Skip navigation to main content. National Renewable Energy Laboratory Ocean Thermal Energy Conversion NREL Home OTEC Home
What is Ocean Thermal Energy Conversion?
Achievements
Needed Research
Design and Location
Benefits
Markets
Applications
Resources

Achievements in OTEC Technology

Natural Energy Laboratory

In 1881, Jacques Arsene d'Arsonval, a French physicist, was the first to propose tapping the thermal energy of the ocean. Georges Claude, a student of d'Arsonval's, built an experimental open-cycle OTEC system at Matanzas Bay, Cuba, in 1930. The system produced 22 kilowatts (kW) of electricity by using a low-pressure turbine. In 1935, Claude constructed another open-cycle plant, this time aboard a 10,000-ton cargo vessel moored off the coast of Brazil. But both plants were destroyed by weather and waves, and Claude never achieved his goal of producing net power (the remainder after subtracting power needed to run the system) from an open-cycle OTEC system.

Then in 1956, French researchers designed a 3-megawatt (electric) (MWe) open-cycle plant for Abidjan on Africa's west coast. But the plant was never completed because of competition with inexpensive hydroelectric power. In 1974 the Natural Energy Laboratory of Hawaii (NELHA, formerly NELH), at Keahole Point on the Kona coast of the island of Hawaii, was established. It has become the world's foremost laboratory and test facility for OTEC technologies.

In 1979, the first 50-kilowatt (electric) (kWe) closed-cycle OTEC demonstration plant went up at NELHA. Known as "Mini-OTEC," the plant was mounted on a converted U.S. Navy barge moored approximately 2 kilometers off Keahole Point. The plant used a cold-water pipe to produce 52 kWe of gross power and 15 kWe net power.

Natural Energy Laboratory

In 1980, the U.S. Department of Energy (DOE) built OTEC-1, a test site for closed-cycle OTEC heat exchangers installed on board a converted U.S. Navy tanker. Test results identified methods for designing commercial-scale heat exchangers and demonstrated that OTEC systems can operate from slowly moving ships with little effect on the marine environment. A new design for suspended cold-water pipes was validated at that test site. Also in 1980, two laws were enacted to promote the commercial development of OTEC technology: the Ocean Thermal Energy Conversion Act, Public Law (PL) 96-320, later modified by PL 98-623, and the Ocean Thermal Energy Conversion Research, Development, and Demonstration Act, PL 96-310.

At Hawaii's Seacoast Test Facility, which was established as a joint project of the State of Hawaii and DOE, desalinated water was produced by using the open-cycle process. And a 1-meter-diameter cold-seawater/0.7-meter-diameter warm-seawater supply system was deployed at the Seacoast Test Facility to demonstrate how large polyethylene cold-water pipes can be used in an OTEC system.

In 1981, Japan demonstrated a shore-based, 100-kWe closed-cycle plant in the Republic of Nauru in the Pacific Ocean. This plant employed cold-water pipe laid on the sea bed to a depth of 580 meters. Freon was the working fluid, and a titanium shell-and-tube heat exchanger was used. The plant surpassed engineering expectations by producing 31.5 kWe of net power during continuous operating tests.

Later, tests by the U.S. DOE determined that aluminum alloy can be used in place of more expensive titanium to make large heat exchangers for OTEC systems. And at-sea tests by DOE demonstrated that biofouling and corrosion of heat exchangers can be controlled. Biofouling does not appear to be a problem in cold seawater systems. In warm seawater systems, it can be controlled with a small amount of intermittent chlorination (70 parts per billion per hour per day).

Vertical-Spout Evaporator

In 1984, scientists at a DOE national laboratory, the Solar Energy Research Institute (SERI, now the National Renewable Energy Laboratory), developed a vertical-spout evaporator to convert warm seawater into low-pressure steam for open-cycle plants. Energy conversion efficiencies as high as 97% were achieved. Direct-contact condensers using advanced packings were also shown to be an efficient way to dispose of steam. Using freshwater, SERI staff developed and tested direct-contact condensers for open-cycle OTEC plants.

British researchers, meanwhile, have designed and tested aluminum heat exchangers that could reduce heat exchanger costs to $1500 per installed kilowatt capacity. And the concept for a low-cost soft seawater pipe was developed and patented. Such a pipe could make size limitations unnecessary, as well as improve the economics of OTEC systems.

Open-Cycle OTEC Plant

In May 1993, an open-cycle OTEC plant at Keahole Point, Hawaii, produced 50,000 watts of electricity during a net power-producing experiment. This broke the record of 40,000 watts set by a Japanese system in 1982. Today, scientists are developing new, cost-effective, state-of-the-art turbines for open-cycle OTEC systems.


Skip footer to end of page.