SED navigation bar go to SED home page go to SED projects page go to NIST home page SED Home Page SED Contacts SED Projects SED Products and Publications Search SED Pages

Process Characterization: Lifetime of Magnetically Trapped Ultra Cold Neutrons

Introduction In collaboration with a team from the Ionizing Radiation Division of NIST, Harvard, Los Alamos and Berlin, SED staff played a major role in the stochastic modeling, planning and analysis associated with a highly acclaimed neutron lifetime experiment. In this experiment, for the first time, ultra cold neutrons were produced and confined in a magnetic trap. Since systematic errors are much lower than in alternative approaches, a planned second generation version of the experiment should yield a neutron lifetime estimate more accurate than the currently accepted best value. Since knowledge of the mean lifetime of the neutron allows one to test the consistency of the standard model of electroweak interactions, the experiment is of great fundamental importance. Further, the mean lifetime of the neutron is an important parameter in astrophysical theories which predict the evolution of the early universe after the Big Bang. Thus, SED has made a major contribution to fundamental physics and measurement science.

Background/Impetus
Customers
Goals
Impact
SED Milestones
R&D Team
Achievements
Publications
Presentations

Additional technical information on this project is available at:

Background/
Impetus
A high precision measurement of the neutron lifetime yields a test of the consistency of the standard model of electro-weak interactions. Also, the mean lifetime of the neutron is an important parameter in astrophysical models. Ultra low temperature confinement technology will facilitate a new generation of fundamental physics experiments.
Customers The customers for the neutron lifetime project are the scientific community.
Goals The goals for the neutron lifetime project are:
  • Develop technology to confine polarized ultra cold neutrons in a magnetic trap.
  • Determine the mean lifetime of the neutron to high precision.
Impact The impact of this work is that it leads to a dramatic reduction in systematic error in neutron lifetime estimate compared to previous experiments. It also tests the standard model of radioactive decay, refines the predictions of Big Bang Nucleosynthesis theory predictions, and develops new technology for trapping polarized neutrons.
Milestones for the neutron lifetime project are:
FY03 Milestones
  • Design and analyze third generation experiment (dependent on funding).
FY02 Milestones
  • Perform the analysis of data from second generation experiment.
  • Complete the manuscript on systematic error in lifetime estimate due to imperfect background correction.
FY01 Milestones
  • Compare performance of various neutron lifetime estimation algorithms which account for background.
FY00 Milestones
  • Develop statistical plan to select best way to redesign the experimental apparatus for second generation experiment.
FY99 Milestones
  • Develop likelihood models for observed data and compare performance of neutron lifetime estimation algorithms for first generation planning study.
FY98 Milestones
  • Development optimal data collection strategy for background correction planning study.
FY97 Milestones
  • Construct stochastic model of neutron trapping process and experimental data.
FY98 Milestones
  • Development optimal data collection strategy for background correction planning study.
R&D Team Kevin Coakley, Statistical Engineering Division, ITL

P. R. Huffman, Ionizing Radiation Division, PL

M. S. Dewey, Ionizing Radiation Division, PL

J. Doyle, Harvard University

G. L. Greene, Los Alamos National Laboratory

S. K. Lamoreaux, Los Alamos National Laboratory

R. Golub, Hahn-Meitner Institut, Berlin

Achievements Achievements of the neutron lifetime project include:
  • Experimental design of second generation experiment (now running).
Publications Publications resulting from the neutron lifetime project include:
  • K. J. Coakley and G. L. Yang, "Estimation of the Neutron Lifetime: Comparison of Methods which Account for Background," submitted to Physical Review C.
  • C. R. Brome, J. S. Butterworth, K. J. Coakley, M. S. Dewey, S. N. Dzhosyuk, R. Golub, G. L. Greene, K. Habicht, P. R. Huffman, S. K. Lamoreaux, C. E. H. Mattoni, D. N. McKinsey, F. E. Wietfeldt, and J. M. Doyle, "Magnetic Trapping of Ultracold Neutrons," Physical Review C, 63, 055502, 1-15 (2001).
  • K. J. Coakley, "Optimal Background Correction Schemes for Neutron Lifetime Experiments Using Magnetically Trapped Neutrons," Nuclear Instruments and Methods in Physics Research A, 469, 454-363 (2001).
  • G. Yang and K. J. Coakley, "Likelihood Models for Two-Stage Neutron Lifetime Experiments," Physical Review C, 63, 014602 (2001).
  • P. R. Huffman, A. K. Thompson, F. E. Wietfeldt, G. L. Yang, K. J. Alvine, C. R. Brome, S. N. Dzhosyuk, C. E. H. Mattoni, R. A. Michniak, D. N. McKinsey, L. Yang, J. M. Doyle, R. Golub, S. K. Lamoreaux, and K. J. Coakley, "Magnetic Trapping of Ultracold Neutrons: Prospects for an Improved Measurement of the Neutron Lifetime," Proceedings of the Conference on Fundamental Physics with Pulsed Neutron Beams (2000).
  • P. R. Huffman, C. R. Brome, J. S. Butterworth, K. J. Coakley, M. S. Dewey, S. N. Dzhosyuk, D. M. Gilliam, R. Golub, G. L. Greene, K. Habicht, S. K. Lamoreaux, C. E. Mattoni, D. N. McKinsey, F. E. Wietfeldt, and J. M. Doyle, "Progress Towards Magnetic Trapping of Ultracold Neutrons," Nuclear Instruments and Methods A, 440, 522-527 (2000).
  • P. R. Huffman, C. R. Brome, J. S. Butterworth, K. J. Coakley, M. S. Dewey, S. N. Dzhosyuk, R. Golub, G. L. Greene, K. Habicht, S. K. Lamoreaux, C. E. Mattoni, D. N. McKinsey, F. E. Wietfeldt, and J. M. Doyle, "Magnetic Trapping of Ultracold Neutrons," Nature, 403, 62-64 (2000).
  • C. R. Brome, J. S. Butterworth, K. J. Coakley, M. S. Dewey, S. N. Dzhosyuk, D. M. Gilliam, R.Golub, G. L. Greene, K. Habicht, P. R. Huffman, S. K. Lamoreaux, C. E. Mattoni, D. N. McKinsey, F. E. Wietfeldt, and J. M. Doyle, "Magnetic Trapping of Ultracold Neutrons," Bulletin of the American Physical Society, 44, 16 (1999). Abstract
  • P. R. Huffman, K. J. Coakley, M. S. Dewey, D. M. Gilliam, G. L. Jones, F. E. Wietfeldt, J. S. Butterworth, S. N. Dzhosyuk, C. E. H. Mattoni, D. N. McKinsey, J. M. Doyle, R. Golub, K. Habicht, M. D. Cooper, G. L. Greene, and S. K. Lamoreaux, "Progress Towards Magnetic Trapping of Ultracold Neutrons," 1999 Sigma Xi poster session, NIST, Gaithersburg, MD (1999). Abstract
  • C. R. Brome, J. S. Butterworth, S. N. Dzhosyuk, P. R. Huffman, C. E. H. Mattoni, D. N. McKinsey, J. M. Doyle, K. J. Coakley, M. S. Dewey, D. M. Gilliam, G. L. Jones, F. E. Wietfeldt, R. Golub, K. Habicht, M. D. Cooper, G. L. Greene, and S. K. Lamoreaux, "Progress Towards Magnetic Trapping of Ultracold Neutrons," Bulletin of the American Physical Society, 44, 989 (1999). Abstract
  • K. J. Coakley, "Statistical Planning for a Neutron Lifetime Experiment Using Magnetically Trapped Neutrons," Nuclear Instruments and Methods in Physics Research A, 406, pp. 451-463 (1998).
  • J. S. Butterworth, C. R. Brome, P. R. Huffman, C. E. H. Mattoni, D. N. McKinsey, J. M. Doyle, K. J. Coakley, M. S. Dewey, D. M. Gilliam, F. Wietfeldt, G. L. Greene, S. K. Lamoreaux, R. Golub, and K. Habicht, "Magnetic Trapping of Ultra-Cold Neutrons," Bulletin of the American Physical Society, 42, 1628 (1997). Abstract
  • P. R. Huffman, C. R. Brome, J. S. Butterworth, C. E. H. Mattoni, D. N. McKinsey, J. M. Doyle, M. S. Dewey, K. J. Coakley, D. M. Gilliam, R. Golub, K. Habicht, S. K. Lamoreaux, and G. L. Greene, "Determination of the Neutron Lifetime Using Magnetically Trapped Neutrons," Bulletin of the American Physical Society, 42, 938 (1997). Abstract
  • J. S. Butterworth, C. R. Brome, P. R. Huffman, C. E. H. Mattoni, D. N. McKinsey, J. M. Doyle, M. S. Dewey, K. J. Coakley, D. M. Gilliam, R. Golub, K. Habicht, and S. K. Lamoreaux, "Determination of the Neutron Lifetime Using Magnetically Trapped Neutrons," Bulletin of the American Physical Society, 41, 1217 (1996). Abstract
Presentations Presentations resulting from the neutron lifetime project include:
  • K. C. Coakley, "Optimal Background Correction Strategies for a Neutron Lifetime Experiment," presented at technical collaboration meeting at NIST Center for Cold Neutron Research, Gaithersburg, MD, September 1999.
  • K. C. Coakley, "Statistical Planning for a Neutron Lifetime Experiment," 1997 Joint Meetings of the American Statistical Association and the Institute of Mathematical Statistics, Anaheim, CA, August 1997. (Also at NIST, Boulder, CO, April 1997.)
  • K. C. Coakley, "Optimal Design of a Neutron Lifetime Experiment and Chaotic Behavior of Magnetically Trapped Neutrons," presented at technical collaboration meeting at Physics Department, Harvard University, September 1996.

Date created: 2/6/2002
Last updated: 2/6/2002
Please email comments on this WWW page to sedwww@nist.gov.

SED Home |  Process Characterization Home  |  Previous |  Next ]