Jane Temoshok, October 24, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 24, 2001

Latitude: 19º S
Longitude: 73º W
Air Temp. 21.0º C
Sea Temp. 19.0º C
Sea Wave: < 1 ft.
Swell Wave: 1 – 3ft.
Visibility: 8 – 10 miles
Cloud cover: 6/8

Science Log

Wednesday – The Last Day of the EPIC 2001 Voyage

This is the end of Epic 2001! Actually it’s rather anti-climactic. People are packing up their belonging, finding their passports, exchanging photos, and talking about dinner plans in Arica. This has been an excellent trip for all involved. The scientists are happy, the weather cooperated, no serious injuries or illnesses were reported, and people got along. What more could you ask for?

For me this was an incredible experience, one that I shall reflect upon for a long time. I’ve been exposed to a lot of science I knew nothing about and have been inspired by some very bright thinkers. More than that though, I’ve had an opportunity to share in this project that has far-reaching consequences for the entire planet.

I’m proud to be part of a community of researchers that has been supported through NOAA and NSF. Government support of science that furthers knowledge of our planet for the betterment of all is some of the best work we can do. An outreach program that communicates the results and the excitement to the next generation ensures that this endeavor will continue into the future.

Thank you,
Jane Temoshok

Jane Temoshok, October 23, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 23, 2001

Latitude: 20º S
Longitude: 78º W
Air Temp. 16.0º C
Sea Temp. 17.0º C
Sea Wave: < 1 ft.
Swell Wave: 2 – 4 ft.
Visibility: 8 – 10 miles
Cloud cover: 8/8

Science Log

Doldrums and Horses

We are in the doldrums. It’s true. The ocean looks like a lake. No wind, no waves, nothing. I went to the captain and asked him about it, and he gave me information about doldrums and horse latitudes. Apparently there is a belt of low pressure at the ocean surface near the equator. It is usually overcast (stratus clouds again) and it is incredibly still. This was really, really bad for the sailors of the old days (no wind, no go). In fact, the horse latitudes (which are similar to the doldrums) were so named because ships that were stuck here for long periods of time used to throw their horses overboard to conserve water and lighten the load. For us though it is wonderful (love those engines!). With no wave or wind to slow us down we have made excellent time. In fact, we have slowed down on purpose (we can’t arrive in Chile too early) so the crew can go fishing. If they are successful we will have a bar-b-que on the deck tonight!

Travel Log

Just after my last webcast I went out on the deck and saw a HUGE leatherback turtle! The water was so calm it was easy to spot him. The Boson thought it was as big as a Volkswagen Beetle! Then we saw a few more off in the distance. I don’t have any reference material out here so I can’t find out much about them. So here’s your question…

Question of the day:
How large do leatherback turtles get, and what do they eat?

Only 2 more days until land,
Jane

Jane Temoshok, October 21, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 21, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 18.7º C
Sea Temp. 18.6º C
Sea Wave: 3 – 4 ft.
Swell Wave: 4 – 5 ft.
Visibility: 10 miles
Cloud cover: 5/8

Science Log

What to do when you haven’t got a clue?

This is the question that the folks in the ETL vans want you to think about. We were talking about the idea that scientists love to question the world around them and find ways of quantifying their observations and proving their theories. But another aspect of being a scientist is being a problem solver. Taniel and Duayne in the radar van were getting a “funny” reading from their computer and they didn’t know why. Could it be a malfunction in the computer or the radar? Perhaps it was raining and causing the radar to see things differently. Maybe the sensors weren’t lined up properly. There were many ideas and they had to go through each one. They agreed that to solve the problem they both had to brainstorm lots of ideas together and then rule them out one by one. In this case they also sent email to their lab in Colorado for advice. In the end they did figure it out and fix the problem. Taniel and Duayne look at it as kind of a puzzle and they keep trying until they have put it together. It’s called perseverance!

Travel Log

The science on board is just about complete. Now thoughts are turning to preparing to leave the ship on Thursday. So much of the equipment must be put away and this takes man and machine power and a lot of coordination. Remember, when we get off the ship another science group with completely different needs will be coming onboard. Most of their stuff is onboard in a big trailer that was loaded months ago in Seattle, Washington. Can you imagine packing for a trip that you won’t take for six months?

Photo descriptions: Today’s Photos: Different aspects of getting ready to depart. Boxes and crates and cranes!

Only 4 more days until land,
Jane

Jane Temoshok, October 20, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 20, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 19.7º C
Sea Temp. 18.6º C
Sea Wave: 4 – 6 ft.
Swell Wave: 4 – 6 ft.
Visibility: 8 – 10 miles
Cloud cover: 7/8

Science Log

Several students have asked about seeing the stars in the Southern Hemisphere. Well I hate to disappoint, but I haven’t seen one star on this voyage. There’s a good reason though (and it’s not because I’m in the lounge watching movies). One of the main reasons this cruise is in the Eastern Pacific is because a layer of stratus clouds almost always covers it. While that’s not good for stargazing it’s great for the atmospheric meteorologists on board. One theory is that the clouds have a cooling effect on the ocean by reflecting the solar radiation back upwards and letting little of it penetrate to the surface. But it really isn’t completely understood at this time.

Additionally the southeasterly winds in this in this area cause the surface water to move away from the coastline allowing deeper water to move up to the ocean surface, creating an upwelling current. Upwelling currents replenish the surface layers with nutrients which is why the fishing and marine life is so plentiful along the coast. The shifts in the temperature of masses of water, along with the effects of the clouds are what the scientists onboard are hoping to understand.

What I have learned on this cruise is that the study of climate is very complex and that this area is particularly important. The Eastern Pacific may hold the key to a better understanding of the processes that affect the climate of the entire globe.

Travel Journal

The Chief Engineer Mike Gowan gave me a tour of the engine rooms today. He works down in the bottom of the ship and is responsible for overseeing all the major mechanics that keep the ship moving and habitable. There are 6 huge engines, air conditioning, water filtration, and sewage systems. It was really loud and we had to wear ear protection while we toured. He is assisted by Patrick,the Junior Engineer, and June, the “oiler”. (Isn’t it great to see women in the engineering room?!) Frankly I found it hard to conceive of working in that environment on a daily basis but they sure love it.

TAS Jane Temoshok and Chief Engineer Mike.

TAS Jane Temoshok and Chief Engineer Mike.

Temoshok 10-20-01 crewpatrick

This is Junior Engineer Patrick McManos.

Temoshok 10-20-01 crewjune2

June, another crew member of the BROWN’s Engineering Department.

Temoshok 10-20-01 peopleclaudiaandjane1

TAS Jane Temoshok (L) and her roommate, Claudia (R).

Temoshok 10-20-01 brownworkingondeck

A view of the crew at work on deck.

Question of the day: How long will it take the RON BROWN to travel from here to Arica (800 miles) averaging 13 knots/hour?

Keep in touch,
Jane

Jane Temoshok, October 19, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 19, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 18.8º C
Sea Temp. 18.4º C
Sea Wave: 3 – 5 ft.
Swell Wave: 3 – 5 ft.
Visibility: 10 miles
Cloud cover: 7/8

Science Log

It’s done! Everyone was up early and out on the fantail (the aft deck) right after breakfast. Although the waves were a bit higher today the sun was bright and the temperature mild. In the complete reverse order of how the old mooring was brought in on Wednesday the new mooring was deployed. People worked from 7 this morning ’till 4 in the afternoon to get this put out properly and safely. Near the very end, after paying out close to 4000 meters of rope, the glass balls were attached, next the release valve, and lastly the anchor. The anchor consists of 3 large solid steel wheels that weigh close to 10,000 pounds! What a splash it made when it hit the water! Now there is a sense of relaxation and success. Tomorrow the onboard computers will check for signals from the mooring and then we will be on our way.

Temoshok 10-19-01 whoiglassballsdeploy4

The glass balls being deployed. The large objects by the A-frame are anchors. The left side is for the IMET Buoy and he right side is for the TAO Buoys.

Temoshok 10-19-01 whoijaneinribbest

TAS Jane Temoshok in the small boat going out to the buoy.

Temoshok 10-19-01 peoplegirlsinhardhats4

Women in hard hats on the deck: Claudia (Chile), Charlotte (France), Jane (U.S.), and Olga (U.S.) are ready to work on deck.

Travel Log

Wildlife on board

Gordy Gardipe from the engineering crew says that oftentimes seabirds fly onto deck during the night. They are attracted to the lights on the ship and they fly directly into it. Sometimes they die but sometimes they just get disoriented. Gordy has a special box that he uses to capture the bird. He waits until daylight and then sets them free. He said he used to release them right away but often they would just fly right back and do it again. That’s why he waits for sunlight.

Question of the day: What does a petral (type of sea bird) eat?

Keep in touch,
Jane

Jane Temoshok, October 18, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 18, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 21.0º C
Sea Temp. 19.0º C
Sea Wave: 2 – 3 ft.
Swell Wave: 3 – 4 ft.
Visibility: 10 miles
Cloud cover: 5/8

Science Log

What lies beneath?

This is our third day “on station” at 85 W. Since successfully retrieving the mooring yesterday most of the scientists on board have been taking apart all the scientific instruments that came up with it. Their hope is that data was recorded all year long and that now they can transfer it to their onboard computers to bring home.

Along with that many people are preparing for tomorrow’s deployment of the new buoy. There are many things to consider, such as the length of rope (4400 meters!) and the depth order in which the instruments are to be attached. Each instrument must be placed along the rope so that it hangs precisely at a certain depth. Furthermore, the barnacles that were attached to the instruments that were brought in yesterday really made it difficult to get at the sensors. So today many of us are painting the instruments with a special paint that barnacles and other sea life don’t like. It’s called “anti-foul” paint. It’s used a lot on the bottoms of boats and such and it smells really bad! Hopefully it will make the buoy unattractive to barnacles.

The most important thing to consider though is where to put the mooring. X may mark the spot on a map, but it doesn’t work in the ocean. Just like the land around you has hills and mountains and valleys and plains the ocean floor is not smooth. In general the depth of the ocean in this part of the world is 4000 to 5000 meters. But if you needed to sink something to the bottom it would be important to know that it’s not going to land on an underwater mountaintop or be pulled down into a deep valley. The Ron Brown has a type of radar called the “sea beam” that looks straight down to the bottom of the sea and sends out acoustic signals. It measures how quickly those signals bounce off the bottom and return to the ship. This tells the computer how deep it is right there. It keeps doing this so the computer can form a picture of the bottom of the sea. It actually forms a map so the scientists can “see” where to drop the anchor.

Travel Log

MYSTERY PACKAGE

Shortly after completing our “web cast” while I was still on the bridge, the ensign on duty reported seeing an object in the water. We all took up binoculars and sighted a bright orange rectangular shaped object, about the size of a shoebox, that was floating off the starboard side. The captain quickly called the crew on deck and told them to prepare to retrieve the item as the ship approached. Of coarse everyone crowded around to see it being brought on board and was speculating as to what it might be. Drugs! Money! Perhaps a love letter! Because of its bright orange wrapping it was obviously meant to be discovered. Some speculated that it was just a piece of safety equipment that had fallen off a ship. The first thing we all noticed when it was lifted on to the deck was the barnacles attached to its underside. From this we inferred it had been in the water for several months, but because of the small size of the barnacles, probably less than a year. The captain came down and used a knife to cut it open. Alas, nothing but Styrofoam inside. We felt so let down!

In my broadcast today, I said I would give a t-shirt to the first student who could identify the signal flags on the back of the shirt. Look at the photo carefully, and if you think you know the answer, send me an e-mail. Be sure to include your name and teacher’s name so I know how to contact you! Good luck.

Question of the day: Is it necessary to paint all the instruments that will hang along the rope with anti-foul. Should the ones hanging at 50 meters get the same amount as those that hang at 500 meters or 1500 meters? Why or why not?

Photo descriptions: This is my roommate Claudia and a scientist from Ecuador helping paint the instruments with Anti-Foul Paint.

Temoshok 10-18-01 paintinginstruments

This is a photo of the Sea Beam Radar that is mapping the floor of the ocean underneath the ship.

Temoshok 10-18-01 seabeam

Here are 2 photos of the mystery package that turned out to be nothing!

Look carefully at the signal flags on the T-shirt. Do you know what letter each flag signals?

Temoshok 10-18-01 tshirtflags

Keep in touch,
Jane

Jane Temoshok, October 17, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 17, 2001

Latitude: 10º S
Longitude: 85º W
Air Temp. 19.2º C
Sea Temp. 18.6º C
Sea Wave: 2 – 3 ft.
Swell Wave: 3 – 4 ft.
Visibility: 10 miles
Cloud cover: 5/8

Science Log

Mooring Retrieval Day

Did you know that glass floats? Well it does when it’s round like a balloon and full of air. Try putting a holiday ornament in a bowl of water. Did you know that glass can be stronger than steel? Well it is. That’s why 80 air filled glass balls, each 17 inches in diameter, were attached to the anchor that was holding the mooring in place at 10S, 85W. They had to be strong enough to withstand the incredible pressure at 4000 m. below the surface. But when an acoustic signal was sent out to the hook that was holding the rope to the anchor, the hook released the anchor to the bottom of the sea and the balls floated to the surface in one big group. That was the first step in retrieving the mooring.

The big deal with getting the mooring on board the ship is that it all weighs so much. Just imagine the thick rope leading from the surface all the way down to the anchor. The rope alone weighs thousands of pounds! All along the rope there are science instruments that have been collecting and storing data about things like current, temperature, and salinity. So when the glass balls floated the bottom end of the rope, it allowed us to pull it in from the bottom up. A small orange boat called a RHIB (rigid hull inflatable boat) was sent out to hook onto the balls and guide them to the ship. They were hoisted onto the deck of the ship using a big winch. Take a look at all the simple machines in the photos! Pulleys, levers, inclined planes, wheels with axels, and so much more. Slowly the rope was brought in and wrapped along a big spool. Each instrument was carefully detached and catalogued. They will be carefully transported back to Dr. Weller’s laboratory in Massachusetts where the information will be studied. The instruments from lower end of the rope came up nice and clean. The instruments that were attached to the middle part of the rope had a few creatures stuck on to them. But the instruments near the surface were covered with crabs and mussels and barnacles! How did they get there? Remember that the food chain often starts off quite small. The barnacles that you see in the photo started off as really tiny “plankton” that drift around until it finds something to attach itself to (like the rope!). Then they start to grow, attracting other sea creatures to feed off of them. In no time at all there is a complete food chain living on and around the buoy.

When most of the rope was onboard the RHIB went back out to secure the mooring. This time I got to ride along! It was thrilling to be in such a little boat so far away from the RON BROWN. Even though the sea wave height was only 3 – 4 feet, the little boat got really knocked around! It was like an amusement park ride! You can see that I’m wearing my safety vest and hardhat and I’m holding on tight! We guided the mooring to the ship and then a big crane took hold of it and lifted it onto the deck. Finally the mooring was on board.

 

Travel log:

Today was a big day on board the RON BROWN. The mooring that was set out here a year ago was located and retrieved. To the uninitiated that may not sound like the biggest deal, but it really is an unbelievable undertaking that requires a lot of forethought, communication, equipment, and muscle. The safety aspects alone require so much preparation. Fortunately it was a successful retrieval and no one was hurt. Now we get to look forward to cleaning the instruments of all those barnacles!

Science fact: The “glue” by which a barnacle sticks (adheres) to something is one of the strongest adhesives known to man!

Keep in touch,
Jane