U. S. Food and Drug Administration
Center for Food Safety and Applied Nutrition
Pesticide Program: Residue Monitoring 1995
October 1996



Pesticide Program
Residue Monitoring
1995

USA map image  
FDA Logo World globe image




Residue Monitoring - 1995

This is the ninth annual report summarizing the results of the Food and Drug Administration's (FDA) pesticide residue monitoring program. The 8 previous reports, which were published in the Journal of the Association of Official Analytical Chemists/Journal of AOAC International, presented results from Fiscal Years (FY) 1987 through 1994. This current report includes findings obtained during FY95 (October 1, 1994 through September 30, 1995) under regulatory and incidence/level monitoring. Selected Total Diet Study findings for 1995 are also presented. Results in this and earlier reports continue to demonstrate that levels of pesticide residues in the U.S. food supply are well below established safety standards.


Table of Contents



FDA Monitoring Program

Three federal government agencies share responsibility for the regulation of pesticides.(1) The Environmental Protection Agency (EPA) registers (i.e., approves) the use of pesticides and sets tolerances (the maximum amount of a residue that is permitted in or on a food) if use of that particular pesticide may result in residues in or on food.(2) Except for meat, poultry, and certain egg products, for which the Food Safety and Inspection Service (FSIS) of the U.S. Department of Agriculture (USDA) is responsible, FDA is charged with enforcing tolerances in imported foods and in domestically produced foods shipped in interstate commerce. FDA also acquires incidence/level data on particular commodity/pesticide combinations and carries out its market basket survey, the Total Diet Study. For 5 years, USDA's Agricultural Marketing Service (AMS), through contracts with participating states, has carried out a residue testing program directed primarily at raw agricultural products. FSIS and AMS report their pesticide residue data independently.


Regulatory Monitoring

Under this approach to pesticide residue monitoring, FDA samples individual lots of domestically produced and imported foods and analyzes them for pesticide residues to enforce the tolerances set by EPA. Domestic samples are collected as close as possible to the point of production in the distribution system; import samples are collected at the point of entry into U.S. commerce. Emphasis is on the raw agricultural product, which is analyzed as the unwashed, whole (unpeeled), raw commodity. Processed foods are also included. If illegal residues (above EPA tolerance or no tolerance for that particular food/pesticide combination) are found in domestic samples, FDA can invoke various sanctions, such as a seizure or injunction. For imports, shipments may be stopped at the port of entry when illegal residues are found. "Automatic detention" may be invoked for imports based on the finding of 1 violative shipment if there is reason to believe that the same situation will exist in future lots during the same shipping season for a specific shipper, grower, geographic area, or country.

Domestic and import food samples collected are classified as either "surveillance" or "compliance". Most samples collected by FDA are the surveillance type; that is, there is no prior knowledge or evidence that a specific food shipment contains illegal pesticide residues. Compliance samples are taken as follow-up to the finding of an illegal residue or when other evidence indicates that a pesticide residue problem may exist.

Factors considered by FDA in planning the types and numbers of samples to collect include review of recently generated state and FDA residue data, regional intelligence on pesticide use, dietary importance of the food, information on the amount of domestic food that enters interstate commerce and of imported food, chemical characteristics and toxicity of the pesticide, and production volume/pesticide usage patterns.


Analytical Methods

To analyze the large numbers of samples whose pesticide treatment history is usually unknown, FDA uses analytical methods capable of simultaneously determining a number of pesticide residues. These multiresidue methods (MRMs) can determine about half of the approximately 400 pesticides with EPA tolerances, and many others that have no tolerances. The most commonly used MRMs can also detect many metabolites, impurities, and alteration products of pesticides.(3)

Single residue methods (SRMs) or selective MRMs are used to determine some pesticide residues in foods.(3) An SRM usually determines 1 pesticide; a selective MRM measures a relatively small number of chemically related pesticides. These types of methods are usually more resource-intensive per residue. Therefore, they are much less cost effective than MRMs.

The lower limit of residue measurement in FDA's determination of a specific pesticide is usually well below tolerance levels, which generally range from 0.1 to 50 parts per million (ppm). Residues present at 0.01 ppm and above are usually measurable; however, for individual pesticides, this limit may range from 0.005 to 1 ppm. In this report, the term "trace" is used to indicate residues detected, but at levels below the limit of quantitation (LQ).


FDA/State Cooperation

Personnel in FDA field offices interact with their counterparts in many states to increase FDA's effectiveness in pesticide residue monitoring. In most cases, work-sharing agreements (Memoranda of Understanding) have been established between FDA and various state agencies.

FDA also acquires and uses state-generated pesticide residue data to complement its own and other federally sponsored residue programs. For many years, FDA has supported, through a contract with Mississippi State University (MSU), the "Foodcontam" database, which is a compilation of state-collected residue data.


Animal Feeds

In addition to monitoring foods for human consumption, FDA also samples and analyzes domestic and imported feeds for pesticide residues. FDA's Center for Veterinary Medicine (CVM) directs this portion of the Agency's monitoring via its Feed Contaminants Compliance Program. Although animal feeds containing violative pesticide residues may present a potential hazard to a number of different categories of animals (e.g., laboratory animals, pets, wildlife, etc.), the major focus of CVM's monitoring is on feeds for livestock and poultry, animals that ultimately become, or produce, foods for human consumption.

CVM also reviews pesticide residue data supplied by various states under "Feedcon", a database operated by MSU under the auspices of the Association of American Feed Control Officials. These data are reviewed periodically by CVM so that potential problems arising from pesticide residues in foods of animal origin may be identified.


International Activities

FDA obtains information on foreign pesticide usage via contract with Landell Mills (Bath, England). Each year, FDA receives pesticide usage data for about 40 countries that export food to the United States. These data can be used by FDA to target its pesticide residue monitoring toward specific pesticide/commodity/country combinations.

In addition to the foreign pesticide usage data obtained through the commercial contract, under provisions of the Pesticide Monitoring Improvements Act, FDA receives information from foreign governments on pesticides used on their food exports to the United States. FDA makes this information available to FDA Districts for use in their planning of monitoring of imported foods.

As part of the exchange of information on pesticides, FDA provides foreign countries with updates on U.S. pesticide usage. FDA also supplies foreign countries annually with reports on FDA's regulatory monitoring coverage and the findings in foods imported from their respective countries, as well as a personal computer database in which coverage and findings are summarized by country/commodity/pesticide combination.

Under the auspices of the North American Free Trade Agreement (NAFTA), the United States, Mexico, and Canada have established a NAFTA Technical Working Group on Pesticides (TWG). The NAFTA Pesticide TWG now serves as the focal point for all pesticide issues that arise among the 3 NAFTA countries. The TWG reports directly to the NAFTA Sanitary and Phytosanitary Committee.

One of the major goals of the TWG is to ensure that pesticide registrations and tolerances/maximum residue limits in the 3 countries are harmonized to the extent practical, while strengthening protection of public health and the environment. A number of projects have been undertaken by the TWG to identify differing residue limits in the NAFTA countries and to determine what steps might be taken to harmonize the limits. While this is a difficult process, the TWG envisions eventual movement toward a "North America" pesticide registration and tolerance system so that citizens of all 3 countries can be assured of the safety and legality of foods produced in any 1 of the NAFTA countries.

The NAFTA TWG is cochaired by EPA, Health Canada, and Mexico's Ministry of Health (representing the Comision Intersecretarial para el Control del Proceso y Uso de Plaguicidas, Fertilizantes y Sustancias Toxicas). FDA is an active participant on the TWG and is assisting by providing expertise on enforcement monitoring programs and residue data to support harmonization activities. FDA's activities on the TWG complement its ongoing bilateral cooperation with its counterparts in Mexico and Canada.


Incidence/Level Monitoring

A complementary approach to regulatory monitoring, incidence/level monitoring is used to increase FDA's knowledge about particular pesticide/commodity combinations by analyzing certain foods to determine the presence and levels of selected pesticides. In 1995, a survey of triazine herbicides in various commodities was carried out and a statistically based monitoring survey that had been initiated in 1994 was completed.

The latter focused on domestic and imported fresh apples and processed rice. This is the second FDA survey of this type; the first covered domestic and imported pears and tomatoes.(4) These statistically based surveys were initiated to determine whether FDA data acquired under regulatory monitoring are statistically representative of the overall residue situation for a particular pesticide, commodity, or place of origin. In FDA's surveillance sampling for pesticide residues, sampling bias may be incurred by weighting sampling toward such factors as commodity or place of origin with a past history of violations or large volume of import shipments. In addition, the total number of samples of a given commodity analyzed for a particular pesticide each year may not be sufficient to draw specific conclusions about the residue situation for the whole volume of that commodity in commerce. Therefore, the objective of these statistically based surveys is to determine whether violation rates, frequency of occurrence of residues, and residue levels obtained from such a sampling regimen differ from those obtained through FDA's traditional surveillance approach.

Apples and rice were chosen as the second set of test commodities because they are widely consumed year round and have significant domestic and import components. Fresh apples and all types of processed rice (white, brown, glutinous, fragrant, parboiled, converted, etc., but not wild or brewer's rice) were included in the study. The same general procedures were followed in the apples/rice study as in the pears/tomatoes study.(4) Samples were collected throughout the United States by FDA inspectors, except for domestic rice. These samples were collected by USDA Federal Grain Inspection Service personnel, who are routinely present at the mills that process domestic rice. Most of the mills are located in those few states in which rice growing is a major agricultural industry.

Analyses were performed by the Buffalo (apples) and Minneapolis (rice) District Laboratories. The goal was to collect and analyze about 800 domestic and 800 import apple samples and about 575 domestic and 800 import rice samples.


Total Diet Study

The Total Diet Study is another major element of FDA's pesticide residue monitoring program.(5) In its previous annual pesticide reports, FDA provided Total Diet Study findings for 1987-1994.(6) In addition, more detailed information, including estimated dietary intakes of pesticide residues covering June 1984-April 1986(7) and July 1986-April 1991(8), has been published. In September 1991, FDA implemented revisions to the Total Diet Study that were formulated in 1990.(9) These revisions primarily consisted of collection and analysis of an updated and expanded number (to 261) of food items, addition of 6 age/sex groups (for a total of 14), and revised analytical coverage. Details of the recent revision are presented elsewhere.(10,11)

In conducting the Total Diet Study, FDA personnel purchase foods from supermarkets or grocery stores 4 times per year, once from each of 4 geographic regions of the country. The 261 foods that comprise each market basket represent over 3500 different foods reported in USDA food consumption surveys; for example, apple pie represents all fruit pies and fruit pastries. Each collection is a composite of like foods purchased in 3 cities in a given region. The foods are prepared table-ready and then analyzed for pesticide residues (as well as radionuclides, industrial chemicals, toxic elements, trace and macro elements, vitamin B6, and folic acid). The levels of pesticides found are used in conjunction with USDA food consumption data to estimate the dietary intakes of the pesticide residues.


Results and Discussion

Regulatory Monitoring

In 1995, 10,615 samples (10,133 surveillance and 482 compliance) were analyzed under regulatory monitoring. Of these, 5198 were domestic and 5417 were imports.

Figure 1 shows the percentage of the 5101 domestic surveillance samples by commodity group with no residues found, nonviolative residues found, and violative residues found. (A violative residue is defined in this report as a residue which exceeds a tolerance or a residue at a level of regulatory significance for which no tolerance has been established in the sampled food.) As in earlier years, fruits and vegetables accounted for the largest proportion of the commodities analyzed in 1995; those 2 commodity groups comprised 59% of the total number of domestic surveillance samples. In 1995, no violative residues were found in nearly 99% of all domestic surveillance samples (the same percentage as in the past several years).


Figure 1 image: Summary of Results by
Commodity Group of 1995 Sample Analyses for Pesticide Residues (graph)



Appendix A contains more detailed data on domestic surveillance monitoring findings by commodity, including the total number of samples analyzed, the percent samples with no residues found, and the percent violative samples. Of the 5101 domestic surveillance samples, 64% had no detectable residues, less than 1% had over-tolerance residue s, and less than 1% had residues of pesticides for which there was no tolerance for that particular pesticide/commodity combination. In the largest commodity groups, fruits and vegetables, 40 and 63% of the samples, respectively, had no residues detected. Less than 2% of the fruit samples and about 2% of the vegetable samples contained violative residues (Figure 1). In the milk/dairy products/eggs group, 93% of the samples had no residues detected and no violative residues were found. Within the category Other were 61 samples of baby foods/formula, nearly 3 times the number of samples of baby foods/formula collected and analyzed in 1994. This included 29 vegetable, 13 cereal, 13 fruit/fruit juice, 4 formula, 1 custard/fruit pudding, and 1 teething biscuit samples. None of the samples had violative residues.

The findings by commodity group for the 5032 import surveillance samples are shown in Figure 2. Fruits and vegetables accounted for 85% of these samples. Overall, no violative residues were found in nearly 97% of the import surveillance samples (97% in 1993 and 96% in 1994).


Figure 2 image: Summary of Results (import)
by Commodity Group of 1995 Sample Analyses for Pesticide Residues


Appendix B contains detailed data on the import surveillance samples. Of the 5032 samples analyzed, 66% had no residues detected, less than 1% had over-tolerance residues, and 3% had residues for which there was no tolerance for that particular pesticide/commodity combination. Fruits and vegetables had 57 and 67%, respectively, with no residues detected. The fruit group had less than 1% with over-tolerance residues and the vegetable group had 1% with over-tolerance residues; each group had 3% no-tolerance residu es. No residues were found in 88% of the dairy products/eggs group and 85% of the fish/shellfish group, and no violative residues were found in either of those groups.

Pesticide monitoring data collected under FDA's regulatory monitoring approach in 1995 are available to the public as a computer database. This database summarizes FDA 1995 regulatory monitoring coverage and findings by country/commodity/pesticide combination. The database also includes the monitoring data by individual sample from which the summary information was compiled. Information on purchase of this database as well as those for 1992, 1993, and 1994 is provided at the end of this report.


Geographic Coverage

Domestic. - In 1995, domestic surveillance samples were collected from all 50 states and Puerto Rico. The largest numbers of samples were collected from the states in which agriculture is a major industry. Import. - Samples representing food shipments from 94 countries were collected. Table 1 lists the numbers of samples collected and the countries from which they originated. Mexico, as usual, was the source of the largest number of samples. This large number reflects the volume and diversity of commodities imported from that country, especially during the winter months.


Pesticide Coverage

Table 2 lists the 345 pesticides that were detectable by the methods used; the 92 pesticides that were actually found are indicated.

FDA conducts ongoing research to expand the pesticide coverage of its monitoring program. This research includes testing the behavior of new or previously untested pesticides through existing analytical methods, and development of new methods to cover pesticides that cannot be determined by methods currently used by FDA. The research encompasses both U.S.-registered pesticides and foreign-use pesticides that are not registered in the United States. The list of pesticides detectable for 1995 (Table 2) reflects the addition of a number of pesticides for which new methods had been developed and pesticides whose recovery through the analytical methods used was demonstrated as a result of ongoing research.


Surveillance/Compliance Violation Rate Comparison

In 1995, 97 domestic and 385 import compliance samples were collected and analyzed (Table 3). Because compliance samples are collected when a pesticide residue problem is known or suspected, violation rates are expectedly higher than those for surveillance samples: 12% for domestic (10% in 1994) and 11% for imports (18% in 1994). The corresponding violation rates for surveillance samples were 1.3% for domestic and 3.2% for imports (Figure 3).


Figure 3 image: Domestic and Import Sample
Violation Rates for 1995 (graph)


Most of the 1995 compliance samples were collected as follow-up to violative surveillance samples. These included follow-up samples from the same shipment as the violative surveillance sample, follow-up samples of the same commodity from the same grower or shipper, and audit samples from shipments presented for entry into the United States with a certificate of analysis (i.e., shipments subject to automatic detention).


Foodcontam Data

In 1995, 11 states participated in the Foodcontam project. A wide variety of commodities was reflected in the 9394 samples reported by the 10 states whose data were available. Table 4 lists the 10 states, the number of samples for each, and the number and percentage of samples with positive and "significant" findings. In this instance, a significant finding indicates a residue that exceeds federal or state regulatory limits, is not covered by a tolerance for the particular chemical/commodity combination, or denotes some unusual finding(s). For the 9394 samples reported, 0.8% were classified as significant.


Animal Feeds

In 1995, 556 domestic feed samples (532 surveillance and 24 compliance) and 69 import feed samples (65 surveillance and 4 compliance) were collected and analyzed by FDA. Of the 532 domestic surveillance samples, 301 (57%) had no pesticide residues detected and 2 (<1%) contained violative residues (Table 5). The latter involved 2 corn samples with chlorpyrifos-methyl residues. Of the 65 import surveillance samples, 29 (45%) had no pesticide residues detected and 1 (2%), a sample of feather meal (for poultry) from Canada, contained diphenylamine. No tolerance for chlorpyrifos-methyl on corn or for diphenylamine on poultry has been set. Thus, these samples were considered to have exceeded regulatory standards.

In the 231 domestic surveillance feed samples in which 1 or more pesticides were detected, a total of 346 residues were detected (254 quantifiable and 92 trace). Malathion, chlorpyrifos-methyl, and diazinon were the most frequently found residues. The findings in samples with quantifiable residues were as follows:


Pesticide No. of Samples
with Quantifiable
Residues
Residue Found, ppm
Range Median
malathion 149 0.01-7.7 0.09
chlorpyrifos-methyl 39 0.01-1.1 0.11
diazinon 23 0.01-0.81 0.06
chlorpyrifos 10 0.01-0.08 0.03
pirimiphos-methyl 9 0.01-9.9 0.05
others 24 0.01-41 0.19



Summary: Regulatory Monitoring

In summary, no residues were found in 64% of domestic surveillance samples and 66% of import surveillance samples (Figure 4) analyzed under FDA's regulatory monitoring approach in 1995. Less than 1% of domestic and import surveillance samples had residue levels that were over tolerance and less than 1% of domestic and 3% of import surveillance samples had residues for which there was no tolerance. The findings for 1995 demonstrate that pesticide residue levels in foods are generally well below EPA tolerances, corroborating results presented in earlier reports.(6)


Figure 4 image: Domestic and Import Surveillance
Samples in  1995 (graph)



Incidence/Level Monitoring

Statistically Based Survey

The statistically based monitoring survey of domestic and imported fresh apples and processed rice that was begun in 1994 was completed in 1995. The original goal had been to collect 1600 samples of apples (800 domestic and 800 import). Actually, 769 domestic and 1062 import samples were collected and analyzed. For rice, 575 domestic and 800 import samples had been the goal; 598 domestic and 612 import samples were actually collected and analyzed. (These numbers are not included in the counts under Fruits and Grains and Grain Products in Appendixes A and B.) The results of the survey are being evaluated and will be submitted for publication in the scientific literature.


Triazine Herbicides

The triazines are one of the most widely used classes of herbicides, and EPA has established tolerances for them on many commodities. Interest in triazines has increased recently because of potential leaching of the herbicides and their degradation products into ground and surface water. Residues of these chemicals have rarely been detected in foods, although FDA has routinely looked for the parent compounds.

Recently, FDA's Atlanta District Laboratory developed a method capable of determining 19 triazine herbicides and 4 metabolites.(12) Average recoveries ranged from 81 to 106% for the parent herbicides and 60 to 88% for the metabolites. The method was validated by the Minneapolis District Laboratory(13) and used to analyze a number of food samples in 1995. This new method was used to analyze 232 samples (92 domestic samples from 9 states and 140 import samples from 19 countries) (Table 6). Residues were found in 5 domestic samples, all of simazine in oranges. Four samples had trace amounts and 1 sample had 0.04 ppm (LQ, 0.02 ppm). None were violative. No triazine residues were detected in the import samples.


Summary: Incidence/Level Monitoring

Under this approach, a statistically based monitoring survey of domestic and imported apples and processed rice was completed in 1995. A survey of triazine herbicides in various commodities was carried out. Few residues were found, and none were violative.


Total Diet Study

The Total Diet Study is unique in that it determines pesticide residues in foods that have been prepared as they would be consumed.(5) Of the nearly 300 chemicals that can be determined by the analytical methods used, 86 pesticide and pesticide-related chemicals were found in the foods analyzed in the 3 collections reported here. To measure the low levels of pesticides found in the Total Diet Study foods, the analytical methods used are modified to permit measurement at levels 5-10 times lower than those normally used in regulatory monitoring. In general, residues present at or above 1 part per billion can be measured.

Table 7 lists the 17 most frequently found residues, the total number of findings, and the percent occurrence in the 783 food items analyzed in 1995. DDT, an environmentally persistent chemical whose U.S. registration was canceled over 2 decades ago, was the most frequently found residue. The frequency findings of DDT in Total Diet Study foods has ranged from 10 to 22% over the past 8 years.(6) A frequency of 25% for 1995 is somewhat higher than it has been in the past several years. This may not be an indicator of an increasing trend in DDT findings in Total Diet Study foods; however, the occurrence will be investigated. Malathion, which is used on a wide variety of crops both pre- and postharvest, was the next most frequently found residue. The levels of these 2 pesticides, as well as the others listed in Table 7, were well below regulatory limits.

Information obtained through the Total Diet Study is used to estimate dietary intakes of pesticides; these intakes are then compared with established standards. Food consumption data to be used in estimating dietary intakes for the revised food list have not been finalized. Therefore, dietary intake information for the market baskets collected during this period is not presented.

For several years, FDA has collected and analyzed a number of baby foods in addition to those covered under the Total Diet Study. Between 1991 and 1995, this adjunct to the Total Diet Study included 23 different food items (14 fruit juices or fruits, 4 fruit desserts, 4 grain products, and 1 vegetable). (These numbers are not included in the analyses reported in Table 7.) Table 8 lists the 16 most frequently found pesticide residues in those 23 foods in 1991-1995. Carbaryl, the residue found most frequently, is an insecticide with tolerances on many fruits and grains. Dimethoate, the next most frequently found residue, also has tolerances on a number of fruits.


Summary: Total Diet Study

In 1995, the types of pesticide residues found and their frequency of occurrence in the Total Diet Study were generally consistent with those given in previous FDA reports.(6,14) The pesticide residue levels found were well below regulatory standards. An adjunct survey of baby foods in 1991-1995 also provided evidence of only small amounts of pesticide residues in those foods.


Summary

A total of 10,615 samples of domestically produced food and imported food from 94 countries was analyzed for pesticide residues in 1995. Of these, 10,133 were surveillance samples, which are collected when there is no evidence of a pesticide problem. No residues were found in 64% of the domestic surveillance samples and 66% of the import surveillance samples. The higher violation rates in the 482 compliance samples reflect the fact that they are collected and analyzed when a pesticide problem is suspected. In addition, a survey of triazine herbicides was carried out and a statistically based monitoring survey of fresh apples and processed rice that had been initiated in 1994 was completed. Most of the Total Diet Study findings for 1995 were generally similar to those found in earlier periods

This report was compiled through the efforts of the following FDA personnel: Norma J. Yess, Young H. Lee, Byron O. Bohannon (Division of Programs and Enforcement Policy), and Bernadette M. McMahon and Charles H. Parfitt (Division of Pesticides and Industrial Chemicals), Office of Plant and Dairy Foods and Beverages; Sharon A. Macuci (Division of Information Resources Management), Office of Management Systems, Washington, DC; Rodney L. Bong, Minneapolis District, Minneapolis, MN; and Sheila K. Egan and James L. Daft, Kansas City District, Kansas City, MO.

FDA pesticide monitoring data collected under the regulatory monitoring approach in 1995 are available for purchase on personal computer diskettes from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161 (telephone 703-487-4650); order number PB96-503156. The databases for 1992, 1993, and 1994 are also available from NTIS. The order numbers are: 1992, PB94-500899; 1993, PB94-501681; and 199 4, PB95-503132.



Table 1

Foreign Countries and Number of Samplesa Collected and Analyzed in 1995

Country No. of
Samples
Country No. of
Samples
Country No. of
Samples
Mexico 1723 Ecuador 72 Philippines 23
Chile 467 Taiwan 55 United Kingdom 21
The Netherlands 370 Argentina 51 Germany 17
Canada 253 New Zealand 48 Denmark 16
Italy 218 Jamaica 47 Pakistan 16
Thailand 198 Japan 47 Poland 16
China, People's Rep. of 184 Belgium 46 South Africa 16
Guatemala 174 Panama 43 Lebanon 15
Costa Rica 139 Colombia 42 Australia 14
India 137 France 40 Czech Republic 14
Spain 126 Indonesia 31 Egypt 13
Dominican Republic 91 Brazil 30 Haiti 12
Peru 85 Honduras 29 Morocco 12
Israel 83 Korea, Rep. of 25 Venezuela 12
Greece 81 Hong Kong 23 Unspecified 15
Turkey 79        

Ten or fewer samples collected from the following:

Austria Hungary Slovakia
Bahamas Iceland Slovenia
Belize Ivory Coast Sri Lanka
Bermuda Kenya St. Vincent
Bolivia Macedonia Surinam
Bosnia-Hercegovina Malaysia Sweden
Bulgaria Martinique Switzerland
Croatia Moldavia Syria
Cyprus Netherlands Antilles Tanzania
Dominica Nicaragua Trinidad & Tobago
El Salvador Nigeria Tunisia
Estonia Norway Turks & Caicos Island
Ethiopia Papua New Guinea United Arab Emirates
Faeroe Islands Portugal Uruguay
Fiji Russia Vietnam, Rep. of
Ghana Singapore Zambia
 
aSurveillance plus compliance samples.


Table 2

Pesticides Detectable by the Methods Used and Pesticides Found (*) in 1995 Regulatory Monitoringa,b

Acephate* Dinitramine Norflurazon
Acetochlor Dinobuton Nuarimol
Acrinathrin Dinocap Octhilinone
Alachlor* Dioxabenzofos Ofurace
Aldicarb* Dioxacarb Omethoate*
Aldrin Dioxathion Ovex
Allethrin Diphenamid Oxadiazon
Allidochlor Diphenylamine* Oxadixyl
Alpha-cypermethrin Dipropetryn Oxamyl*
Ametryn Disulfoton Oxydemeton-methyl*
Aminocarb Diuron Oxyfluorfen
Amitraz* Edifenphos Oxythioquinox
Anilazine Endosulfan* Paclobutrazol
Aramite Endrin* Paraquat
Atrazine EPN Parathion*
Azinphos-ethyl EPTC Parathion-methyl*
Azinphos-methyl* Esfenvalerate* Pebulate
Bendiocarb Etaconazole Penconazole
Benfluralin Ethalfluralin Pendimethalin
Benodanil Ethephon* Permethrin*
Benomyl/carbendazim*c Ethiofencarb Perthane
Benoxacor Ethion* Phenothrin
Bensulide Ethofumesate Phenthoate
Benzoylprop-ethyl Ethoprop Phenylphenol, ortho-*
BHC* Ethoxyquin* Phorate*
Bifenox Ethylenebisdithiocarbamates*d Phosalone*
Bifenthrin* Ethylene dibromide Phosmet*
Binapacryl Ethylene dichloride Phosphamidon*
S-Bioallethrin Etridiazole Phosphine
Biphenyl Etrimfos Piperonyl butoxide
Bitertanol* Famphur Piperophos
Bromacil Fenamiphos* Pirimicarb
Bromophos Fenarimol* Pirimiphos-ethyl
Bromophos-ethyl Fenbuconazole Pirimiphos-methyl*
Bromopropylate* Fenfuram Pretilachlor
Bromoxynil Fenitrothion* Probenazole
Bufencarb Fenobucarb Prochloraz
Bulan Fenoxaprop ethyl ester Procyazine
Bupirimate Fenoxycarb Procymidone*
Butachlor Fenpropathrin Prodiamine
Butocarboxim Fenpropimorph Profenofos*
Butralin Fenson Profluralin
Cadusafos Fensulfothion Prolan
Captafol Fenthion Promecarb
Captan* Fenuron Prometryn
Carbaryl* Fenvalerate* Pronamide
Carbofuran* Fipronil Propachlor
Carbon tetrachloride Flamprop-M-isopropyl Propanil
Carbophenothion* Flamprop-methyl Propargite*
Carbosulfan Fluazifop butyl ester Propazine
Carboxin Fluchloralin Propetamphos
Chlorbenside Flucythrinate Propham
Chlorbromuron Flusilazole Propiconazole
Chlorbufam Fluvalinate Propoxur
Chlordane* Folpet* Prothiofos*
Chlordecone Fonofos* Prothoate
Chlordimeform* Formetanate hydrochloride* Pyrazon
Chlorethoxyfos Formothion Pyrazophos
Chlorfenvinphos Fuberidazole Pyrethrins
Chlorflurecol methyl ester Furilazole Pyridaphenthion
Chlorimuron ethyl ester Gardona* Quinalphos
Chlornitrofen Heptachlor* Quintozene*
Chlorobenzilate Heptenophos Quizalofop ethyl ester
Chloroform Hexachlorobenzene* Ronnel
3-Chloro-5-methyl-4-nitro-1H-pyrazole Hexaconazole Schradan
Chloroneb Hexazinone Secbumeton
Chloropropylate Imazalil* Simazine*
Chlorothalonil* Imazamethabenz methyl ester Simetryn
Chloroxuron Iprobenfos Strobane
Chlorpropham* Iprodione* Sulfallate
Chlorpyrifos* Isazofos Sulfotep*
Chlorpyrifos-methyl* Isocarbamid Sulfur dioxide*
Chlorthiophos Isofenphos Sulphenone
Clomazone Isoprocarb Sulprofos
Coumaphos Isopropalin TCMTB
Crotoxyphos Isoprothiolane Tebuconazole
Crufomate Lactofen Tebupirimfos
Cyanazine Lambda-cyhalothrin Tecnazene
Cyanofenphos Leptophos TEPP
Cyanophos Lindane* Terbacil
Cycloate Linuron* Terbufos
Cyfluthrin Malathion* Terbumeton
Cyhexatin* Mecarbam Terbuthylazine
Cypermethrin* Mephosfolan Terbutryn
Cyprazine Merphos* Tetradifon*
Cyproconazole Metalaxyl* Tetraiodoethylene
Daminozide Metasystox thiol Tetrasul
DCPA* Metazachlor Thiabendazole*
DDT* Methabenzthiazuron Thiobencarb
Deltamethrin Methamidophos* Thiodicarb
Deltamethrin, trans Methidathion* Thiometon
Demeton* Methiocarb* Thionazin
Desmetryn Methomyl* Thiophanate-methyl
Dialifor Methoprotryne Tolylfluanid
Di-allate Methoxychlor* Toxaphene
N,N-Diallyl dichloroacetamide Methylene chloride Tralomethrin
Diazinon* Metobromuron Traloxydim
Dichlobenil Metolachlor Triadimefon*
Dichlofenthion Metolcarb Triadimenol*
Dichlofluanid Metoxuron Tri-allate
Dichlone* Metribuzin Triazamate
4-(Dichloroacetyl)-1-oxa-4-azapiro[4.5]decane Mevinphos* Triazophos
Dichlorvos* Mirex* Tribufos
Diclobutrazol Monocrotophos* Trichlorfon
Diclofop-methyl Monolinuron Tricyclazole
Dicloran* Monuron Tridiphane
Dicofol* Myclobutanil* Trietazine
Dicrotophos Naled Triflumizole
Dieldrin* Napropamide Trifluralin*
Diethatyl-ethyl Neburon Triflusulfuron methyl ester
Dilan Nitralin Trimethacarb
Dimethachlor Nitrapyrin Vamidothion sulfone
Dimethametryn Nitrofen Vernolate
Dimethipin Nitrofluorfen Vinclozolin*
Dimethoate* Nitrothal-isopropyl XMC
 
a The list of pesticides detectable is expressed in terms of the parent pesticide. However, monitoring coverage and findings may have included metabolites, impurities, and alteration products.
b Some of these pesticides are no longer manufactured or registered for use in the United States.
c The analytical methodology determines carbendazim, which may result from use of benomyl or carbendazim.
d Such as maneb.


Table 3

Compliance Samples by Commodity Group in 1995

Commodity Group

Total No. of
Samples
Samples with
No Residues
Found, %
Samples
Violative, %
Domestic
Grains and grain products 3 33 0
Milk/eggs 5 100 0
Fish 5 80 0
Fruits 23 48 0
Vegetables 56 48 21
Other 5 80 0
Total 97 54 12
 
Import
Grains and grain products 49 63 0
Cheese 3 100 0
Fish/shellfish 17 41 0
Fruits 71 68 18
Vegetables 196 52 14
Other 49 86 6
Total 385 61 11


Table 4

Summary of Foodcontam Findings for 1995a

State Total Samples No. Positive Positive, % No. Significant Significant, %
Arkansas 351 14 4.0 2 0.6
California 4694 1164 24.8 40 0.9
Georgia 540 128 23.7 7 1.3
Indiana 158 93 58.9 0 -
North Carolina 688 215 31.3 9 1.3
New York 965 321 33.3 14 1.5
Oregon 277 39 14.1 0 -
Pennsylvania 582 124 21.3 5 0.9
Virginia 703 88 12.5 2 0.3
Wisconsin 538 7 1.3 0 -
   Total 9394 2193 23.3 79 0.8
aData from Florida not available.


Table 5

Summary of Findings in Domestic Surveillance Feed Samples in 1995

Type of Feed Total No.
of Samples
Samples with No
Residues Found
Violative Samples
No. % No. %
Whole/ground grains 167 98 59 2 1
Plant by-products 120 76 63 0 -
Mixed feed rations 116 35 30 0 -
Animal by-products 104 74 71 0 -
Hay & hay products 25 18 72 0 -
Total 532 301 57 2 <1


Table 6

Commodity Targeted Monitoring of Domestic and Imported Foods for Triazine Herbicides Conducted in 1995

Commodity Number of Samples Analyzed
Domestic Import
Apples 9 16
Bananas 2 23
Cherries 25 -
Corn 10 15
Grapefruit 8 4
Grapes 5 20
Olives - 25
Oranges 20 5
Pears 6 19
Plums 7 13
   Total 92 140


Table 7

Frequency of Occurrence of Pesticide Residues Found in Total Diet Study Foods in 1995a

Pesticideb Total No. of Findings Occurrence, %
DDT 192 25
Malathion 141 18
Chlorpyrifos-methyl 130 17
Chlorpyrifos 97 12
Dieldrin 92 12
Endosulfan 81 10
Chlorpropham 44 6
Methamidophos 40 5
Carbarylc 39 5
Iprodione 31 4
Thiabendazoled 29 4
Dimethoate 28 4
Permethrin 25 3
Hexachlorobenzene 24 3
BHC 22 3
Dicloran 21 3
Diazinon 21 3
 
a Based on 3 market baskets analyzed in 1995 consisting of 783 items.
b Isomers, metabolites, and related compounds are not listed separately; they are covered under the "parent" pesticide from which they arise.
c Reflects overall incidence; however, only 95 selected foods per market basket (i.e., 285 items total) were analyzed for N-methylcarbamates.
d Reflects overall incidence; however, only 67 selected foods per market basket (i.e., 201 items total) were analyzed for the benzimidazole fungicides (thiabendazole and benomyl).


Table 8

Frequency of Occurrence of Pesticide Residues Found in Selected Baby Foods in 1991-1995a

Pesticideb Total No. of Findings Occurrence, %
Carbarylc 77 28
Dimethoate 71 26
Iprodione 45 16
Omethoate 39 14
Malathion 36 13
Chlorpyrifos 35 13
Endosulfan 29 11
Chlorpyrifos-methyl 26 9
Thiabendazoled 23 8
Permethrin 22 8
Parathion 20 7
Dicloran 14 5
Propargitee 10 4
Acephate 9 3
Dieldrin 8 3
Benomyld 7 3
a Based on 12 collections consisting of 276 items.
b Isomers, metabolites, and related compounds are not listed separately; they are covered under the "parent" pesticide from which they arise.
c Reflects overall incidence; however, only 17 selected foods per collection (i.e., 204 items total) were analyzed for N-methylcarbamates.
d Reflects overall incidence; however, only 16 selected items (i.e., 192 items total) were analyzed for the benzimidazole fungicides (thiabendazole and benomyl).
e Reflects overall incidence; however, only 16 selected foods per collection (i.e., 192 items total) were analyzed for this sulfur-containing compound.


Appendix A

Analysis of Domestic Surveillance Samples by Commodity Group in 1995

Commodity Group Total
No. of
Samples
Samples
with No
Residues
Found, %
Samples Violative, %
Over
Tolerance
No Tolerance
A. Grains and Grain Products
Corn & corn products 53 81 0 0
Oats 18 67 0 0
Rice & rice products 56 86 0 0
Soybeans 38 82 0 0
Wheat 146 38 1 0
 
Cereal products 23 87 0 0
Other grains & grain products 55 38 2 0
Total 389 59 <1 0
 
B. Milk/Dairy Products/Eggs
Cheese & cheese products 66 68 0 0
Eggs 259 98 0 0
Milk/cream & milk products 761 93 0 0
Total 1086 93 0 0
 
C. Fish/Shellfish
Fish 295 53 0 0
Shellfish 128 90 0 0
Total 423 64 0 0
 
D. Fruits
Blueberries 64 61 0 17
Cranberries 20 10 0 0
Grapes 52 52 0 0
Raspberries 33 24 0 0
Strawberries 107 15 1 2
Other berries 8 75 0 0
 
Grapefruit 22 27 0 0
Lemons 28 57 0 0
Oranges 171 6 0 0
Other citrus fruits 6 33 0 0
 
Apples 189 46 0 0
Pears 69 32 7 0
 
Apricots 28 25 4 0
Cherries 64 17 0 0
Nectarines 26 8 0 0
Olives 12 100 0 0
Peaches 200 20 <1 <1
Other pit fruits 11 73 0 0
 
Cantaloupe 45 62 0 2
Honeydew 14 57 0 0
Watermelon 73 86 0 0
 
Apple juice 110 76 0 <1
Other fruit juices 22 82 0 0
Fruit jams/ jellies/ pastes/ toppings 11 36 0 0
Other fruits 52 88 0 2
Total 1437 40 <1 1
 
E. Vegetables
Corn 105 90 0 0
Green/ snow/ sugar/ sweet peas 84 86 0 0
String beans 100 67 0 0
Other beans & peas 32 91 0 0
 
Cucumbers 41 61 0 2
Eggplant 17 71 0 12
Peppers, hot 12 83 0 0
Peppers, sweet 40 58 0 0
Squash 33 58 0 3
Tomatoes 100 56 0 0
Other fruits used as vegetables 10 100 0 0
 
Broccoli 23 74 0 0
Cabbage 65 83 0 0
Cauliflower 20 90 0 0
Celery 30 30 0 3
Collards 18 67 0 6
Endive/escarole 11 91 0 45
Kale 11 45 0 9
Lettuce, head 115 37 <1 0
Mustard greens 12 17 0 0
Romaine 85 35 4 1
Spinach 37 32 0 5
Other leaf/ stem vegetables 48 60 0 19
 
Mushrooms/ truffles & products 15 100 0 0
 
Carrots 130 57 2 0
Onions/ leeks/ scallions/ shallots 28 89 0 0
Potatoes 239 56 0 2
Radishes 15 73 0 0
Red beets 15 100 0 0
Sweet potatoes/ yams 25 64 0 0
Other root/ tuber vegetables 9 89 0 0
 
Vegetables, dried or paste 45 89 0 0
Other vegetables/ vegetable products 15 67 0 0
Total 1585 63 <1 2
 
F. Other
Peanuts 50 94 0 0
Other nuts 17 100 0 0
 
Vegetable oils 13 100 0 0
 
Honey & other sweeteners 17 88 0 0
 
Baby foods/formula 61 97 0 0
 
Other food products 23 83 0 4
Total 181 94 0 <1
 
A-F Total 5101 64 <1 <1


Appendix B

Analysis of Import Surveillance Samples by Commodity Group in 1995

  Samples Violative, %
Commodity Group Total No.
of Samples
Samples with
No Residues
Found, %
Over
Tolerance
No
Tolerance
A. Grains and Grain Products
Rice, basmati 22 77 0 5
Rice, jasmine 34 91 0 0
Other rice & rice products 23 91 0 0
 
Wheat & wheat products 21 71 0 0
Other grains & grain products 16 100 0 0
Bakery products 21 86 0 5
Breakfast/snack foods 12 67 0 0
 
Macaroni 43 79 0 0
Spaghetti 18 72 0 0
Other pasta products 28 61 0 0
Total 238 80 0 <1
 
B. Dairy Products/Eggs
Cheese & cheese products 75 93 0 0
Eggs 27 74 0 0
Total 102 88 0 0
 
C. Fish/Shellfish
Fish 99 83 0 0
Shellfish 22 95 0 0
Total 121 85 0 0
 
D. Fruits
Blackberries 30 40 0 3
Blueberries 38 97 0 0
Grapes 202 31 0 1
Raspberries 53 36 0 9
Strawberries 67 18 0 10
Other berries 20 55 0 0
 
Clementines 11 82 0 0
Limes 18 67 0 0
Oranges 30 70 0 7
Tangerines 12 58 0 0
Other citrus fruits 14 100 0 0
 
Apples 48 50 0 8
Pears 69 48 0 1
 
Apricots 10 50 0 0
Cherries 19 47 0 0
Nectarines 16 50 0 0
Olives 77 92 0 1
Peaches 52 48 0 4
Plums 31 55 0 0
Other pit fruits 13 100 0 0
 
Bananas 228 34 <1 0
Kiwi fruit 20 75 0 0
Mangoes 69 96 0 0
Papayas 81 72 0 9
Pineapples 65 75 5 0
Plantains 18 89 0 0
Other tropical fruits 56 89 0 7
 
Cantaloupe 82 40 5 2
Honeydew 53 6 0 6
Watermelon 28 50 0 0
Other vine fruits 17 82 0 0
 
Apple juice 19 68 0 11
Other fruit juices 52 94 0 0
Fruit jams/jellies/toppings 41 90 0 0
Fruits, dried or paste 90 90 0 0
Other fruits & fruit products 8 88 0 0
Total 1757 57 <1 3
 
E. Vegetables
Corn 45 100 0 0
Green/snow/sugar/sweet peas 90 51 0 12
Mung beans 11 91 0 0
String beans 78 47 3 8
Other beans, peas, & corn 63 81 0 5
 
Cucumbers 96 49 0 4
Eggplant 23 48 0 0
Okra 33 73 0 9
Peppers, hot 261 46 3a 5
Peppers, sweet 295 76 0 1
Squash/pumpkins 110 35 0 4
Tomatoes 332 59 0 0
Other fruits used as vegetables 30 87 0 10
 
Artichokes 26 96 0 0
Asparagus 101 63 12 1
Bamboo shoots 20 100 0 0
Broccoli 53 70 0 0
Cabbage 16 63 0 0
Celery 20 20 0 0
Chicory 16 94 0 6
Endive/escarole 45 98 0 0
Lettuce, head 40 38 3 8
Radicchio 59 98 0 2
Romaine 44 50 7 3
Spinach 22 36 5 0
Other leaf/ stem vegetables 67 64 1 10
 
Mushrooms/truffles, whole 47 96 0 2
Mushrooms/truffles, pieces & products 51 96 0 2
 
Carrots 46 67 0 0
Cassava 18 100 0 0
Onions 27 89 0 0
Potatoes 22 95 0 0
Radishes 13 62 0 0
Shallots/scallions/leeks 23 91 0 0
Sweet potatoes/yams 14 100 0 0
Water chestnuts 46 100 0 0
Other root/tuber vegetables 42 86 0 0
 
Vegetables, dried or paste 140 83 0 6
Vegetables with sauce 22 77 0 9
Other vegetables & vegetable products 28 82 0 0
Total 2535 67 1a 3a
 
F. Other
Spices 14 75 0 0
 
Cashews 42 62 0 7
Peanuts 20 85 0 0
Other nuts & nut products 35 89 0 3
Edible seeds 24 75 0 17
 
Vegetable oils, crude 14 100 0 0
Vegetable oils, refined 15 100 0 0
 
Beverage bases 13 100 0 0
Bottled water, mineral/spring 19 100 0 0
 
Honey & other sweeteners 25 76 0 0
 
Other food products 58 79 0 0
Total 279 83 0 3
 
A-F Total 5032 66 <1a 3a
 
a Includes samples that have both residue(s) over tolerance and residue(s) with no tolerance.


References

(1) Yess, N.J. (1995) U.S. Food and Drug Administration monitoring of pesticide residues in foods. Pestic. Outlook 6, 28-31.

(2) Code of Federal Regulations (1996) Title 40, U.S. Government Printing Office, Washington, DC, Parts 180, 185, and 186.

(3) Pesticide Analytical Manual (1968 and revisions) Vols I (3rd Ed., 1994) and II (1971), Food and Drug Administration, Washington, DC (available from National Technical Information Service, Springfield, VA 22161).

(4) Roy, R.R., Albert, R.H., Wilson, P., Laski, R.R., Roberts, J.I., Hoffmann, T.J., Bong, R.L., Bohannon, B.O., & Yess, N.J. (1995) U.S. Food and Drug Administration pesticide program: incidence/level monitoring of domestic and imported pears and tomatoes. J. AOAC Int. 78, 930-940.

(5) Pennington, J.A.T., Capar, S.G., Parfitt, C.H., & Edwards, C.W. (1996) History of the Food and Drug Administration's Total Diet Study (Part II), 1987-1993. J. AOAC Int. 79, 163-170.

(6) Food and Drug Administration (1995) Food and Drug Administration pesticide program - residue monitoring - 1994. J. AOAC Int. 78, 117A-143A (and earlier reports in the series).

(7) Gunderson, E.L. (1995) Dietary intakes of pesticides, selected elements, and other chemicals: FDA Total Diet Study, June 1984-April 1986. J. AOAC Int. 78, 910-921.

(8) Gunderson, E.L. (1995) FDA Total Diet Study, July 1986-April 1991, dietary intakes of pesticides, selected elements, and other chemicals. J. AOAC Int. 78, 1353-1363.

(9) Pennington, J.A.T. (1992) Total Diet Studies: the identification of core foods in the United States food supply. Food Addit. Contam. 9, 253-264.

(10) Pennington, J.A.T. (1992) The 1990 revision of the FDA Total Diet Study. J. Nutr. Educ. 24, 173-178.

(11) Pennington, J.A.T. (1992) Appendices for the 1990 revision of the Food and Drug Administration's Total Diet Study. PB92-176239/AS, National Technical Information Service, Springfield, VA 22161.

(12) Pardue, J.R. (1995) Multiresidue method for the chromatographic determination of triazine herbicides and their metabolites in raw agricultural products. J. AOAC Int. 78, 856-862.

(13) Bong, R., Kramer, J., Heaney, L., & Murphy, L. (1995) Validation of a multiresidue method for triazine herbicides in various food commodities. Lab. Inf. Bull. 3998, Food and Drug Administration, Rockville, MD.


Home
Hypertext updated by dms 1997-OCT-07