FDA Logo U.S. Food and Drug AdministrationCenter for Food Safety and Applied Nutrition
U.S. Department of Health and Human Services
horizontal rule

July 19, 2005

horizontal rule

Quantitative Risk Assessment on the Public Health Impact of
Pathogenic Vibrio parahaemolyticus in Raw Oysters

Table of Contents

EXECUTIVE SUMMARY

Background

The Food and Drug Administration (FDA) conducted a quantitative risk assessment to characterize the factors influencing the public health impact associated with the consumption of raw oysters containing pathogenic Vibrio parahaemolyticus. This effort was initiated in January 1999 and a draft risk assessment was made available for public comment in 2001. The risk assessment was conducted in response to four outbreaks in 1997 and 1998 in the United States involving over 700 cases of illness. These outbreaks renewed concern for this pathogen as a serious foodborne threat to public health and raised new concerns about the effectiveness of risk management guidance available at that time. These outbreaks also raised questions about the criteria used to close and reopen shellfish waters to harvesting and the FDA guidance for the maximum number of V. parahaemolyticus per gram in shellfish.  FDA decided to conduct a quantitative risk assessment to provide new insights into how to better manage the presence of this pathogenic microorganism in shellfish.

This risk assessment focused on raw oysters, because that is the food in the United States predominately linked to illness from this pathogen. The risk assessment gathers available knowledge of V. parahaemolyticus in a systematic manner, and includes sophisticated, mathematical models. The levels of the pathogen in oysters were estimated beginning with harvest of the oysters through post-harvest handling, processing, and storage to predict human exposure from consumption of raw oysters and subsequent illnesses. The number of illnesses (on a per serving and a per year basis) were predicted for six regions in the United States and each season for a total of 24 region/season combinations. Total cases of illness include both gastroenteritis and septicemia.  In addition, the probability of gastroenteritis progressing to septicemia in individuals with underlying medical conditions (such as diabetes, alcoholic liver disease, hepatitis, and those receiving immunosuppressive treatments for cancer or AIDS) was compared to that of healthy individuals. Once developed, the baseline model was used to develop "what-if" scenarios to evaluate the likely impact of potential intervention strategies on the exposure to pathogenic V. parahaemolyticus from consumption of raw oysters.

Vibrio parahaemolyticus is a gram-negative, salt tolerant bacterium that occurs naturally in estuaries. It has been long recognized as an important bacterial seafood-borne pathogen throughout the world. It was first isolated and implicated in an outbreak of food poisoning in Japan in 1950. Vibrio parahaemolyticus has been associated with outbreaks and individual cases of illness in the United States since 1969. These bacteria are normally present in many types of raw seafood, including fish, crustaceans, and molluscan shellfish. The microorganism concentrates, colonizes, and multiplies in the gut of filter-feeding molluscan shellfish such as oysters, clams, and mussels. Not all strains of V. parahaemolyticus cause illness; on the contrary, pathogenic strains represent a small percentage of the total V. parahaemolyticus present in the environment or seafood.

Scope and General Approach

This risk assessment is a quantitative product pathway analysis in which the key steps from harvest through post-harvest handling and processing to consumption were modeled. The likelihood of illness following exposure to pathogenic V. parahaemolyticus from consumption of raw oysters was calculated. The levels of V. parahaemolyticus in oysters at the time of consumption are influenced by the harvest methods and conditions, as well as the handling of oysters after harvest. These practices and conditions vary considerably among different geographic areas and at different times of year. The baseline risk assessment model was also used to estimate the likely impact of intervention strategies (referred to as "what-if" scenarios) on the predicted number of illnesses.

The risk assessment considered six oyster harvest regions and four seasons for a total of 24 region/season combinations. The oyster harvest regions included: Gulf Coast (Louisiana), Gulf Coast (non-Louisiana), Mid-Atlantic, Northeast Atlantic, Pacific Northwest (Dredged) and Pacific Northwest (Intertidal). In the Gulf Coast, the harvest duration (i.e., the time between removal of the oyster from the water to unloading them at the dock) for Louisiana is typically much longer than for other states in that region (Florida, Mississippi, Texas, and Alabama). Since harvest duration can affect the levels of V. parahaemolyticus in raw oysters, the Gulf Coast was divided into two distinct regions. Likewise, the Pacific Northwest was divided into two distinct regions, but in this case it was based on harvest methods, dredging and intertidal. Oysters harvested in intertidal areas are typically exposed to higher temperatures before refrigeration than those harvested using dredging. For the intertidal harvest method, oysters are hand-picked when oyster reefs are exposed during the tide cycle and left in baskets until the tide rises to a sufficient depth to allow a boat to retrieve the basket.

The risk assessment had two main objectives:

Data for this risk assessment were obtained from many sources, including both published and unpublished scientific literature and reports produced by various organizations such as State shellfish control authorities, the Centers for Disease Control and Prevention (CDC), the shellfish industry, the Interstate Shellfish Sanitation Conference (ISSC), and State Health Departments. In some instances the conduct of the risk assessment required that assumptions be made when data were incomplete. To the extent possible, research was specifically undertaken during the period between issuing the original draft and the current version to address data gaps previously identified. These new data have been incorporated into the risk assessment.

Results

The model predicts illnesses (gastroenteritis alone and gastroenteritis followed by septicemia) associated with the consumption of V. parahaemolyticus in raw oysters for the 24 region/season combinations. Summary Table 1 provides the risk on a "per serving basis" (i.e., the risk of becoming ill per serving of raw oysters) and Summary Table 2 provides the risk on a "per annum basis" (i.e., the predicted number of illnesses per year).

Summary Table 1. Predicted Mean Risk per Serving Associated with the Consumption of Pathogenic Vibrio parahaemolyticus in Raw Oysters
Region Mean Risk Per Servinga
Summer Fall Winter Spring Total
Gulf Coast (Louisiana) 4.4 x 10-4 4.3 x 10-5 2.1 x 10-6 1.7 x 10-4 6.6 x 10-4
Gulf Coast (Non-Louisiana)b 3.1 x 10-4 1.9 x 10-5 1.1 x 10-6 1.2 x 10-4 4.5 x 10-4
Mid-Atlantic 9.2 x 10-5 2.2 x 10-6 1.1 x 10-8 3.1 x 10-5 1.3 x 10-4
Northeast Atlantic 1.8 x 10-5 4.0 x 10-7 1.1 x 10-8 3.6 x 10-6 2.2 x 10-5
Pacific Northwest (Dredged) 1.0 x 10-5 2.6 x 10-8 8.1 x 10-10 8.7 x 10-7 1.1 x 10-5
Pacific Northwest (Intertidal)c 1.4 x 10-4 3.9 x 10-7 1.7 x 10-9 1.3 x 10-5 1.5 x 10-4

a Risk per serving refers to the predicted risk of an individual becoming ill (gastroenteritis alone or gastroenteritis followed by septicemia) when he or she consumes a single serving of raw oysters.
bIncludes oysters harvested from Florida, Mississippi, Texas, and Alabama. The time from harvest to refrigeration in these states is typically shorter than for Louisiana.
cOysters harvested using intertidal methods are typically exposed to higher temperature for longer times before refrigeration compared with dredged methods.


Summary Table 2. Predicted Mean Annual Number of Illnesses Associated with the Consumption of Vibrio parahaemolyticus in Raw Oysters
Region Mean Annual Illnessesa
Summer Fall Winter Spring Total
Gulf Coast (Louisiana) 1,406 132 7 505 2,050
Gulf Coast (Non-Louisiana)b 299 51 3 193 546
Mid-Atlantic 7 4 <1 4 15
Northeast Atlantic 14 2 <1 3 19
Pacific Northwest (Dredged) 4 <1 <1 <1 4
Pacific Northwest (Intertidal)c 173 1 <1 18 192
TOTAL 1,903 190 10 723 2,826

a Mean annual illnesses refers to the predicted number of illnesses (gastroenteritis alone or gastroenteritis followed by septicemia) in the United States each year.
b Includes oysters harvested from Florida, Mississippi, Texas, and Alabama. The time from harvest to refrigeration in these states is typically shorter than for Louisiana.
c Oysters harvested using intertidal methods are typically exposed to higher temperature for longer times before refrigeration compared with dredged methods.

Below are the responses to the questions that the risk assessment team was charged with answering.

What is known about the dose-response relationship between consumption of Vibrio parahaemolyticus and illnesses?

What is the frequency and extent of pathogenic strains of Vibrio parahaemolyticus in shellfish waters and in oysters?

What environmental parameters (e.g., water temperature, salinity) can be used to predict the presence of Vibrio parahaemolyticus in oysters?

How do levels of Vibrio parahaemolyticus in oysters at harvest compare to levels at consumption?

What is the role of post-harvest handling on the level of V. parahaemolyticus in oysters?

What reductions in risk can be anticipated with different potential intervention strategies?

Conclusions

Although the risk assessment modeled sporadic V. parahaemolyticus illnesses, steps taken to reduce sporadic cases from TDH+ strains could also proportionally reduce the size of outbreaks. However, some outbreak strains (e.g., O3:K6) may be more resistant to mitigations than endemic V. parahaemolyticus strains and may also require fewer cells to cause illness. The risk assessment illustrates that the levels of V. parahaemolyticus at-harvest play an important role in causing human illness. However, other factors that either reduce or allow growth of V. parahaemolyticus in oysters are also important in determining the number of illnesses. For example, shortening the time-to-refrigeration of oysters in the summer controls growth of V. parahaemolyticus in oysters and subsequently reduces illnesses associated with this microorganism.

The results of this risk assessment are influenced by the assumptions and data sets that were used to develop the Exposure Assessment and Dose-Response models. The predicted risk for illness among consumers of raw oysters and the most significant factors which influence the incidence of illness could change as a result of future data obtained from continuing surveillance studies. It is anticipated that periodic updates to the model when new data and knowledge become available will continue to reduce the degree of uncertainty associated with the factors that influence the risk, and that this will assist in making the best possible decisions, policies, and measures for reducing the risk posed by V. parahaemolyticus in raw oysters. This risk assessment provides an understanding of the relative importance and interactions among the factors influencing risk. It will hopefully provide a useful tool to facilitate the formulation of effective guidance and requirements and the evaluation of risk mitigation strategies.


Table of Contents

horizontal rule
horizontal rule