DOE Genomes
Human Genome Project Information  Genomics:GTL  DOE Microbial Genomics  home
-
HGP Home
Human Genome News Archive Edition

  Vol.10, No.1-2   February 1999
Available in PDF 
 
In this issue... 

Genome Project 
U.S. HGP on Fast Track 
DOE Joint Genome Institute Exceeds Goal 
New 5-Year Goals 
Faster Sequencing with BACs 
Mapping with STCs and STSs 
Availability of BAC Clones and STC Data 
BAC Related Websites 
BAC Resource Success Story 
Scientists Hunt SNPs for Variation, Disease 
Who's Sequencing the Human Genome? 
Genomics Progress in Science 
EMSL Promotes Remote Access to Instrumentation 
Second Private-Sector Sequencing Project 
GeneMap'98 

In the News 
Team Delivers C. elegans Sequence 
Why Sequence Entire Genomes? Worm's Eye View 
Embnet.news on Web 
European Biotech Program 
DOE BER Research Update 
Hollaender Fellows Named 
SBIR 1998 Human Genome Awards Announced 
Mouse Resources 
Mouse Consortium for Functional Genomics 
Chlamydia Genome Analysis 
HUGO Merges Offices, Web Sites 

Microbial Genomics 
Superbug Deinococcus radiodurans 
Unfinished Microbial Genomes Searchable 
TIGR Releases Chlorobium tepidum Sequence 
DOE MGP Abstracts Online 
Microbial TV Series 
 
Ethical, Legal, and Social Issues and Educational Resources 
Cambridge ELSI Symposium 
Eric Lander, Genetics in the 21st Century 
Mark Rothstein, Genetic Privacy 
James Wilson, Gene Therapy Present & Future 
LeRoy Walters, Ethical Issues in Gene Therapy 
DNA Files on NPR, Internet 
Innovative Biotechnology Curriculum 
Short Course for Biology Teachers 
Microbial TV Series 

Proteomics 
Looking at Proteins to Understand Expression 
2-DGE:  Protein Visualization, Modification 
Tool for Protein Analysis 
TREMBL Release 6 
R&D 100 Award Goes to LANL's SOLVE 
NIH Awards Proteomics Grant to Axys 
E. coli Proteome Database 

Genetics in Medicine 
National Organization for Rare Disorders 
Translation of Genetics to Medicine: New Website 
Cancer Genetics Web Site 
HuGem Website Offers Education in New Genetics 
Calculation of Genetic Risks 2nd Edition 
New Genetics Manual Offered 
Mutation Research Genomics Online 
 
Informatics 
GDB Database Operations Restored 
In Silico Biology: Bioinformatics Journal 
Computational Methods Book Available 
Bioinformatics Guide
BioToolKit
Gene-Finding Programs at Sanger
New Sequin Version
Tandem Repeat Tool
Sequence Viewer
SmithKline Licenses Gene Logic Software 
Influenza Database at LANL 
TRANSFAC Database 
p53 Mutation Database 
TBASE at Jackson Laboratory 
Intein Database on Web 
System Identifies Polymorphisms 

Web, Other Resources, Publications 
1999 Oakland Workshop Website 
Launchpad to Human Chromosomes 
Nature Genetics Supplement 

Funding 
DOE Office of Science Grants and Contracts 
NHGRI National Service Award Fellowships 
NCI Technologies for Molecular Analysis 
NIH: Netork for Large-Scale Mouse Sequencing 
NHGRI: Genomic Technology Development 
US Genome Research Funding 

Meeting Calendars & Acronyms 
Genome and Biotechnology Meetings 
Training Courses and Workshops 
Acronyms 


HGN archives and subscriptions 
HGP Information home

International Team Delivers C. elegans Sequence

Major HGP Milestone Offers First Whole-Genome View of a Multicellular Animal

For the first time, scientists have the nearly complete genetic instructions for an animal that, like humans, has a nervous system, digests food, and reproduces sexually. The 97-million-base genome of the tiny roundworm Caenorhabditis elegans was deciphered by an international team led by Robert Waterston (Washington University School of Medicine, St.Louis) and John Sulston (Sanger Centre, Cambridge, England). The work was reported in a special issue of the journal Science (December 11, 1998) that featured six articles describing the history and significance of the accomplishment and some early sequence-analysis results.

Although sequencing has been almost completed, investigators pointed out that analysis and annotation will continue for years, facilitated by more information and better technologies. "We have provided biologists with a powerful new tool to experiment with and learn how genomes function," said Waterston. Obtaining genomic sequence, they noted, is more a beginning than an end.

C. elegans and the 12-Mb genome of the budding yeast Saccharomyces cerevisiae (completed in 1996) represent the only eukaryotes completely sequenced thus far. The two genomes are being compared in an attempt to identify elements essential for eukaryotic life and the genetic requirements for progression from a unicellular to multicellular existence. Eukaryotes, which include plants and animals, are the most complex of the three major branches of life on earth. The other branches are the least complex prokaryotes (bacteria) and the moderately complex Archaea, which share features with both other branches.

During its 2- to 3-week life span in the dirt of temperate regions, the benign C. elegans carries out many of the same processes as humans. Unlike the much smaller microbes sequenced so far, it begins life as a single fertilized cell that undergoes a series of divisions as it grows into an adult animal, forming complex tissues and organ systems. Researchers have found it particularly useful for studying early development, neurobiology, and aging --processes that have parallels in human biology.

The 9-year sequencing project required 2 million individual "reads" performed on DNA sequencing instrumentation to spell out the worm DNA sequence, 500 bases at a time. It began with the development of a clone-based physical map to facilitate gene analysis and grew into a collaboration among C. elegans Sequencing Consortium members and the entire international community of C. elegans researchers. In addition to the nuclear genome-sequencing effort, other researchers sequenced its 15-kb mitochondrial genome and carried out extensive cDNA analyses that facilitated gene identification. Free data exchange and immediate data release have been hallmarks of the project, which has been a model for cooperation and sharing among Human Genome Project researchers.

The first of a two-part sequencing process used to parse the C. elegans genome was the "shotgun" sequencing of randomly chosen subclones (each only a small piece of a much larger cloned DNA molecule). The finishing phase used a more ordered (directed) sequencing strategy to close specific remaining gaps and resolve ambiguities. Members of the Sequencing Consortium noted that, were they to begin the project again today, they would use the same combination strategy but with larger bacterial clones such as BACs. This is the strategy currently being used for large-scale human genome sequencing in the HGP (p. 4). Although tools for both sequencing phases have improved greatly over the years, finishing remains labor intensive.

The magnitude of this effort underscores the challenge of sequencing the human genome, which is some 30 times larger than that of C. elegans. Methods and data from the work are helping researchers sequence and interpret the human genome. In fact, a significant amount of production sequencing occurs at Washington University and the Sanger Centre.

Early analysis highlights the importance of sequencing entire genomes for finding all genes and understanding the function of nonprotein-coding DNA regions in the genomes of such eukaryotic organisms as humans and roundworms (see Why Sequence Entire Genomes?). The C. elegans genome is packaged into 6 chromosomes containing about 19,000 genes, several times the number originally predicted by classical genetics experiments. About 40% of identified genes match those of other organisms, including humans. Like the human genome, C. elegans contains large amounts of repeated DNA that does not encode proteins but probably plays a role in chromosome function, gene organization, or regulation of gene activity. The C. elegans project was funded by NIH and the Medical Research Council (U.K.). [Denise Casey, HGMIS]

C. elegans Data
Notes associated with the Science paper and links to data resources are on the sites listed below:
WUSTL Genome Sequencing Center
Sanger Center


The electronic form of the newsletter may be cited in the following style:
Human Genome Program, U.S. Department of Energy, Human Genome News (v10n1-2).

Return to Top of Page

Acronym List

Send the url of this page to a friend


Last modified: Wednesday, October 29, 2003

Home * Contacts * Disclaimer

Base URL: www.ornl.gov/hgmis

Office of Science Site sponsored by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research, Human Genome Program