Julia Harvey: The Nearest Land is 3 Miles Down, June 28, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3, 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 28th, 2016

 

Weather Data from the Bridge
(June 28th at 2pm)

Wind Speed: 12 knots

Temperature: 26.2 C

Humidity: 81%

Barometric Pressure: 1016.3 mb

 

Science and Technology Log

The Aloha Station is about 100 miles north of Oahu, Hawaii and was selected because of its closeness to port but distance from land influences (temperature, precipitation etc).  The goal is to select a site that represents the north Pacific, where data can be collected on the interactions between the ocean and the atmosphere. Woods Hole Oceanographic Institution Hawaii Ocean Time Series (WHOTS) has used this site for research since 2004.  You can find real time surface and meteorological data and archived data at the WHOTS website.

We are stationed in the vicinity of mooring 12 and 13 in the Aloha Station to begin intercomparison testing.  CTD (conductivity/temperature/depth) casts are conducted on a regular schedule. This data will help align the data from mooring 12 to mooring 13. If CTDs don’t match up between the two moorings then efforts will be made to determine why.

Mooring 13 is being inspected to make sure sensors are working. Photographs have been taken to determine measurement height of the instruments and where the water line is.

When I was aboard the Oscar Dyson, there were multiple studies going on besides the Walleye Pollock survey. The same is true on the Hi’ialakai. The focus is on the mooring deployment and recovery but there are a professor and graduate student from North Carolina State University who are investigating aerosol fluxes.

Professor Nicholas Meskhidze earned his first Physics degree from Tbilisi State University (Georgia).  He completed his PhD at Georgia Institute of Technology (USA).  He is now an Associate Professor at NC State University Department of Marine Earth and Atmospheric Sciences.

Meskhidze’s study on this cruise is looking at sea spray aerosol abundance in marine boundary layer and quantifying their flux values. Sea spray is formed from breaking waves. Sea spray analysis begins by collecting the aerosol. Using electrical current, particles of a given size (for example 100 nanometer (nm)) are selected for. This size represents the typical size of environmental climatically important particles (70-124 nm). The next step is to remove all other particles typically found in the marine boundary layer, such as ammonium sulfate, black carbon, mineral dust and any organics. The remaining particles are sea salt.

Sea spray analysis

Dr. Nicholas Meskhidze with the sea spray analysis equipment

Meskhidze is looking at the fluxes of the salt aerosols.  Sea salt aerosols are interesting.  If a salt aerosol is placed in 80% humidity, it doubles in size.  But then placed in 90% humidity, it quadruples in size. Due to their unique properties, sea salt aerosols can have considerable effect on atmospheric turbidity and cloud properties.

Aerosols are key components of our climate but little is known about them. Climate models are used to predict future climatic change, but how can one do this without understanding a key component (aerosols)?

little is known

Source: IPCC Fourth Assessment Report, Summary for Policy Makers

 

Personal Log

The galley (ship’s kitchen) is a happening place three times a day.  The stewards are responsible for feeding 30-40 people.

Chief Steward Gary Allen is permanently assigned to the Hi’ialakai. He has worked for NOAA for 42 years and he has stories to tell. He grew up in Tallahassee, Florida and his early work was at his father’s BBQ stand. He attended Southern University on a football scholarship and majored in food nutrition. After an injury, he finished school at Florida A & M. He worked for a few years in the hotel food industry, working his way up to executive chef. Eventually he was offered the sous chef job at Brennan’s in New Orleans. He turned it down to go to sea.

Chief Steward Allen Gary

Chief Steward Allen Gary

In 1971, he sailed for the first time with NOAA. The chief steward was a very good mentor and Gary decided to make cooking at sea his career. He took a little hiatus but was back with NOAA in 1975, where he would spend 18 years aboard the Discoverer and would become chief steward in 1984. He would sail on several other ships before finding his way to the Hi’ialakai in 2004.

In the 42 years at sea, Gary has seen many changes. Early in his career, he would only be able to call home from ports perhaps every 30 days. Now communication allows us to stay in contact more. He is married to his wife of 43 years and they raised 3 daughters in Seattle.

I asked him what he enjoys the most about being at sea. He has loved seeing new places that others don’t get to see. He has been everywhere, the arctic to Antarctica. He enjoys the serenity of being at sea. He loves cooking for all the great people he meets.

I met Ava Speights aboard the Oscar Dyson in 2013 when she was the chief steward and I was participating in the walleye pollock survey as a Teacher at Sea. She has been with NOAA for 10 years.

Ava Speights (on the right) and me

Ava Speights (on the right) and me

She and a friend decided to become seamen. Ava began working in a shipyard painting ships. In 2007, she became a GVA (general vessel assistant) and was asked to sail to the Bahamas for 2 weeks as the cook. This shifted her career pathway and through NOAA cooking classes and on the job training, she has worked her way up to chief steward.

She is not assigned to a specific ship. She augments, meaning she travels between ships as needed. She works 6 months of the year, which allows her to spend time with her 2 daughters, 1 son, 2 stepdaughters and 4 grandchildren. Her husband is an engineer with NOAA. Her niece is an AB (able bodied seaman) on deck. Her son is a chief cook for Seafarer’s.  And her daughter who just graduated high school will be attending Seafarer’s International Union to become a baker.  Sailing must run in her family.

She loves to cook and understands that food comforts people. She likes providing that comfort.  She has also enjoyed traveling the world from Africa to Belgium.

2nd Cook Nick Anderson

2nd Cook Nick Anderson

Nick is 2nd cook and this is his first cruise with NOAA. He attended cooking school in California and cooked for the Coast Guard for 6 years where he had on the job training. In 2014, he studied at the Culinary Institute of America and from there arrived on the Hi’ialakai. He also is an augmenter, so he travels from ship to ship as Ava does.

 

 

 

Did You Know?

The Hi’ialakai positioned mooring 13 in an area with a 6 mile radius known as the Aloha Station. Check out all of the research that takes place here at Station Aloha. There is a cabled observatory 4800 meters below the ocean surface. A hydrophone picks up on sounds and produces a seismograph. Check the results for the night the anchor was dropped.

Seismograph

Seismograph during Mooring Deployment

Click here to hear whales who pass through this area in February.

Pacific Sunset

Pacific Sunset

Denise Harrington: Getting Ready for an Adventure! March 28, 2014

NOAA Teacher at Sea
Denise Harrington

Almost Aboard NOAA Ship Rainier
April 6 – April 18, 2014

Mission: Hydrographic Survey
Geographical area of cruise: North Kodiak Island
Date: March 28, 2014

My name is Denise Harrington, and I am a second grade teacher at South Prairie Elementary School in Tillamook, Oregon. Our school sits at the base of the coastal mountain range in Oregon, with Coon Creek rup1000004nning past our playground toward the Pacific Ocean. South Prairie School boasts 360 entertaining, amazing second and third grade students and a great cadre of teachers who find ways to integrate science across the curriculum. We have a science, technology, engineering and math (STEM) grant that allowed me to meet Teacher at Sea alumni, Katie Sard, who spoke about her adventures aboard NOAA Ship Rainier.  I dreamed about doing something similar, applied, and got accepted into the program and am even on the same ship she was!

In Tillamook, we can’t help but notice how the tidal influence, flooding and erosion affect our land and waters.  Sometimes we can’t get to school because of flood days. The mountainside slips across the road after logging, and the bay fills with silt, making navigation difficult. As a board member for the Tillamook Estuaries Partnership (TEP), I am proud to see scientists at work, collecting data on the changing landscape and water quality.  They work to improve fish passage and riparian enhancement. Working with local scientists and educators, our students have also been able to study their backyard, estuary, bays and oceans.

Now that we have studied the creek by our school, the estuary and Tillamook Bay, with local scientists, it seems to be a logical progression to learn more about our larger community: the west coast of the North American Continent!  I hope the work we have done in our backyard, will prepare students to ask lots of educated questions as I make my journey north on Rainier with scientists from the National Oceanic and Atmospheric Administration (NOAA) north to Alaska.

NOAA has the best and brightest scientists, cutting edge technology and access to the wildest corners of the planet we live on.  And I have got the most amazing assignment: mapping coastal waters of Alaska with the best equipment in the world!   NOAA Ship Rainier is “one of the most modern productive hydrographic survey platforms of its type in the world.”  Rainier can map immense survey areas in one season and produce 3-D charts.  These charts not only help boaters navigate safely, but also help us understand how our ocean floor is changing over time, and to better understand our ocean floor geology and resources, such as fisheries habitat.   Be sure to check out the Rainier link that tells more about the ship and its mission. http://www.moc.noaa.gov/ra

Rainier is going to be doing surveys in “some of the most rugged, wild and beautiful places Alaska has to offer,” says the ship’s Commanding Officer CDR Rick Brennan. I am so excited for this, as an educator, bird surveyor, and ocean kayaker. After departing from Newport, Oregon on April 7th, we will be travelling through the Inside Passage of British Columbia, the place many cruise ships go to see beautiful mountains and water routes. I have many more questions than I do answers. What kinds of birds will I see? Will I see whales and mountain peaks? Will the weather cooperate with our travels? Will the crew be willing to bear my insatiable questions?

Once we are through the Inside Passage, we will cross the Gulf of Alaska, which will take 2 ½ days. As we pass my brother’s home on the Kenai River, I will wave to him from the bow of Rainier. Will he see me? I think not. Sometimes I forget how big and wild Alaska is. Then we will arrive on the north side of Kodiak Island where we will prepare for a season of survey work by installing tide gauges.

I always love to listen to students’ predictions of a subject we are about to study. What do I know about tide gauges? Not a lot! Even though I can see the ocean from my kitchen window, I cannot claim to be an oceanographer or hydrographer. I had never even heard the word “hydrographer” until I embarked on this adventure! I predict I will be working with incredibly precise, expensive, complicated tools to measure not just the tide, but also the changes in sea level over time. I am excited to learn more about my neighbor, the ocean, how we measure the movement of the water, and how all that water moving around, and shifting of the earth affects the ocean floor. I am proud to be a member of the team responsible for setting up the study area where scientists will be working and collecting data for an entire season.  It will surely be one of the greatest adventures of my lifetime!

 

Here are my two favorite travelling companions and children, Martin and Elizabeth.

Here are my two favorite travelling companions and children, Martin and Elizabeth.

In my final days before I embark, I am trying to pick up the many loose ends around the Garibaldi, Oregon home where I live with my dorky, talkative 18 year old son and 16 year old daughter who take after their mother. They share my love of the ocean and adventure. When they aren’t too busy with their friends, they join me surfing, travelling around the world, hiking in the woods, or paddling in our kayaks. Right now, Elizabeth is recovering from getting her tonsils out, but Martin is brainstorming ways to sneak my bright orange 17 foot sea kayak onto Rainier next week. I moonlight as a bird surveyor, have taxes to do and a classroom to clean up before I can depart on April 6. Once Rainier leaves Newport, I will become a NOAA Teacher at Sea, leaving Martin, Elizabeth and my students in the caring hands of my supportive family and co-workers.

Here I am having fun with kayaking friends in California in December.

Here I am having fun with kayaking friends in California in December.

 

Having gone through the Teacher at Sea pre-service training, I feel more prepared to help the crew, learn about all the jobs within NOAA and develop great lesson plans to bring back to share with fellow educators. I want to bring back stories of scientists working as a team to solve some of our world’s most challenging problems. And I am looking forward to being part of that team!

 

Frank Hubacz: Our First Day at Sea, April 29, 2013

NOAA Teacher at Sea
Frank Hubacz
Aboard NOAA ship Oscar Dyson
April 29 – May 10,  2013

Mission: Pacific Marine Environmental Laboratory Mooring Deployment and Recovery
Geographical Area of Cruise: Gulf of Alaska and the Bering Sea
Date: April 29, 2013

Weather Data from the Bridge:

Partly cloudy, Winds 10 – 15 knots
Air temperature: 4.0 C
Water temperature: 5.3 C
Barometric Pressure: 1014.14 mB
 

Science and Technology Log

The primary mission of this cruise is to deploy and recover moorings in several locations in the Gulf of Alaska and the Bering Sea.  These moorings collect data for a group of scientist under the auspices of the Ecosystems & Fisheries-Oceanography Coordinated Investigations (EcoFOCI) which is a joint venture between the NOAA Pacific Marine Environmental Laboratory (PMEL), and the NOAA Alaska Fisheries Science Center (AFSC).  Participating institutions on this cruise include NOAA-PMEL, AFSC, Penn State, the National Marine Mammal Laboratory (NMML), and the University of Alaska (UAF). This interdisciplinary study helps scientist better understand the overall marine environment of the North Pacific.  This understanding will lead to a better management of the fishery resources of the North Pacific Ocean and the Bering Sea.

To ensure that time at sea is maximized for data collection, a day or so before leaving Seward, Alaska, the science crew begins assembling their various monitoring instruments under the directions of Chief Scientist for this project, William (Bill) Floering, PMEL.

William Floering, Chief Scientist

William Floering, Chief Scientist.

Dan Naber from University of Alaska

Dan Naber from University of Alaska.

Some of the equipment that will be deployed includes an Acoustic Doppler Current Profiler (ADCP), which measure speed and direction of ocean current at various depths.  This data helps physical oceanographers determine how organisms, nutrients and other biological and chemical constituents are transported throughout the ocean.  Argos Drogue drifters will also be deployed to help map ocean currents. Conductivity, temperature, and depth (CTD) measurements will be conducted at multiple sites providing information on temperature and salinity data.  Additionally, “Bongo” tows will also be made at multiple locations which will allow for the collection of zooplankton.  The results of this sampling will be used to characterize the netted zooplankton and help to monitor changes from previous sampling events.  In future blogs I will describe these instruments in greater detail.

The furthest extent of our mission into the Bering Sea is very much weather and ice dependent with much variation this time of the year in the North Pacific Ocean.  Current ice map conditions can be found at http://pafc.arh.noaa.gov/ice.php.

Operation Area

Cruise Area

Cruise Area

Personal Log

As I rode in the shuttle bus from Anchorage to Seward, Alaska on Friday, April 27, and then onto the pier where the Oscar Dyson was docked, I was immediately impressed by its size and overall complexity.

Traveling to Seward, Alaska.

Traveling to Seward, Alaska.

Oscar Dyson in port.

Oscar Dyson in port.

Upon arrival I was met by Bill Floering, Chief Scientist on the cruise.  He gave me a tour of the overall ship and then I settled into my room, a double.  Just like being back in college myself, and being the first to the room, I had my choice of bunks and therefore selected the lower bunk (I did not want to fall out of the top bunk if the seas turned “rough”).  Arriving early provided me time to become oriented on the vessel given that I have never been aboard such a large ship before. I also had the opportunity to walk into Seward, AK, with a member of the science team, for a dinner downtown with extraordinary views of the surrounding mountains.

My stateroom!

My stateroom!

Seward

View from Seward, Alaska.

On Saturday, April 27, the rest of the science crew arrived and my roommate, Matthew Wilson, moved in.  Matt is from the Alaska Fisheries Science Center (AFSC) based in Seattle, Washington.  That evening we traveled into town again for another great dining experience…halibut salad with views of Resurrection Bay.

Matt Wilson from the Alaska Fisheries Science Center

Matt Wilson from the Alaska Fisheries Science Center.

Sunday, April 28, was a busy day of sorting and setting up various instruments for deployment.  Winds were very strong, with snow blowing over the peaks of the mountains, glistening in the brilliant sunshine.

Scott McKeever from the Alaska Fisheries Science Center

Scott McKeever from the Alaska Fisheries Science Center.

Scott at work on an ADCP buoy.

Scott at work on an ADCP buoy.

Installing instruments

Here I am helping to install instrumentation.

View of Seward Harbor.
View of Seward Harbor.

Monday, April 29, our day began with a safety meeting followed by our science meeting.  At that time we were assigned to our work shift.  I will be working from 12 midnight to 12 noon each day during the cruise.  Once the ship sets sail, the science crew is working 24 hours per day!

Science team meeting with Bill and crew.

Science team meeting with Bill and Survey Tech Douglas Bravo.

At 1500 hours we set sail!  The Journey begins!

Releasing tie lines.

Releasing tie lines.

Off we go!

Off we go!

Related articles

Caitlin Thompson: Introduction, July 25, 2011

NOAA Teacher at Sea
Caitlin Thompson
Aboard NOAA Ship Bell M. Shimada
August 1 — 14, 2011

Mission: Pacific Hake Survey
Geographical Area: Pacific Ocean, Off the U.S. West Coast
Date: July 24, 2011

Bell M.  Shimada

NOAA Ship Bell M. Shimada

This Sunday, I’m headed off to sea! The mission of my cruise is to survey Pacific hake (also called Pacific whiting) populations. Hake is a species of fish that supports a huge fishery off the West Coast. As it states on NOAA’s Fishwatch website, “The Pacific whiting (hake) fishery is one of the largest in the United States. Pacific whiting is primarily made into surimi, a minced fish product used to make imitation crab and other products. Some whiting is also sold as fillets.” I’ll leave from Newport, Oregon, and arrive two weeks later in Port Angeles, Washington. The ship, the Bell M. Shimada, belongs to the National Oceanic and Atmospheric Administration (NOAA). I get to go on the Shimada because of NOAA’s program Teacher at Sea (TAS), which sends teachers aboard research vessels so that we can increase our scientific literacy and bring our new knowledge back to the classroom. I can’t wait. I’ve never even spent a night aboard a ship, so this whole journey will be new for me.

I teach seventh and eighth grade integrated science at Floyd Light Middle School, in the David Douglas School District, in Portland, Oregon. I earned my Master’s in Education at Portland State University and my Bachelor’s of Art in Environmental Science at Mills College, in Oakland, California. In between, I taught English at a public elementary school in Curico, Chile. I love science and I love teaching. As soon as I decided to become a teacher, I made up my mind to participate in TAS, because it will help me teach my students the importance and fun of science.

Caitlin Thompson

At a dragon boat race

When I’m not teaching, I paddle with a dragon boat team, spend time with friends and family, and ride my bicycle. I’m always looking for new projects and new things to learn. I’m lucky to live in a city as great as Portland, where there are always interesting events going on around town.

Karen Matsumoto, April 25, 2010

NOAA Teacher at Sea: Karen Matsumoto
Onboard NOAA Ship Oscar Elton Sette
April 19 – May 4, 2010

NOAA Ship: Oscar Elton Sette
Mission: Transit/Acoustic Cetacean Survey
Geographical Area: North Pacific Ocean; transit from Guam to Oahu, Hawaii, including Wake Is.
Date: Friday, April 25, 2010

Science and Technology Log

The Oscar Elton Sette is making its way to Wake Island, and we hope to be there by tonight. One of the research operations is to recover a HARP (High-frequency Acoustic Recording Package) that is in place on Wake Island and replace it with a new HARP unit.

This morning, I was on “CTD duty” at 4:30 a.m. A CTD (conductivity-temperature-depth) station is deployed prior to the start of the visual survey effort, right at sunrise. The CTD data is collected using the ship’s SeaBird CTD shown below. The CTD is deployed to a depth of 1000 meters (depending on depth where we are) with a descent rate of about 30 meters per minute for the first 100 meters of the cast, then at 60 meters per minute after that. It takes three people, plus a winch driver to deploy the CTD, as well as the expert operation from the bridge to keep the ship steady and in one place during the entire operation!

Checking the CTD unit prior to launch.

Launching the CTD unit.

Background on CTDs

The CTD is a device that can reach 1,000 meters or more in depth, taking up to five water samples at different depths, and making other measurements on a continuous basis during its descent and ascent. Temperature and pressure are measured directly. Salinity is measured indirectly by measuring the conductivity of water to electricity.

Chlorophyll, a green photosynthetic pigment, is measured indirectly by a fluorometer that emits purple light and measures fluorescence in response to that light. These measurements are made continuously, providing a profile of temperature, salinity, and chlorophyll as a function of depth. The CTD unit is torpedo-shaped and is part of a larger metal water sampling array known as a rosette. Multiple water sampling bottles are often attached to the rosette to collect water at different depths. Information is sent back to the ship along a wire while the instrument is lowered to the depth specified by the scientist and then brought back to the surface.

Monitoring the CTD in the ship’s E-lab.

Data gathered from the CTD during its descent.

By analyzing information about the water’s physical parameters, scientists can make inferences about the occurrence of certain biological processes, such as the growth of algae. Knowledge like this can, in turn, lead scientists to a better understanding of such factors as species distribution and abundance in particular areas of the ocean.

I am continuing my acoustic work with the sonobuoys. Today I heard a Minke whale BOING! Below is what a Minke whale boing looks like on the computer. It sounds very much like someone blowing a low tonal whistle or a cell phone vibrating on the desk!

 

To hear an Atlantic minke whale call (which is different from those found here in the North Pacific, but really cool!) go to this website:

http://www.pmel.noaa.gov/vents/acoustics/whales/sounds/sounds_atlminke.html

Personal Log

I am making so many great friends among the Sette crew and the science team! I am getting spoiled from all the fantastic meals put together by Randy our cook, and no one ever wants to miss a meal! Our wonderful Doc Tran makes incredible Vietnamese dishes and delicious desserts. Today we had cream puffs for dinnertime dessert! Who would have ever guessed!

Marie Hill, our Chief Scientist and fearless leader was awarded the prestigious NOAA Team Member Award! We surprised her with balloons and decorations in her cabin, and Doc Tran and Lisa made a yummy cake in celebration! Congratulations Marie!!!

Marie Hill, Chief Scientist finding her cabin wildly decorated to congratulate her on her award.

We had a visitor today on the flying bridge-an exhausted juvenile red-footed booby! He sat on the mast, finding a place to rest in the middle of the ocean! It felt great to feel the warm wind hit my face and watch the sapphire blue water crash against the bow of the ship! What a great feeling!

Juvenile red-footed booby on the bridge

Deep blue Pacific ocean water!

Question of the Day: How can you figure out how much food to bring on a 2-week cruise? How do you keep the food fresh? What do you do with leftovers?

This is the situation that the Chief steward has to deal with on every cruise! How would you figure this out? Can you do the math?

New Term/Phrase/Word of the Day: Beaufort Sea State is an empirical measure for describing wind speed based mainly on observed sea conditions. It is also called the Beaufort Wind Force Scale. We stop conducting our visual observations when wind/sea conditions reach Beaufort 7, as wind and sea conditions are too rough to accurately make observations (and its windy out there!).

Something to Think About:

This part of the North Pacific is often described as an ocean desert. We have not seen any whales, and have had only a couple sightings of dolphins since we left Guam. We have also seen migrating sea birds, but not in huge numbers. What do you think may account for the lack of sea life in this expanse of tropical waters?

Animals Seen Today:

  • Sooty tern
  • Red-footed booby (juvenile)

Did you know?

That the team of whale visual observers never discuss the numbers of animals they see among themselves. Some people consistently count high, others count low, others are spot on! By not discussing how many animals they observed, they don’t influence each others’ observations. Back at the lab, researchers compare each observer’s counts from their written observations, and can tell which observers tend to under or overestimate numbers of animals they see. They can then make adjustments to total numbers based on everyone’s observations! This is similar to calibrating thermometers or other scientific equipment!

Today’s sunset from the Sette.

Mary Anne Pella-Donnelly, September 19, 2008

NOAA Teacher at Sea
Mary Anne Pella-Donnelly
Onboard NOAA Ship David Jordan Starr
September 8-22, 2008

Mission: Leatherback Use of Temperate Habitats (LUTH) Survey
Geographical Area: Pacific Ocean –San Francisco to San Diego
Date: September 19, 2008

Weather Data from the Bridge 
Latitude: 3624.8888 N Longitude: 12243.8013 W
Wind Direction: 261 (compass reading) SW
Wind Speed: 8.0 knots
Surface Temperature: 16.385

Figure indicating migration of different genetic stocks of Pacific leatherback turtles.

Figure indicating migration of different genetic stocks of Pacific leatherback turtles.

Science and Technology Log 

Turtle Genetics 
Peter Dutton is the turtle specialist on board, having studied sea turtles for 30 years.  His research has taken him all over the tropical Pacific to collect samples, study behaviors and learn more about Dermochelys coriacea, the leatherback turtle. Mitochondrial DNA (is clonal=only one copy) is only inherited maternally (from the mother), so represents mother’s genetic information (DNA), while nuclear DNA has two copies, one inherited from the mother and the other from the father .By looking at the genetic fingerprint encoded in nuclear DNA it is possible to compare hatchling “DNA fingerprints”, with their mother’s and figure out what the father’s genetic contribution was. This paternity (father’s identifying DNA) analysis has produced some intriguing results.

Peter Dutton looking for turtles with the ‘big eyes’.

Peter Dutton looking for turtles with the ‘big eyes’.

An analysis of chick embryos or hatchling DNA indicates all eggs were fertilized throughout the season from the same dad. It is thought that the female must store sperm in her reproductive system. Successively, throughout the nesting season, a female will lay several clutches, one clutch at a time.  Females come in to the beach for a brief period (leatherbacks – approx 1.5 hrs) every 9-10 days to lay eggs for the 3 or 4 month nesting season (they lay up to 12). Sometimes it is the same beach; sometimes it is a beach nearby. Research done on other sea turtles is showing some species have actually produced offspring with other species of sea turtle. One example is of a hawksbill turtle with a loggerhead turtle in Brazil. In this case, the phenotype appeared to indicate one species, while the DNA analysis indicates the animal was a hybrid, with a copy of DNA from each of the two different species. At some point geneticists may need to re-define what constitutes a “species”.

The last few eggs most of the leatherback turtles lay are infertile, yolkless eggs.  No one is certain about the function of these eggs, although several theories have been suggested. Many unknowns exist about these turtles. Scientists have not yet found a means to determine the age of individual sea turtles, so no one knows how long-lived they are. The early genetic research on leatherbacks showed some information that surprised the scientists.  It had been thought that all leatherbacks foraging off the northwestern coast of USA originated in the eastern tropical Pacific, from nesting beaches in Mexico.  Careful DNA analysis, however, found that animals at California foraging grounds are part of the western Pacific genetic stock recently identified by Dutton and colleagues. Both Peter and Scott have emphasized that there is still much to learn, and they have just begun, however, much has also been learned during the past six years, including the origin of leatherbacks that utilize California waters.

Personal Log 

Yesterday the sun came out and it was a glorious evening.  A group of us watched the sunset from the flying bridge, and then later watched the moon rise.  It was spectacular, and with the ‘big eyes’, it was possible to see many of the moon’s craters.  The stars were also magnificent!  Today has been cloudy with a layer of fog eventually drenching the boat.  This weather has made yesterdays blue skies all the sweeter.

Words of the Day 

Mitochondrial DNA: DNA found within the mitochondria – originates from the mother; Clonal: identical to the original; Clutch: a single batch of eggs, laid together; Hybrid: one gene from one species and the second gene from a second species; Species: an organism that can mate with another of its own kind and produce fertile offspring.

Animals Seen Today 

Common dolphin Delphinus delphis, Fin whale Balaenoptera physalus, Black-footed Albatross Phoebastria nigripes, Moon jellies Aurelia labiata, Sea nettle jellies Chrysaora fuscescens, and Common dolphins Delphinus delphis.

Questions of the Day 

  1. Geneticists are beginning to obtain new tools to figure out how similar animals are related to each other. What are some questions you have related to leatherback turtle genetics?
  2. Scott’s turtle map shows that leatherbacks nesting in the Western Pacific migrate across the Pacific to the coast of North America, while leatherbacks that nest in Costa Rica only migrate to waters off the South American coast.  Why might some populations stay in the same region, while others cross the Pacific Ocean?
Sunset over the port side

Sunset over the port side

Mary Anne Pella-Donnelly, September 18, 2008

NOAA Teacher at Sea
Mary Anne Pella-Donnelly
Onboard NOAA Ship David Jordan Starr
September 8-22, 2008

Mission: Leatherback Use of Temperate Habitats (LUTH) Survey
Geographical Area: Pacific Ocean –San Francisco to San Diego
Date: September 18, 2008

Weather Data from the Bridge 
Latitude: 3543.3896 N Longitude: 12408.3432 W
Wind Direction: 129 (compass reading) SE
Wind Speed: 7.8 knots
Surface Temperature: 17.545

Blue shark seen on 9/18

Blue shark seen on 9/18

Science and Technology Log 

Today was an exciting one scientifically. The team has been examining all of the oceanographic data so far in order to pinpoint frontal edges for further data collection. They selected a point last night that might contain a biologically rich layer and hopefully, with jellies. After closely looking over every thing they have learned on this trip so far and plotting a destination to sample, we traveled to that station. We found an ocean water ‘river’ full of kelp, moon jellies, sea nettles and pelagic birds! It was exactly where the team predicted there might be a biotic stream!! This confirmed that offshore habitats can be found using oceanographic data and satellite imaging.  There certainly were offshore areas that would give leatherbacks a chance to eat their fill.  And through that period, the sun came up!  With only a slight breeze, the flying deck was warm and relaxing. It put us all into excellent spirits.

Personal Log 

Ray Capati shows off his Turtle Cake. (photo by Karin Forney)

Ray Capati shows off his Turtle Cake.

A few days ago, the chief steward made a cake- there are daily baked goods offered in the mess hall. This cake, however, was decorated for the LUTH Survey with turtles, kelp and jellyfish!  Today would have been another good day for that treat.  It is also time to get some pictures with C.J. our school mascot.  He was pretty happy to get out and see the ship.  He even tried to help up on the flying bridge, but without thumbs, it was hard for him to enter in observation comments.

Animals Seen Today 
Moon jellies Aurelia labiata, Sea nettle jellies Chrysaora fuscescens, Salps Salpida spp., Sea gooseberries Pleurobrachia bachei, Red phalaropes Phalaropus fulicaria, Cuvier’s beaked whales Ziphius cavirostris, Common dolphins Delphinus delphis, Blue sharks Prionace glauca, and Arctic terns Sterna paradisaea.

C.J. helps out on the flying bridge.

C.J. helps out on the flying bridge.

Questions of the Day 

  1. What might be some oceanographic conditions that would create a water mass filled with kelp and jellyfish?
  2. What other organisms (than we observed) might be attracted to such a water mass?