Barney Peterson: Spreads Like A Ripple, July 1, 2016

NOAA Teacher at Sea

Barney Peterson

(Soon to be) Aboard NOAA Ship Oregon II

August 13-28, 2016

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 1, 2016

Spreads Like a Ripple

“Yep, sounds exciting, but you teach about Pacific Salmon, so how useful is learning about Hammerhead Sharks in the Gulf of Mexico really going to be?” my friend asked.

Her reaction was not unusual. I am a 4th grade teacher with 26 years of experience in the Everett Public Schools in Washington State. I have put some serious thought into using my Teacher At Sea experiences to open eyes and minds to the world around us. I think the possibilities are endless.

My first Teacher at Sea assignment was summer 2006 aboard NOAA ship, RAINIER, on a hydrographic survey mission in the Shumagin Islands, Gulf of Alaska. From this I developed lessons on making contour maps using sticks and a sounding box. I grew my understanding of how weather systems that develop in the Gulf of Alaska influence our weather in Puget Sound. I used that knowledge to help students understand relationships between geography, weather and climate. I learned about birds, mammals and fish in the ocean food chain and inserted that learning into helping students understand the life cycle of the salmon we raise in our classroom.

In 2008 I had the opportunity to share a Teacher in the Air experience with fellow TASA Dana Tomlinson from San Diego, California. We flew with a winter storm research crew from Portland, Oregon; traveling 1800 miles out over the Pacific Ocean and back tracking developing weather systems. We created lessons that helped students understand the importance of using accurate global positioning information to follow low pressure systems as they moved across the ocean toward the west coast of North America. We put together a unit to help them understand how air pressure, relative humidity, and wind speed and direction are measured and how that data is used to understand and predict weather patterns. My students still use those lessons as we participate in the GLOBE program, sending data in every day of the school year.

That was then, and this is now:

Field studies of salmon habitat with 4th grade students

Field studies of salmon habitat with 4th grade students

At school, I have students use globes and inflatable Earth Balls to track from the Arctic Ocean through every other ocean and back to the Arctic without taking their pointer-fingers off ocean surface. Then they start to get it… the connections: there is really just one big ocean! We learn about the water cycle and I challenge them to explain “where the water comes from.” We learn about food webs and energy flow. Our salmon studies teach them about producers, consumers and decomposers. They get the idea of cycles and systems and how all parts must work together. They learn to consider what happens when one step of a cycle fails or one part of a system is missing. We learn about organisms labeled “indicator species” that help scientists track changes in the health of ecosystems.

True, all of this is presented with a focus on where we live in the Pacific Northwest. But…that is just one place on the edge of our one ocean. Time comes to broaden the view. There are many life cycles depending upon the continual efficient functioning of Earth’s systems. Since there is just one ocean, nothing really happens in isolation. The same kinds of events that disrupt life cycles in one place will certainly disrupt them in another.

In August I will be aboard the NOAA ship, OREGON II, in the Gulf of Mexico. Our mission is to investigate and gather data about Scalloped Hammerhead Sharks and Red Snapper. They share an ecosystem and participate in the same food web. They are subject to consequences of the same environmental changes and catastrophes that happen in other parts of our ocean.

Drop a pebble into the water anywhere and ripples spread until they reach the outermost boundaries. We all share one ocean. Where does the ripple stop?

Spencer Cody: Farewell Fairweather, June 18, 2016

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 18, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 18, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 20.643′ N

Longitude: 131˚ 37.505′ W

Air Temp: 20˚C (68˚F)

Water Temp: 13˚C (55˚F)

Ocean Depth: 30 m (100 ft.)

Relative Humidity: 65%

Wind Speed: 9 kts (11 mph)

Barometer: 1,022 hPa (1,022 mbar)

Science and Technology Log:.

111_0798 (2)

In order to check whether the tide gauge is working or not, a tidal observation needs to take place.  Over the course of several hours, the tide is measured as it rises or falls on graduated staffs and is recorded and compared to our tidal gauge data.  Credit Brian Glunz for the photo.

While horizontal control base stations are used to improve the accuracy of the positions of all points on a surface by providing a fixed known location to compare to GPS coordinates, constantly changing tides present another challenge in of its own.  With tides in the survey area ranging 3 to 6 meters (10 to 20 ft.), depths can vary widely for various shallow-water hazards depending on the strength of the tide.  Consequently, accurate tide data must be recorded during the survey and in close proximity of the survey site since tides vary widely depending on topography, weather systems, and other factors.  This is where tide stations come into play and are necessary to accurately gauge the vertical level of water throughout the survey area.

111_0930 (2)

Surveying equipment is used to check benchmarks near the tide station in the upper left for any movement.  Hydrographic Assistant Survey Technician Hannah Marshburn is recording data from the leveling process with Ensign Matthew Sharr sighting a staff held in place by Ensign Mason Carroll and Hydrographic Senior Survey Technician Clint Marcus.

Before a survey is started in an area, a tide station can be set up within the survey area to measure local tides. The tide stations use solar cells to generate electricity to power a small compressor on land that sends air through a hose that is attached to the ocean bottom in a near-shore environment.  The tide gauge can measure how much pressure is needed to generate a bubble out the end of the hose, the greater the pressure, the deeper the water.  These pressure gradients correlate to a certain depth of water while the depth of the water is tied to a nearby benchmark of surveyed elevation.  This information is then transmitted out to tide reporting sites online.  For additional data on tide patterns, the information on tide levels can be downloaded from the gauge in refining survey data.  In order to ensure that a tide gauge is working correctly, manual tide observations are periodically made at the same location. Additionally, the benchmarks near the tide gauge go through a process called “leveling.” This is survey work that compares all of the secondary benchmarks in the area to the primary benchmark.  If none of the benchmarks have moved relative to each other, it is safer to assume that the benchmarks still represent the elevation that they were originally surveyed.  Once the survey in the area is completed, the tidal gauge is packed up to be used at another location.  Since the portion of the tidal gauge that releases the pressurized bubble is under the entire tidal water column, a dive team is required to remove the remaining equipment.  The entire tidal gauge site is returned to how it looked before the station was set up.  Only the survey benchmarks remain for future use.

Personal Log:

107_0553 (2).JPG

From left to right Ensign Tyler Fifield charts our course while Able Seaman Godfrey Gittens has the helm with Ensign Lander Van Hoef controlling the power to propulsion.  Bridge usually has at least one officer and one deck member on watch at all times.  Ensign Fifield has been in NOAA and on the Fairweather for two years and has a background in marine safety and environmental protection.  AB Gittens spent 4 years in the Navy, 20 years on commercial and military marine contracted vessels, and has now worked for NOAA for a couple of months.  Ensign Van Hoef has a background in mathematics and has been on the Fairweather for six months.

Dear Mr. Cody,

On our cruise ship there are officers that wear uniforms who run the ship.  They also look out for the safety of everyone onboard.  They are very nice and know a lot about how to keep the ship running and get the cruise ship to each stop on our vacation.  They work with each department on the ship to make sure everything runs properly and people stay safe.  It has been a great trip to Alaska, and now we are at our last stop.  Goodbye Alaska!  (Dillion is one of my science students who went on an Alaska cruise with his family in May and has been corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The Fairweather also has officers, the NOAA Corps, to help run the ship and carry out NOAA’s mission by utilizing NOAA’s fleet of ships and aircraft and by staffing key land-based positions throughout the organization.  The NOAA Corps ensures that trained personnel are always available to carry out NOAA’s missions using cutting-edge science and technology.  This gives NOAA the flexibility it needs to complete many types of varied research since officers are trained to fulfill many types of missions.  This gives NOAA the ability to respond quickly to scientific and technological needs and helps retain a continuity of operations and protocol throughout the vast fleet and area of operations.  In order to be considered for acceptance into the NOAA Corp, applicants must have at least a four year degree in a field of study relating to NOAA’s scientific and technological interests.  Once accepted into the program, they go through five months of training at the United States Coast Guard Academy where they develop an understanding of NOAA’s mission, maritime and nautical skills, and general ship and boat operation skills.  After successful completion of the training, NOAA officers are placed on a ship in the fleet for three years of sea duty to begin their new career.

109_0606 (2)

Chief Electronics Technician Sean Donovan performs his daily check of communications systems on the bridge.  CET Donovan served as a naval service ground electronic technician for 11 years in the Navy and has been in NOAA for 8 months.

On the Fairweather NOAA Corp officers help run and manage the ship and launch boats.  They navigate the ship and stand watch on the bridge.  They work with the other departments to ensure that the mission is accomplished and everyone remains safe during the mission.  On a hydrographic survey ship such as the Fairweather, Corps officers commonly have the position of sheet manager for hydrographic survey regions as collateral duties allowing them the opportunity to plan the logistics of hydrographic survey areas and learn how to use software associated with hydrographic data collection and analysis. Additionally, officers will be assigned to other scientific missions as they arise since the Fairweather will participate in a variety of scientific projects throughout the year.

109_0599 (2)

Able Seaman Carl Coonce controls the hydraulic system that is picking up a launch boat from a survey mission.  AB Coonce has been in NOAA for 12 years.  He was also on the NOAA ships Albatross and Bigalow.  He has been on the Fairweather for five years.  He started out in NOAA as a second cook and then a chief steward, but he wanted to learn more about ships; so, he made the move to the deck department commenting, “When you go out on deck, all differences are set aside.  We lookout for each other.”

A hydrographic ship such as the Fairweather requires many departments to work together  including the NOAA Corps officers to accomplish the mission.  There is the deck department and engineering department and the steward department as I have discussed their role in previous posts.  However, there are also electronic technicians that assist the survey in all of its technological aspects including the ship’s servers, electronics, radar, and communication systems.  Since technology plays a critical role in the collection and analysis of data, a hydrographic ship depends on these systems to carry out its scientific research.

109_0601 (2)

Acting Chief Hydrographic Survey Technician John Doroba prepares a boat launch for another portion of the hydrographic survey.  ACHST Doroba is the lead survey technician for this leg.  He has a background in geography, physical science, and information systems with a decade of work experience in and out of NOAA relating to surveying and related technology.

The survey department does the bulk of the collection and analysis of hydrographic data.  Depending on experience and education background, someone in survey may start out as a junior survey technician or assistant survey technician and advance up to a survey technician, senior survey technician, and possibly a chief survey technician.  With each step more years of experience is required because a greater amount of responsibility comes with each position concerning that survey.  Survey technicians generally need to have a background in the physical sciences or in computer science.  Technology and physical science go hand-in-hand in hydrographic survey work by applying and analyzing scientific data through the lens of advanced technology and software.  One needs to be capable in both areas in order to be proficient in the survey department.

104_0414 (2)

Hydrographic Assistant Survey Technician Steve Eykelhoff collects hydrographic data during a launch.  HAST Eykelhoff has a background in geology and hydrology.  He has worked on many mapping projects including mapping the Erie Canal and the Hudson River.

It really comes down to people working together as a team to get something done.  In the case of the Fairweather, all of this talent and dedication has been brought together in a team of NOAA Corps, engineers, deck, survey, technicians, and stewards to carry out a remarkable array of scientific work safely and efficiently.  This team is always ready for that next big mission because they work together and help each other.  Yes, Dillion, my time here on the Fairweather is also drawing to a close.  I have enjoyed the three weeks onboard and have learned a lot from a very friendly and informative and driven crew.  I thank all of those who were willing to show me what their job in NOAA is like and the underlying concepts that are important to their careers.  I learned a great deal concerning NOAA careers and the science that is carried out onboard a NOAA hydrographic ship.  Thank you!

Did You Know?

The NOAA Commissioned Officer Corps is one of seven uniformed services of the United States consisting of more than 300 officers that operate NOAA’s fleet of 16 ships and 9 aircraft.

Can You Guess What This Is?111_0918 (2)

A. a ship  B. a hydrographic survey  C. a NOAA vessel  D. a final farewell to an amazing ship and crew

You should already know the answer if you have been following this blog!

(The answer to the question in the last post was C. an azimuth circle.  The Fairweather has an azimuth circle onboard.  While it is not typically used for navigation, it is yet another technology that remains as a holdover from earlier seafaring times and as a potential navigation tool available when all modern equipment has failed.  The azimuth circle can be used to measure the position of a celestial body for navigation purposes or to get a bearing on an object visible from the ship.)

Spencer Cody: Killing the Dots, June 13, 2016

NOAA Teacher at Sea

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 13, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 10.643′ N
Longitude: 132˚ 54.305′ W
Air Temp: 19˚C (66˚F)
Water Temp: 14˚C (58˚F)
Ocean Depth: 33 m (109 ft.)
Relative Humidity: 50%
Wind Speed: 6 kts (7 mph)
Barometer: 1,014 hPa (1,014 mbar)

Science and Technology Log:

104_0366 (2)

“Killing dots” or manually flagging data points that are likely not accurately modeling hydrographic data is only the beginning of a very lengthy process of refining hydrographic data for new high-quality nautical charts.  Credit Hannah Marshburn for the photo.

In the last post, I talked about how we collect the hydrographic data.  The process of hydrographic data collection can be a challenge in of itself with all of the issues that can come up during the process.  But, what happens to this data once it is brought back to the Fairweather?  In many ways this is where the bulk of the work begins in hydrography.  As each boat files back to the ship, the data they bring back is downloaded onto our servers here on the ship to begin processing.  Just the process of downloading and transferring the information can be time consuming since some data files can be gigabytes worth of data.  This is why the Fairweather has servers with terabytes worth of storage to have the capacity to store and process large data files.  Once the data is downloaded, it is manually cleaned up.  A survey technician looks at small slices of hydrographic data and tries to determine what is the actual surface of the bottom and what is noise from the multibeam echosounder.  Leaving too many false data points in the slice of hydrographic data may cause the computer software to adjust the surface topography to reach up or below to something that in reality does not exist. The first phase of this is focused on just cleaning the data enough to prevent the hydrographic software from recognizing false topographies.  Even though the data that does not likely represent accurate hydrographic points are flagged and temporarily eliminated from the topographic calculation, the flagged data points are retained throughout the process to allow for one to go back and see what was flagged versus what was retained. It is important to retain this flagged data through this process in case data that was thought to be noise from the echosounder really did represent a surface feature on the bottom.

104_0365 (2)

Hydrographic Assistant Survey Technician Sam Candio is using a three dimensional viewer to clean the hydrographic data collected from that day’s launches.

Once this process is complete, the day’s section is added to a master file and map of the target survey area.  This needs to happen on a nightly basis since survey launches may need to be dispatched to an area that was missed or one in which the data is not sufficient to produce quality hydrographic images.  Each launch steadily fills in the patchwork of survey data; so, accounting for data, quality, and location are vitally important.  Losing track of data or poor quality data may require another launch to cover the same area.  After the survey area is filled in, refinement of the new map takes place.  This is where the crude cleanup transitions into a fine-tuned and detailed analysis of the data to yield smooth and accurate contours for the area mapped.  Data analysis and processing are the parts of hydrographic work that go unnoticed.  Since this work involves many hours using cutting-edge technology and software, it can be easy to underappreciate the amount of work survey technicians go through to progress the data through all of these steps to get to a quality product.

Personal Log:

20160513_113539 (2)

Dillion and family in Hoonah, Alaska.

Dear Mr. Cody,

Today we docked in Hoonah, Alaska.  We had a whale show right under our balcony!  They are incredible to watch.  There is so much to see for wildlife in Alaska. (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

104_0408 (2)

A friendly humpback is keeping our survey launch company as we map our assigned polygon.

I know what you mean about the wildlife.  I am seeing wildlife all over the place too.  On our transit to our survey site from Juneau, I saw numerous marine mammals: hump back whales, dolphins, and killer whales.  On our last survey launch, we had two humpbacks stay within site of the boat the entire morning.  They are remarkable creatures.  Whenever we locate a marine mammal, we fill out a marine mammal reporting form allowing various interests to use these reports to estimate the population size and range of these animals.  The waters off the Alaskan coast are full of marine life for a reason.  It is a major upwelling area where nutrients from the ocean bottom are being forced up into the photic zone where organisms such as phytoplankton can use both the nutrients and sunlight to grow.  This provides a large amount of feed for organisms all the way up the food chain.  This area is also known for its kelp forests.  Yes, if you were on the sea bottom in these areas dominated by kelp, it would look like a forest!  Kelp are a very long- and fast-growing brown algae that provide food and habitat for many other marine organisms.

104_0437 (2)

Kelp forests form on relatively shallow rocky points and ledges allowing for the holdfasts to form and latch onto the bottom giving the resulting algae growth the opportunity to toward the surface to collect large amounts of sunlight for photosynthesis.

Did You Know?

The RESON 7125sv multibeam echosounders found onboard the survey launches use a 200 kHz or 400 kHz sound frequency.  This means the sound waves used fully cycle 200,000 or 400,000 times per second.  Some humans can hear sounds with pitches as high as 19 kHz while some bat and dolphin species can hear between 100 and 150 kHz.  No animal is known to have the capability to audibly hear any of the sound waves produced by the multibeam onboard our survey boats.  Animals that use echolocation tend to have much higher hearing ranges since they are using the same premise behind acoustic mapping in hydrography but to detect food and habitat.

Can You Guess What This Is?

104_0410 (2)

A. a marker buoy  B. a water purification system  C. an electric bilge pump  D. a CTD sensor

The answer will be provided in the next post!

(The answer to the question in the last post was A. a search and rescue transponder.  If a launch boat were to become disabled with no means of communication or if the boat needs to be abandoned, activating a search and rescue transponder may be the only available option left for help to find someone missing.  When the string is pulled and the cap is twisted, a signal for help is sent out in the form of 12 intense radar screen blips greatly increasing the odds for search and rescue to find someone in a timely manner.  The radar blips become arcs as a radar gets closer to the transponder until the radar source gets within a nautical mile in which the arcs become full circles showing rescue crews that the transponder is nearby.)

Spencer Cody: Filling in the Asterisk, June 10, 2016

NOAA Teahcer at Sea

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 10, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 55˚ 10.643′ N

Longitude: 132˚ 54.305′ W

Air Temp: 19˚C (66˚F)

Water Temp: 12˚C (54˚F)

Ocean Depth: 33 m (109 ft.)

Relative Humidity: 60%

Wind Speed: 4 kts (5 mph)

Barometer: 1,014 hPa (1,014 mbar)

Science and Technology Log:

102_0137

Goodbye Juneau, we are off to our survey site just west of Prince of Wales Island in the southernmost part of Southeast Alaska.

On Sunday with everyone who needed to be here for the next leg of the hydrographic survey onboard, we set off for the survey site.  Transiting through Alaskan fjords and associated mountains is a real treat to say the least.  The abundance of wildlife and picturesque views of glaciers, mountains, and forests lend one easily susceptible to camera fatigue.  Every vista resembles a painting or photograph of significance.  The views are stunning and the wildlife breathtaking.  After a day’s worth of transiting, we arrived in our survey area just west of Prince of Wales Island on the southern tip of Southeast Alaska and its Alexander Archipelago.  The chain of islands that makes up the Alexander Archipelago represent the upper reaches of the submerged coastal range of mountains along the Pacific.  A mere 20,000 years ago, the sea level was roughly 120 meters (400 ft.) lower than what it is today as our planet was in the grips of the last major ice age.  To put that into perspective, the Fairweather is currently anchored in a calm bay with about 30 meters (100 ft.) of water.  During the recent ice age, this entire ship would be beached hanging precariously next to ledges dropping 100 meters (300 ft.) to the ocean below.  The mountains and steep island banks continue down to the sea floor providing for wildly changing topography below sea level.  This type of environment is perfectly geared toward Fairweather’s capabilities.

While mapping survey areas that include shallow near-shore water, the Fairweather anchors in a calm bay maximizing ideal conditions for launching and retrieving boats whenever possible.  Survey launches are dispatched out to their assigned polygons with the survey area while a skiff boat carries out near-shore marking of rocks and obstructions.  Each of the four survey launches have a RESON 7125sv multibeam echosounder to collect data for mapping.  Survey launches are sent out for much of the day and return with hydrographic data concerning their assigned area.  All of the data is compiled into one file after extensive processing and quality control.

Personal Log:

20160512_154154 (2)

Dillion enjoying Sitka, Alaska.  Credit Suzi Vail for the photo.

Dear Mr. Cody,

We arrived in Sitka, Alaska, with bald eagles flying overhead.  The islands with the tall mountains are amazing.  Some even have snow on them still.  They have a lot of trees and wildlife.  The mountains are all over the island and come right down to the ocean with a very tall dormant volcano across the sound from Sitka.  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

102_0213 (2)

Assisting Ensign Joseph Brinkley in lowering a Conductivity, Temperature, and Depth (CTD) sensor.  The CTD records temperature, salinity, and density.  All of these factors affect the speed of sound and must be factored into our data collection.  Credit Todd Walsh for the photo.

Dear Dillion,

We are not that far to the southeast of you in our survey area.  That is part of the challenge of mapping this area and ensuring that nautical maps are accurate and up to date.  Those tall mountains that you see so close to your ship really do continue down into the ocean in many places.  I was able to go out on one of our survey launches to see how hydrographic data is collected using the Fairweather’s fleet of survey launch boats.  It started with a mission and safety briefing before the launches were turned loose.  Our operations officer went over the assigned polygon mapping areas with us.  We were then reminded of some of the hazards that a small boat needs to be cognizant of such as the log debris in the water and the potential of grounding a boat on rocks.  Both our commanding officer and executive officer repeatedly stressed to us the importance of being careful and alert and always defaulting to safety versus more data collection.  Once the briefing was over, our boats were launched one at a time to our assigned survey polygons.  We were to map the area just north of the McFarland Islands.  Parts of the this area had known hazards hidden just below sea level.  Complicating matters was the fact that many of these hazards marked on existing maps were instances in which someone hit a rock but did not know the exact location or a rock was potentially spotted at low tide.  It was our job to carefully map the area without damaging the boat or putting any of the passengers in harm’s way.

102_0185 (2)

Keeping the boat on course as we collect a swath of hydrographic data in deep water devoid of rocks, kelp, or logs.  Credit Todd Walsh for the photo.

Mapping an assigned area can be anywhere between the two extremes of incredibly uneventful to nimbly avoiding obstacles while filling in the map.  Since the multibeam echosounder requires sound waves to travel farther through a deeper column of water, the swath covered by the beam is wider and takes longer to collect.  In such stretches of water, the boat is crawling forward to get the desired amount of pings from the bottom needed to produce quality hydrographic data.  When the boat is in shallow water, the reverse is true.  The beam is very narrow, and the boat is able to move at a relatively fast pace.  This makes mapping shallow regions challenging.  The person navigating the boat must work with a narrower beam at faster speeds while avoiding the very hazards we were sent to map.  Additionally, in this area kelp forests are very common.  The long brown algae forms a tangled mass that can easily bind up a boat propeller.  Add massive floating logs from all the timber on these islands, and now you have a situation in which a trained driver needs to have all their wits about them.

102_0253 (2)

Narrowing the data collection to a range of depths in which the entire swath can be recorded minimizes the cleanup of false data points while not losing any of the pertinent hydrographic data.  Credit Amber Batts for the photo.

While the person navigating the boat tries to orderly fill in the polygon with a swath of hydrographic data, a person must be stationed at a work station inside the cabin modifying the data stream from the beam to help keep out noise from the data making the survey data as clean as possible.  Sloppy data can result in more time in cleanup during the night processing of data once the boats return to the Fairweather.  In addition, to control what is recorded, the station also determines when the multibeam echosounder is on or off.  It takes some practice to try to keep multiple tasks on multiple screens functioning within an acceptable range.  The topography in the map area also adds to the challenge since drop offs are commonplace.  There were many times were the difference from one end of the beam to the other end was 100 meters or more (300 feet or more).  It was like trying to survey the cliff and bottom of the canyon including the wall of the canyon in one swipe.  Sometimes the ridges are so steep underwater that shadows are produced in the data were the sound waves were blocked by the ridge and our relative angle to it preventing a complete swath.  This requires us to move over the ridge on the other side to map the gap.

102_0200 (2)

Slowly but surely, we are painting over the existing map with a detailed color-coating of contours of depth.

There is something inherently exciting about being the first to see topography in such detail.  Much of this area was last surveyed by lead line and other less advanced means of surveying than our current capabilities.  In many respects they were accurate, but as we filled in our data over the existing maps, one could not help but to feel like an explorer or as much as one can feel like an explorer in this modern age.  We were witnessing in our little assigned piece of the ocean something never seen before: land beneath the water in striking detail.  The rocks and navigational hazards no longer resembled mysteriously vague asterisks on a navigation map to be simply avoided.  We were replacing the fear of the unknown with the known by using science to peer into those asterisks on the map and paint them in a vivid array of well-defined contours later to be refined and made ready for the rest of the world to utilize and appreciate through upgraded navigation charts.  Once our assigned polygon was filled to the best of our abilities, we moved on to the next and so on until it was time to head back to the Fairweather completing another successful day of data collection.

Did You Know?

Kelp is a long brown algae that forms underwater forests that serve as an important habitat for many marine organisms.  Kelp is one of the fastest growing organisms on the planet.  Some species can grow a half a meter (1.5 ft.) per day reaching lengths of 80 m (260 ft.) long.

Can You Guess What This Is?

152_3283 (2)A. search and rescue transponder  B. an emergency flashlight  C. a marker buoy  D. a flare gun

The answer will be provided in the next post!

(The answer to the question in the last post was B. an oil filter.  Getting an oil filter change for the Fairweather is a little different than for your car though the premise is similar.  The four long filters used for each of the two diesel engines onboard are many times larger to accommodate the oil volume and are more durable to handle circulating oil 24 hours a day.)

Lynn Kurth: Solstice at Sea!, June 8, 2016

NOAA Teacher at Sea

Lynn M. Kurth

Assigned to:  NOAA Ship Rainier

June 20th-July 1st, 2016

Personal Log: 

My name is Lynn Kurth and I teach at Prairie River Middle School located in Merrill, WI.  I am honored to have the opportunity to work aboard NOAA Ship Rainier as a Teacher at Sea during the summer solstice.  Over the past twenty years of my teaching career I have had some amazing experiences, such as scuba diving in beautiful coral reefs, working aboard research vessels on Lake Superior and the Atlantic, and whitewater canoeing rivers in the United States and abroad.  The one thing that all of these experiences have in common is water and because of this I have come to appreciate what a truly important natural resource water is.

download

Me aboard the Oregon II for a Long Line Shark and Red Snapper Survey in 2014

Because my students are the next generation of caretakers of this important natural resource, I recognize how vital it is to bring water issues into the classroom:  Most recently I worked with my 7th and 8th grade middle school students to improve local water quality by installing a school rain garden.  During the project students learned about the importance of diverting rain water out of the storm sewer when possible and how to do it in an effective and attractive way.  Other projects included the restoration of our riverbank last year and using a Hydrolab to monitor the water quality of the Prairie River, which runs adjacent to our school.  So, sailing aboard NOAA Ship Rainier to learn more about hydrography (the science of surveying and charting bodies of water) seems like a most natural and logical way to move forward.

IMG_0867 (1)

Eighth grade science students jumping for joy during the fall testing of the Prairie River with the Hydrolab. Notice the fellow in waders holding the Hydrolab with great care!

I will be sailing aboard NOAA Ship Rainier from Homer, Alaska, on June 20th.  Until then I have a school year to wrap up, a new puppy to train, a project with Wisconsin Sea Grant to work on and packing to get done.  There are days I’m a bit nervous about getting everything done but when NOAA Ship Rainier casts off from the pier in Homer I will be 100 percent focused on gathering the knowledge and skills that will enhance my role as an educator of students who are part of the next generation charged with the stewardship of this planet.

IMG_1564Newest addition to our family: Paavo a Finnish Lapphund Photo Credit: Lynn Drumm, Yutori Finnish Lapphunds

 

Spencer Cody: Fairweather in Transition – June 5, 2016

Spencer Cody

Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

 

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  along the coast of Alaska

Date: June 5, 2016

Weather Data from the Bridge: 

Observational Data:

Latitude: 58˚ 17.882′ N

Longitude: 134˚ 24.759′ W

Air Temp: 15˚C (59˚F)

Water Temp: 8.9˚C (48˚F)

Ocean Depth: 9.7 m (31.8 ft. at low tide)

Relative Humidity: 67%

Wind Speed: 5.2 kts (6 mph)

Barometer: 1,025 hPa (1,025 mbar)

Science and Technology Log:

Fairweather

Yes, the Fairweather needs to be prepared for everything imaginable:  spare parts, lines, tanks, survey equipment, safety equipment, tools, and more.  Preparedness is key to successful mission completion.

Now that I have been on the Fairweather for a few days I have had the opportunity to see much of the ship and learn about how it operates.  If ever there were an embodiment of the phrase newer is not always better, it might be the Fairweather.  Even though the Fairweather is approaching 50 years old, one cannot help but to attain an appreciation for the quality of her original construction and the ingenuity behind her design.  Rooms, compartments, and decks throughout the ship are designed to be watertight and to maximize fire containment.  Multiple compartments can be flooded without putting the entire ship in danger.  The ship is also designed to withstand sea ice due to its densely ribbed construction and extra think hull.  This makes the hull remarkably strong allowing the ship to cut through ice and withstand the additional pressure of ice-covered seas.

 

155_3414 (2)

One of the two massive Detroit electro-motive diesel engines that propel the ship.  Credit Tommy Meissner for the photo.

The Fairweather is built on redundancy for safety and practicality.  If one system gives out, another can be relied upon to at least allow the ship to get back to port or depending on the system continue the mission.  There are redundant systems throughout the ship involving everything from communications to essentials for sustaining the crew to navigation.  There are even redundant servers in case one set of survey data is compromised or physically damaged the other server may remain untouched.  Storage space is a premium on a ship that needs to be self-sufficient for weeks at a time to address foreseeable and unforeseeable events.  Every free space has a purpose for storing extra equipment, tools, parts, and materials.  Utility and efficiency are running themes throughout the ship.

Personal Log:

152_3311 (2)

The incoming and outgoing commanding officers read off their orders to signify the official change of command of the ship.

Dear Mr. Cody,

Onboard our ship the captain is in charge of the entire crew and ship.  People follow his orders and the chain of command to take care of the ship and its passengers.  It takes a very large crew to take care of all the passengers on a cruise ship and on such a long trip to Alaska and back.  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

The Fairweather also has a captain whose ultimately responsible for the fate of the crew and the ship. While we are in Juneau, the Fairweather is undergoing a change of command.  On Wednesday we had a change of command ceremony.  It was a day of celebration and reflection on Fairweather‘s accomplishments.  As high-level officials throughout NOAA and other organizations arrived, their arrival was announced or “piped” throughout the entire ship over the intercom system.  Later in the day we had the official change over in a special ceremony attended by all of these dignitaries and guests with NOAA Corps officers dressed in full uniform.

152_3289 (2)

The Fairweather welcoming dignitaries and guests to the Change of Command ceremony.

After everyone read their remarks on the occasion, the time of the official change over was at hand.  The Reading of Orders ceremony was carried out where both the outgoing and incoming commanding officers read their orders for their new assignments.  Insignia on each officer’s uniform was changed by the spouses officially indicating the new commanding officer and the outgoing commanding officer.  With that Lieutenant Commander Mark Van Waes replaced Commander David Zezula as the CO for the Fairweather becoming its 18th commanding officer.  As the new CO gave his arriving remarks, he reminded us that “Command of a ship is many things…it is an honor to know that the leadership of this organization places special trust in your skills and abilities to hold this position…command is a privilege; of the hundreds of those who have served aboard the Fairweather, only 18 have been the commanding officer…command is a responsibility…for the ship…to the mission…and to the people.”  The Dependents Day Cruise and Change of Command Ceremony made for an eventful week while in port in Juneau.  Now we prepare for our first hydrographic mission with our new CO.

Did You Know?

The Fairweather has a total tonnage of 1,591 tons, displacement of 1,800 tons, a length of 231 feet, and is A1 ice rated meaning it can safely navigate ice covered seas with the assistance of an ice breaker.

Can You Guess What This Is?

TrashA. power generator  B. heat sensor  C. an incinerator  D. RESON multibeam echosounder

The answer will be provided in the next post!

(The answer to the question in the last post was B. a speaking tube.  Speaking tubes or voice pipes were commonly used going back to the early 1800s to relay information from a lookout to the bridge or decks below.  They were phased out during the 20th century by sound-powered telephone networks and later communication innovations.  They continue to be used as a reliable backup to more-modern communication methods.)

Spencer Cody: 1,000 Miles or 70 Million Years, Whichever Is Closer – May 16, 2016

NOAA Teacher at Sea

Spencer Cody

Soon To Be Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016

 

Mission:  Hydrographic Survey

Geographical Area of the Cruise:  Southeast Alaska Survey

Date: May 13, 2016

Personal Log:

Dillion

Dillion packing for his trip to Alaska with his family.  Credit Suzi Vail for the photo.

Dear Mr. Cody,

I am looking forward to relaxing and having a good time.  Also, I have been on a ship two years ago which was on the Carnival Sunshine.  I’m excited to explore new things on the ship.  I’m looking forward to seeing the glaciers and seeing new things and learning new things!  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

I hope you enjoy your trip to Alaska with your family. Your cruise sounds very exciting.  We missed you on the geology trip to the Black Hills, but Mrs. Kaiser was able to find a creative way to bring you with us.  I look forward to hearing more about your trip when you get back and your continued correspondence concerning your trip.  I am sure we will have a number of things in common with our trips to Alaska.  Take care.

As I look forward to another mission with the NOAA Teacher at Sea program aboard the NOAA Ship Fairweather and the prospect of again being embedded among NOAA’s ocean research, I cannot help but to think back to our recent geology trip earlier this month and the implications of geology on geography on my next NOAA mission.  The NOAA Ship Fairweather promises to be a very different experience than my experience aboard the NOAA Ship Pisces.

Needles

While Dillion was on his Alaska trip with his family, Mrs. Kaiser found a clever way to bring him with us.  Look closely for Dillion on our tour through the Needles of the Black Hills of South Dakota.  Credit Laurel Kaiser for the photo.

The Pisces was a survey ship that usually focused on fisheries missions similar to the Reef Fish Study that I worked on in 2014 while the Fairweather represents another key component of the NOAA fleet, the hydrographic ship.  Yes, this is where geology meets mapping, and when these two come together in the ocean, it is NOAA’s task to ensure that the data needed to manage and safely navigate coastal waters is up to date and accurate.

It can be a challenge to ponder upon an obvious connection to the ocean in a state like South Dakota.  During our geology field trip this May, there were times when we were no more than a few miles from the very center of North America’s landlocked isolation.  It may be quite fitting that North America’s pole of inaccessibility, the point at which one is the farthest from every ocean shore is in the Badlands of South Dakota where 100 miles to each horizon one can look in such a place and easily be led to the conclusion that this is, indeed, an ocean-less planet that stretches endlessly into beautiful desolation.

Badlands II

If you squint you can just make out the sea shore in the distance…just kidding.  The Badlands of South Dakota are as far as one can get from all shores in North America, more than 1,000 miles in every direction.  Credit Laurel Kaiser for the photo.

But, that is the illusion of South Dakota. The reality is that we live on an ocean planet that is dominated ecologically and cyclically and in every conceivable way by a giant reservoir of water far bigger than the vastness of the great North American interior.  The reality is that ocean deposits built much of what South Dakota is today through hundreds of millions of years of deposition.  The reality is that South Dakotans are tied to the ocean in a multitude of ways, yet it slips the grasp of our awareness and often our understanding.  Imagine the challenge with our students in South Dakota who have few, if any, personal experiences to draw upon when science teachers cover oceanography and other ocean sciences in classes throughout the state.  Thankfully, programs such as NOAA’s Teacher at Sea are tremendously helpful in confronting this challenge through this valuable education and research program.

I have two primary goals during my mission:  connecting NOAA’s oceanic and atmospheric work to the classroom and connecting students to the education and vocational pathways that could potentially lead to NOAA careers.  Basically, I am to learn and document as much as I can on my mission and use this experience to enhance the education of my students and to provide access to possible careers in oceanic and atmospheric work through NOAA.  I am greatly thankful and humbled to receive such an opportunity, yet again, through the NOAA Teacher at Sea program.  This is truly another great opportunity for learning for both me and my school.

13177554_943959909055546_7135506633857238816_n

There was once an ocean here…70 million years ago.  The great North American interior is largely comprised of ocean deposits of varying composition.  Hundreds of vertical feet of this ancient marine mud, Pierre Shale, is exposed through much of West River South Dakota serving as a constant reminder of our ancient watery origins.  Credit Laurel Kaiser for the photo.

As with me I will be starting my eleventh year of teaching in Hoven this August.  I teach 7-12 science:  Earth, Life, Physical, Biology, Biology II, Chemistry, and Physics.  I am also the testing coordinator and student adviser for our school district.  Like most staff members in a small school, one must get accustomed to wearing many hats with many roles.  I enjoy teaching all of the varied sciences.  It keeps my brain entertained and occupied!  Hoven is a very nice town to live and teach in.  It reminds me a lot of growing up in Veblen, another small, rural South Dakota town.  I have always been an advocate for rural education and strongly believe that small schools like Hoven offer an exceptional learning experience for students.

Unfortunately, I will have to leave my wife, Jill, and my daughters, Teagan and Temperance, behind for a few weeks.  I will miss them and did get a little home sick the last time with their absence.

I am counting down the days until I fly out on May 29 to Juneau, Alaska, where the Fairweather will be leaving.  I am to report a week early in order to work with the crew of the Fairweather on tidal gauges.  After my work with gauges, I will embark with the Fairweather on its mission and disembark in Ketchikan, Alaska.  I am very excited about the research involved in my upcoming mission.  I look forward to learning more about the various technological aspects of the mission and will report more on the subject once I am underway.  For more information about the Fairweather, visit the Fairweather homepage.

FullSizeRender

My family and I and Einstein.