Provided by the NOAA Arctic Research Office
Intro | Leg1 | Leg2 | Cruise Report | Station Log | Photos

RUSCALA

Distribution of Methane in the Water Column and Bottom Sediments of the Bering Strait and Chukchi Sea.

Alexander Savvichev1, Igor Rusanov 1& Kathleen Crane2

1 Institute of Microbiology, Russian Academy of Sciences

2 Arctic Research Office, National Oceanic and Atmospheric Administration

 

One anticipated consequence of a warming climate in the Arctic Region is the enhanced release of gaseous methane from the subjacent permafrost. High methane concentration in the water column and/or sediments may also be indicative of both the nearby presence of gas deposits or microbial activity in the environment.  Because methane is an important indicator of climate change, the RUSALCA expedition measured methane levels in both the water column and sediments. 

 

To carry out the methane analysis, water samples were extracted from the Woods Hole rosette system’s bottles and 2-cm3 sub-sections of wet sediments taken from bottom grabs and cores, were placed into a glass vial, 30 cm3 in volume. The sediment was flooded with 1 M KOH solution, leaving 3 cm3 of the bottle volume free and covered by Balch rubber stopper (a headspace technique adapted by Egorov and Ivanov, 1998). After the water and gas phases mixed establishing phase equilibrium, a syringe for chromatographic analysis collected 0.25 ml of the headspace gas. For this purpose, a Chrom-5 with a flame ionization detector was used.

 

Figure 1. Methane concentration in water, depth 40-50 m, ul/l

In the water column of the Bering Strait and southern Chukchi Sea, the contents of methane varied from 0.14 to 0.43 µl/l (Table. 1). The methane content in the surface layer of the water column was minimal and corresponded to СН4 partial pressure in the atmosphere above. The greatest amount of methane was detected in bottom water of St. 24 and 25 (on the transect from the Chukotka Peninsula and Cape Lisburne in Alaska) (Figure 1). Methane was also measured in the northwestern Chukchi Sea along the Herald Canyon.  Methane concentrations in this region exceeded concentrations in the water column of the Bering Strait, rising to 0.92 – 1.14 µl СН4/l at the northern station 89-R at a depth of 40 m.   Samples were not taken outside the Herald Canyon, so it is not known if this is a localized event confined to the fault-bounded “canyon” or is part of a much larger regional release of methane.

 

Bottom sediment samples from grabs and cores were analyzed north of the Bering Strait. The data show that the values of methane in Western Chukchi Seafloor vary from 5.5-to 420-µl СН4/dm3, varying by location and depth. Sediments from the southern stations of the Chukchi Sea were characterized by rather low methane content (up to 40 µl СН4/dm3)(Figure 2)

Figure 2. Methane concentration in surface sediment, ul/dm3

 

Figure 3. Methane concentration in sediment, 40 cm deep, ul/dm3

The highest concentrations of sedimentary methane were detected from the northern Herald Canyon (at a core depth of  40-100 cm) (Figure 3).  This is the same location where high levels of water column methane were detected. 

 

The methane concentrations in both the sediments and water column of the Chukchi Sea exceed the values of observed water column and sediment methane concentration in the Barents and Kara Seas and fall within the range of methane concentrations measured in the Black and White Seas (Table 3).

 

The microbial activity data from the Bering Strait and the Chukchi Sea will be processed in the laboratory.  When these data are available, we will be able to more clearly determine the provenance of the elevated methane in the Chukchi Sea.

 

Table 1.List of water samples where methane was measured  (1- station number, 2 - depth m, 3 - concentration of methane [CH4], µl/l

 

 


 

N

Depth, m

[CH4]

 

1

2

3

 

07-R

1

0,17

 

 

20

0,20

 

 

50

0,22

 

08-R

1

0,20

 

 

20

0,19

 

 

40

0,20

 

11-R

1

0,29

 

 

5

0,29

 

 

9

0,29

 

 

20

0,29

 

 

30

0,29

 

 

40

0,29

 

14-R

1

0,14

 

 

8

0,27

 

 

30

0,27

 

 

48

0,29

 

15-R

1

0,26

 

 

10

0,22

 

 

15

0,20

 

 

20

0,24

 

 

35

0,26

 

 

45

0,26

 

20-R

1

0,22

 

 

10

0,24

 

 

22

0,29

 

 

35

0,29

 

 

50

0,29

 

21-R

1

0,17

 

 

10

0,19

 

 

15

0,19

 

 

20

0,22

 

 

35

0,24

 

 

50

0,24

 

22-R

1

0,17

 

 

5

0,17

 

 

15

0,19

 

 

25

0,24

 

 

30

0,27

 

 

40

0,31

 

 

50

0,29

 

24-R

1

0,20

 

 

6

0,17

 

 

10

0,17

 

 

15

0,20

 

 

20

0,30

 

 

25

0,34

 

 

30

0,37

 

 

40

0,37

 

 

50

0,35

 

25-R

1

0,20

 

 

10

0,29

 

 

15

0,29

 

 

20

0,31

 

 

35

0,41

 

 

50

0,43

 

106-R

1

0,26

 

 

6

0,29

 

 

10

0,36

 

 

20

0,37

 

 

24

0,36

 

 

25

0,34

 

 

35

0,48

 

 

45

0,48

 

 

50

0,46

 

 

60

0,46

 

 

66

0,43

 

44-R

1

0,26

 

 

25

0,41

 

 

50

0,34

 

56-R

1

0,19

 

 

30

0,29

 

 

50

0,26

 

58-R

1

0,21

 

 

30

0,31

 

50

0,29

60-R

1

0,19

 

20

0,34

 

30

0,41

 

64

0,41

 

90

0,37

61-R

1

0,20

 

30

0,43

 

80

0,37

62-R

1

0,21

 

40

0,37

 

62

0,37

64-R

1

0,24

 

30

0,34

 

50

0,46

67-R

1

0,22

 

20

0,50

 

36

0,39

70-R

1

0,20

 

30

0,51

 

54

0,41

71-R

1

0,32

 

33

0,43

 

57

0,56

74-R

1

0,24

 

23

0,46

 

69

0,43

75-R

1

0,29

 

24

0,41

 

73

0,37

80-R

1

0,26

 

24

0,43

 

49

0,43

81-R

1

0,26

 

17

0,41

 

32

0,34

 

58

0,36

82-R

1

0,33

 

21

0,34

 

78

0,41

83-R

1

0,26

 

22

0,37

 

80

0,56

85-R

1

0,41

 

23

0,31

 

98

0,41

86-R

1

0,41

 

19

0,39

 

82

0,46

87-R

1

0,39

 

16

0,37

 

72

0,54

88-R

1

0,36

 

25

0,46

 

72

0,77

89-R

1

0,41

 

6

0,39

 

10

0,37

 

14

0,32

 

22

0,34

 

25

0,37

 

30

0,48

 

40

0,92

 

50

1,14

 

60

1,02

 

70

1,00

85B-R

1

0,41

 

30

0,46

 

101

0,43

Table 2. Methane concentration in sediments. Station number, depth in core (C), Grab (G), cm. µl/dm3

11-G

0 – 3

5,5

 

15-G

0 – 3

16,6

15-С

3 – 5

26,9

 

9 – 10

14,7

 

19 – 20

15,4

 

29 – 30

14,3

 

39 – 40

36,8

 

 

 

 

54 – 55

14,3

 

64 – 65

39,8

17-G

0 – 5

16,1

18-G

0 – 5

14,9

20-G

0 – 5

23,5

22-G

0 – 5

12,9

22-C

4 – 5

14,2

 

9 – 10

13,8

 

19 – 20

11,0

 

29 – 30

10,5

 

39 – 40

12,4

 

44 – 45

11,5

 

59 – 60

10,3

 

79 – 80

14,3

 

99 – 100

39,6

 

119 – 120

15,2

 

134 – 135

36,1

24-G

0 – 7

13,8

25-G

0 – 3

19,8

106-G

0 – 3

23,5

106-C

3 – 5

23,0

 

9 – 10

13,8

 

19 – 20

18,9

 

29 – 30

19,3

 

39 – 40

25,8

 

49 – 50

27,1

 

59 – 60

32,7

 

79 – 80

50,6

 

99 – 100

87,4

 

119 – 120

78,2

 

144 – 145

85,0

 

159 – 160

112,7

 

169 – 170

144,9

 

189 – 190

149,5

85B-G

0 – 5

14,9

85B-C

5 – 6

21,6

 

9 – 10

345,0

 

14 – 15

391,0

 

19 – 20

368

 

29 – 30

368

 

39 – 40

403

 

49 – 50

368

 

59 – 60

341

 

69 – 70

334

 

79 – 80

338

 

89 – 90

336

 

99 – 100

363

 

104-105

419


 

Table 3

Reservoir

Methane content

Reference

 

Water column, µl/l

Sediments µl/dm3

 

Barents Sea

0.07 – 1.8

1.0 – 19.3

Savvichev, Rusanov, Pimenov, 2000

Kara Sea

0.06 – 0.72

0.46 – 240

Lein, Rusanov, Savvichev, 1996

Black Sea

0.49 – 8.5

2.4 – 29.9 x 103

Ivanov, Pimenov, Rusanov, 2002

White Sea (Kandalaksha Bay)

0.11 – 1.2

3.5 – 16.8 x 103

Savvichev, Rusanov, Yusupov, 2004

Chukchi Sea

0.14 - 1.0

5.0 - 419

Savvichev, Rusanov 2004  RUSALCA


Kathy.Crane@noaa.gov
NOAA | Arctic Research Office | Arctic Theme Page
Privacy Policy | Disclaimer