National Peanut Research Lab Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
Peanut Biodiesel
Mycotoxin Research
Production Research
Post Harvest Research
Expert Systems
Chemistry
Peanut Breeding and Genetics
Biochemistry
UPPT
 

Research Project: Control Mechanisms for Mycotoxin Prevention in Peanuts and Their Rotation Crops

Location: National Peanut Research Lab

Title: Distribution of mating-type genes correlates with genetic recombination and aflatoxin chemotype diversity in worldwide populations of Aspergillus flavus and A. parasiticus

Authors
item Moore, Geromy -
item Horn, Bruce
item Elliott, Jacalyn -
item Hell, Kerstin -
item Chulze, Sofia -
item Barros, German -
item Wright, Graeme -
item Naik, Manjunath -
item Carbone, Ignazio -

Submitted to: Meeting Proceedings
Publication Type: Abstract
Publication Acceptance Date: March 20, 2009
Publication Date: April 8, 2009
Citation: Moore, G.G., Horn, B.W., Elliott, J.L., Hell, K., Chulze, S.N., Barros, G., Wright, G., Naik, M.K., Carbone, I. 2009. Distribution of mating-type genes correlates with genetic recombination and aflatoxin chemotype diversity in worldwide populations of Aspergillus flavus and A. parasiticus. Meeting Proceedings.

Interpretive Summary: none required.

Technical Abstract: Aflatoxins are toxic polyketides produced by several Aspergillus species that contaminate food crops worldwide. Aspergillus flavus and A. parasiticus are the most common agents of aflatoxin contamination of oil-rich crops. The genes involved in aflatoxin biosynthesis are clustered and convert acetate and malonate to aflatoxins B1, B2, G1, and G2. We determined the frequency of the MAT1-1 and MAT1-2 mating-type genes in A. parasiticus and A. flavus sampled from single peanut fields in the United States (Georgia), Africa (Benin), Argentina, Australia, and India. Population samples for each species were clone corrected using multilocus sequence typing, which included two aflatoxin cluster regions (hypE and aflW/aflX), three non-cluster genes (trpC, amdS and a hypothetical protein encoding gene), and the MAT gene. Analysis of molecular sequence variation across 21 intergenic regions in the aflatoxin gene clusters of A. flavus and A. parasiticus revealed significant linkage disequilibrium (LD) organized into distinct blocks. To determine whether sexual reproduction gives rise to recombination blocks, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 in populations sampled from each locality/species using a two-sided binomial test. For both A. flavus and A. parasiticus, when the number of MAT1-1 and MAT1-2 was significantly different in both corrected and uncorrected samples, there was more extensive LD in the cluster and isolates grouped into specific chemotypes, either the nonaflatoxigenic class in A. flavus or the B1-dominant and G1-dominant classes in A. parasiticus. In A. flavus, a 1:1 distribution of MAT genes reduces the frequency of nonaflatoxigenic strains and increases the resolution of LD blocks. In A. parasiticus, sexual reproduction and recombination reduces the frequency of B1-dominant and G1-dominant chemotypes, and isolate G1/B1 ratios show a continuous distribution in the population.

   

 
Project Team
Dorner, Joe
Lamb, Marshall
Sobolev, Victor
Horn, Bruce
 
Publications
   Publications
 
Related National Programs
  Food Safety, (animal and plant products) (108)
 
 
Last Modified: 05/09/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House