturally occurring fossil fuel deposits combined. Thus, gas hydrates are considered to be a potential energy source. However, one concern is that hydrates are very unstable at conditions other than those under which they form – the solid water crystals dissociate (i.e. melt) and the gases escape. We saw this with the sample we brought up in the core which began fizzing and off-gassing as soon as it was exposed at the surface. Potential environmental changes that might destabilize naturally occurring hydrates could potentially result in the release of large quantities of methane, a greenhouse gas, to the atmosphere.

We have sampled at four locations to date, shown on the map below. One location was near the top of a small seamount that was first mapped during last year’s expedition. Another sample was from a submarine fan complex. All locations were selected based on some prior data followed by good inferences, a little luck and a lot of skill.

Coring Locations on map

Coring Locations on map

All coring attempts have been successful, with good core recovery each time. It is difficult to predict what we will get when aiming for a target that is so far beneath us. There is only so much that the monitors on the ship that track wire depth and tension can tell us. Given time constraints, there are no “do overs”, so we are happy whenever the core barrel comes up with something inside – it represents more information than we had before we sent it to the bottom. The moments before the barrel is back on deck are full of tense expectation, and one can tell from the look of satisfaction on a scientist’s face when there is a good sample inside. One person’s mud is another person’s treasure! Although I will not get to examine the cores myself, I look forward to hearing what they find when they cut and log the cores back in California. And I have a little bit of ocean floor mud of my own to take home as a souvenir.

Core Sample

Core Sample

Sources
National Energy Technology Laboratory: The National Methane Hydrates R&D Program – All about Hydrates
TDI-Brooks International: Piston Coring for Surface Geochemical Exploration.
USGS Fact Sheet: Gas (Methane) Hydrates – A New Frontier. 1992.
USGS Woods Hole Science Center
Woods Hole Ocean Instruments

Personal Log
This is the last week of the trip. After all the preparation that it took to get here, the time has passed rather quickly – even while I did not have a very clear perception of the passage of time. If I were home, I would have met my classes for the first time yesterday and today. I am sorry to miss school, but I am grateful to be among a relatively small group of people who have the opportunity to experience this part of the world. I am fortunate to have a strong support network of colleagues at Lincoln-Sudbury Regional High School who encouraged me to take advantage of this opportunity and did their best to assuage my feelings of guilt about not being at work. I am fortunate to have such caring friends and colleagues. Thank you, everyone who helped me prepare for the trip and to all those who are keeping things going for me while I am away. You gave me the peace of mind to do this.

The Arctic is a wilderness unlike any other. Whether in the icy desert at latitudes above 80ºN; in thin, patchy ice in the southern and western part of the basin; or in the open waters off the coast of Alaska, each day is something special. I look forward to my first trip out on deck each morning to enjoy the day’s views, and I have not been disappointed. And here in the last week of the trip, as the amount of darkness increases while the latitude decreases, it is actually snowing – enough to make a little snowman on the bow.

Snowman

Snowman

Midnight on the ship

Midnight on the ship

 

Peggy Deichstetter, August 30, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Day 1 August 30

Stateroom

Stateroom

I met my roommate, Claudia, this morning. She was on this cruise last year. Basically we catch, tag and release sharks and any other fish we may catch. I walked into town to pick up things I forgot. Ashley, Guy and I run into town for our last meal on land, a Subway. During the excitement of casting off, I’m informed that I have the night shift. Me, the goddess of the morning. they must be kidding. As we reach open water the sea is really rough.

At dinner I’m advised to go to bed right after dinner and get up at 2:00am to acclimate my body to the night shift. So right after (6:30pm) dinner I head off to bed. My roommate is already there, she is green. She tells me she doesn’t feel well and needs to lie down. There is no way I can fall asleep. I lie there, waiting to fall asleep. Finally, I’ve been lying there so long, it most be time to get up. I look at my watch… its only 9:00. I finally fall asleep.

Stateroom

Stateroom

Peggy Deichstetter, August 29, 2010

NOAA Teacher at Sea: Peggy Deichstetter

Day 1 August 29

I awoke a little after five am. My subconscious had its flashers on. The realization that I had only 30 minutes to make my connection in Houston brought on a panic attack To get from one terminal to another at the Houston airport you need to take a shuttle. Visions of missing the ship danced through my head. Immediately I went to the Continental Airlines website and checked for later flight out of Houston. The last flight was at four pm. I should have no problem catching that one. My panic attack retreated until the next time I would need it.

Well, I’m on my way. I got the “opportunity “to use one of those new x-ray scanners at the airport. I would give it one star out of five. I thought the whole reason for the new machine was that it would be quicker. It’s not, in fact, its slower …a lot slower. Just when the airports got security running smoothly….

I’m on a new plane, which has TVs in the back of every seat. If I don’t give the seatback $6.00, I get to watch commercials for the whole flight. Someone was really thinking outside the box on this one.


My plane got in 20 minutes early so I had no problem catching my plane to Gulfport, Mississippi Next, an hour taxi ride to the ship.

I made it.. I think I’m the first one here. Looking for my cabin I run into Guy. He is a member of the science team, a biologist for NOAA. He helps me find my cabin. Before long two more members of the science team find their way on board, Ashley and Cassidy. The four of us head off to town to find dinner. We arrived back at the ship just in time to see the sunset over the bow of the ship

Natalie Macke, August 28, 2010

NOAA Teacher at Sea: Natalie Macke
NOAA Ship: Oscar Dyson

Mission:  BASIS Survey
Geographical area of cruise: Bering Sea
Date: 8/28/2010
It’s Fish Feeding Time…
Weather Data from the Bridge :
Visibility :  <0.5 nautical miles  (Wondering what a nautical mile is??)
Wind Direction: From the W at 20 knots
Sea wave height: 2-3ft
Swell waves: WSW, 4ft
Sea temp:9.1 oC
Sea level pressure: 1013.0 mb
Air temp: 9.7 oC
Science and Technology Log:

Euphausiid Specimens (zooplankton)

We’re up to station #40 now and everyone certainly has their routine down.  One type of sampling I have yet to cover is the microscopic life; the base of the food web.  A look at the marine fisheries food web quickly reveals that in order to support the commercial fisheries as well as the vast number of marine mammals and ocean birds, there must be an abundance of phytoplankton and zooplankton available in the Bering Sea.  Evidence of this food chain is demonstrated by dissecting the stomach of a salmon.  The sample (in the picture below) revealed that the salmon had recently dined on euphaussids (commonly known as krill).   Before getting into how the zooplankton samples are collected, first let me go back and touch on the base of the food web; phytoplankton.  These samples are collected from the Niskin bottles on the CTD each cast.  The samples are preserved with formalin and will be brought back to the lab for further analysis.  Now, back to the critters..

Dissecting a salmon stomach

At every sampling station on the side deck and immediately after each CTD cast, zooplankton net tows are completed.  There are three different tows being used for the BASIS survey. The first two are vertical tows where nets that are weighted are dropped to the seafloor and then brought back to the surface thus sampling a vertical water column. The pairovet, named from the fact that is was designed as a “pair of vertical egg tows” (designed to collect pelagic egg samples) has a netting mesh size of 150 microns.  The net is simply deployed with a weight on the bottom.  When it reaches the deepest part of the water column it is brought back to the surface collecting its’ sample.  Another similar net with a 168 micron mesh size is named the Juday.  Once either of these nets is brought to the deck, it is washed down and anything caught is captured in the cod end (the name for the PVC bucket at the bottom of the net).

Cod end for Bongo

Deploying the Bongo nets off the starboard side

The last type of tow that is completed for the BASIS survey uses the Bongo nets.  This tow is considered an oblique tow since the nets essentially are lowered to about 5m from the ocean bottom and towed for a certain length of time.  If you remember from the acoustics, in daylight hours the zooplankton migrate to the ocean bottom to hide from their prey.  Since our sampling is done in daylight hours, the deep sampling depth is where we expect to find the highest density of zooplankton sample.  The mesh sizes on the two nets of the Bongo are 335 and 505 microns.  This allows for sampling of zooplankton of different sizes.   The samples are collected on board and then taken back to the lab for analysis.  They are separated by species, counted and weighed.  Biomass and species composition is determined for each sample.  The majority of the zooplankton we have seen this cruise have been euphaussids and copepods of varying types.

Oh where, oh where does the Internet go??

So as August winds down and the school year gears up, my connection to the Internet is becoming more and more important.  Since my Oceanography class is with the Virtual High School, I have to essentially set up my virtual classroom in these upcoming days.  I’ll assume my esteemed colleagues will assist me in unpacking lab equipment back at home at my physical classroom. (Even though I know.. all my orders will mysteriously wind up in other labs, I’m assured they’ll be safely placed away.)

So I tracked down Vince Welton, our Electronic’s Technician for some help understanding why sometimes I can surf, and why sometimes I can’t….

Simple…

Our Internet connection is via the geostationary satellite GE 23 at 172 degrees East. This satellite transmits over most of the Pacific Ocean (see a coverage map).  Since this satellite is positioned on the equator, that means our receiver must look essentially due south for a signal.  When our ship is northbound, the mast and stack of the Oscar Dyson simply gets in the way.  Therefore… no Internet on northbound travels.

The Oscar Dyson also has access to two Iridium satellites for communication as well as the GE 23.   These are the SAT-B which can transmit both data and voice communications and the VSAT which only allows voice transmission.  The ship can access this set of orbiting satellites when the GE 23 is unavailable due to course of travel or weather conditions.

  Personal Log
Jeanette videotaping

Jeanette videotaping

Yesterday, I got permission to stay on the trawl deck during one of our station trawls.  It was fun to be outside down with the net.  Jeanette helped do some taping which I hope to(during a few Internet-less days ahead) compile to a video for my classes.  Of course as fate would have it, our catch for the day (shown below) was not one for the record books or even worth remembering at all..  I guess that’s what the editing process is for hmmm…

Today’s catch

In the Oceanography lab, we have started our primary productivity experiments and chlorophyll analysis so learning these new procedures has been interesting and given me lots of ideas for some research topics for Edelberg’s class.  All in all, I am enjoying watching, learning and doing science here in eastern Bering Sea.  One week left..

Beth Spear, August 28, 2010

NOAA Teacher at Sea: Beth Spear
Aboard NOAA Ship Delaware II

Mission: Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico

Date of Post: August 28, 2010

Attached are photos showing three different shark species including: sandbar, hammerhead, bull. Hammerheads are easily recognized by their distinctive heads and bull sharks have a solid grey skin, but very wide thick bodies. I am pictured below with an Atlantic sharpnose shark which grow to much smaller sizes as adults compared to the sharks species listed above.

Some sharks we caught were too large to be brought on board, so they were tagged from the ship’s deck. Tags need to be inserted almost anywhere on the dorsal surface of the shark except the fin or the gills. For each shark see if you can determine the shark type and gender. Click on the link below to access the video clips. Scroll down for the correct answer when you finish.

 

Video #2

 

Video #3


Answer: Shark / GenderShark #1
Hammerhead, maleShark #2
Bull, ?Shark #3

Sandbar, female