Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health www.cancer.gov
CCR - For Our Staff| Home |

Our Science – Maurizi Website

Michael Maurizi, Ph.D.

Selected Publications

1)  Lies M, Maurizi MR.
Turnover of endogenous SsrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli.
J. Biol. Chem. 283: 22918-29, 2008.
[Journal]
2)  Maurizi M.
Structure and function of ATP-dependent Clp proteases. In: ATP-Dependent Proteases in Biological Regulation. Volume .
2007. In Press. [Book Chapter]
3)  Granot Z, Kobiler O, Melamed-Book N, Eimerl S, Bahat A, Lu B, Braun S, Maurizi MR, Suzuki CK, Oppenheim AB, Orly J.
Turnover of mitochondrial Steroidogenic Acute Regulatory (StAR) Protein by Lon Protease: the Unexpected Effect of Proteasome Inhibitors.
Mol Endocrinol. 21: 2164-2177, 2007.
[Journal]
4)  Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A.
Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains.
Protein Sci. 15: 1815-28, 2006.
[Journal]
5)  Szyk A, Maurizi MR.
Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site.
J Struct Biol. 156: 165-74, 2006.
[Journal]
6)  Li M, Rasulova F, Melnikov EE, Rotanova TV, Gustchina A, Maurizi MR, Wlodawer A.
Crystal structure of the N-terminal domain of E. coli Lon protease.
Protein Sci. 14: 2895-900, 2005.
[Journal]
7)  Kang SG, Dimitrova MN, Ortega J, Ginsburg A, Maurizi MR.
Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX.
J. Biol. Chem. 280: 35424-32, 2005.
[Journal]
8)  Piszczek G, Rozycki J, Singh SK, Ginsburg A, Maurizi MR.
The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer.
J Biol Chem. 280: 12221-30, 2005.
[Journal]
9)  Kang SG, Maurizi MR, Thompson M, Mueser T, Ahvazi B.
Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP.
J. Struct. Biol. 148: 338-35, 2004.
[Journal]
10)  Ortega J, Lee HS, Maurizi MR, Steven AC.
ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes.
J. Struct. Biol. 146: 217-226, 2004.
[Journal]
11)  Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A.
Crystal structure of the AAA(+) alpha domain of E. coli Lon protease at 1.9A resolution.
J Struct Biol. 146: 113-22, 2004.
[Journal]
12)  Xia D, Esser L, Singh SK, Guo F, Maurizi MR.
Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone.
J Struct Biol. 146: 166-79, 2004.
[Journal]
13)  Botos I, Melnikov EE, Cherry S, Tropea JE, Khalatova AG, Rasulova F, Dauter Z, Maurizi MR, Rotanova TV, Wlodawer A, Gustchina A.
The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site.
J Biol Chem. 279: 8140-8, 2004.
[Journal]
14)  Ishikawa T, Maurizi MR, Steven AC.
The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP protease.
J Struct Biol. 146: 180-8, 2004.
[Journal]
15)  Ortega J, Lee HS, Maurizi MR, Steven AC.
Alternating translocation of protein substrates from both ends of ClpXP protease.
EMBO J. 21: 4938-49, 2002.
[Journal]
16)  Maurizi MR, Xia D.
Protein binding and disruption by Clp/Hsp100 chaperones.
Structure (Camb). 12: 175-83, 2004.
[Journal]
17)  Maurizi MR.
Love it or cleave it: tough choices in protein quality control.
Nat Struct Biol. 9: 410-2, 2002.
[Journal]
18)  Guo F, Esser L, Singh SK, Maurizi MR, Xia D.
Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA.
J Biol Chem. 277: 46753-62, 2002.
[Journal]
19)  Guo F, Maurizi MR, Esser L, Xia D.
Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease.
J Biol Chem. 277: 46743-52, 2002.
[Journal]
20)  Singh SK, Rozycki J, Ortega J, Ishikawa T, Lo J, Steven AC, Maurizi MR.
Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
J Biol Chem. 276: 29420-9, 2001.
[Journal]
21)  Kang SG, Ortega J, Singh SK, Wang N, Huang NN, Steven AC, Maurizi MR.
Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP.
J Biol Chem. 277: 21095-102, 2002.
[Journal]
22)  Gottesman S, Maurizi MR.
Cell biology. Surviving starvation.
Science. 293: 614-5, 2001.
[Journal]
23)  Zhou Y, Gottesman S, Hoskins JR, Maurizi MR, Wickner S.
The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
Genes Dev. 15: 627-37, 2001.
[Journal]
24)  Ortega J, Singh SK, Ishikawa T, Maurizi MR, Steven AC.
Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP.
Mol. Cell. 6: 1515-21, 2000.
[Journal]
25)  Ishikawa T, Maurizi MR, Belnap D, Steven AC.
Docking of components in a bacterial complex.
Nature. 408: 667-8, 2000.
[Journal]
26)  Gonzalez M, Rasulova F, Maurizi MR, Woodgate R.
Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability.
EMBO J. 19: 5251-8, 2000.
[Journal]
27)  Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR.
Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP.
Proc. Natl. Acad. Sci. U.S.A. 97: 8898-903, 2000.
[Journal]
28)  Hoskins JR, Singh SK, Maurizi MR, Wickner S.
Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP.
Proc. Natl. Acad. Sci. U.S.A. 97: 8892-7, 2000.
[Journal]

This page was last updated on 9/11/2008.