Untitled Document
ANTD Home Page ANTD Staff ANTD Publications ANTD Products Search ANTD Information Technology Laboratory Home Page NIST Home Page
Untitled Document
Project Mission
To conduct quantum information related research to:
blue bullet
Provide solutions for advanced quantum information science and technology to enhance US industrial competitiveness.
blue bullet
Develop and exploit new calibration and metrology techniques to achieve standardization in the area of quantum information and communication.
blue bullet
Provide an infrastructure for quantum key distribution metrology, testing, calibration, and technology development.
Small horizontal rule
blue bullet About Us
blue bullet Publications
blue bullet Links
blue bullet Collaborations
blue bullet Team
blue bullet Developments
blue bullet Opportunities
Small horizontal rule

R&D 100 Award (2007)


IET Finalist Award (2007)


DoC Bronze Medal (2005)

ITL Outstanding Authorship (2007)

Small horizontal rule
Most Resent Publications
Lijun Ma Senior Member, IEEE, Tiejun Chang, Alan Mink Member, IEEE, Oliver Slattery, Barry Hershman, and Xiao Tang, "Experimental Demonstration of a Detection-time-bin-shift Polarization Encoding Quantum Key Distribution System", IEEE Communications Letters, Vol. 12, NO. 6, June 2008.

Lijun Ma, Tiejun Chang, Alan Mink, Oliver Slattery, Barry Hershman, and Xiao Tang, "Experimental demonstration of an active quantum key distribution network with over Gbps clock synchronization", IEEE Communications Letters, Vol. 11, No. 12, P.1019, December 2007.

Alan. Mink, Lijun Ma, Hai Xu, Oliver Slattery, Barry Hershman and Xiao Tang, "A Quantum network manager that supports a one-time pad stream", Proc of the 2nd International Conference on Quantum, Nano, and Micro Technology, St. Luce, Martinique, Feb 10-15, 2008, pp 16-21.

L. Ma, T.Chang, X. Tang, "Detection-Time-Bin-Shift Polarization Encoding Quantum Key Distribution System," Conference on Laser and Electro-Optics/ Quantum electronics and Laser Science Conference 08, CLEO/QELS Technical Digest, QWB4 (2008).

L. Ma, H. Xu, T.Chang, O. Slattery, X. Tang, "Experimental Implementation of 1310-nm Differential Phase Shift QKD System with Up-Conversion Detectors," Conference on Laser and Electro-Optics/ Quantum electronics and Laser Science Conference 08, CLEO/QELS Technical Digest JTuA105, (2008).

Hai Xu, Lijun Ma, Alan Mink, Barry Hershman and Xiao. Tang. " 1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm ", Optics Express, Vol. 15, Issue 12, pp. 7247-7260 (May 30, 2007).

All Publications.

Small horizontal rule
Search ANTD
Search ITL
Search NIST
Small horizontal rule
Back to NIST Home
 
Thin black line

Wireless QKD demonstrated by ITL and PL researchers

NIST System Sets Speed Record For Generation of Quantum Keys for ‘Unbreakable’ Encryption

May, 2004.
CONTACT: Laura Ost
(301) 975-4034

The fastest known cryptographic system based on transmission of single photons—the smallest pulses of light—has been demonstrated by a team at the Commerce Department’s National Institute of Standards and Technology (NIST). The transmissions cannot be intercepted without detection, so that messages encrypted with the system can be kept secret.

Physicist Joshua Bienfang sets up the NIST quantum key distribution system to receive a string of photons from colleagues stationed on the top floor of the NIST Administration Building (shown in the background.) The black instrument on the left is an 8-inch telescope used in collecting the incoming photons.

Photo by Gail Porter/NIST

The NIST “quantum key distribution” (QKD) system transmits a stream of individual photons to generate a verifiably secret key—a random series of digital bits, each representing 0 or 1, used to encrypt messages—at a rate of 1 million bits per second (bps). This rate is about 100 times faster than previously reported systems of this type.

The demonstration, described in the May 3 issue of Optics Express, is the first major reported result from a new NIST testbed built to demonstrate quantum communications technologies and cryptographic key distribution. The testbed provides a measurement and standards infrastructure for research, testing, calibrations and technology development. Scientists tested the QKD system by generating an encryption key that could be sent back and forth between two NIST buildings that are 730 meters apart. They are using the testbed to develop data-handling techniques associated with this type of encryption.

Acadia Optronics LLC of Rockville, Md., consulted on the system design and hardware. Partial funding for the project was provided by the Defense Advanced Research Projects Agency.

Quantum systems—exploiting the laws of quantum mechanics—are expected to provide the next big advance in data encryption. The beauty of quantum key distribution is its sensitivity to measurements made by an eavesdropper. This sensitivity makes it possible to ensure the secrecy of the key and, hence, the encrypted message. The keys are generated by transmitting single photons that are polarized, or oriented, in one of four possible ways. An eavesdropper reading the transmission causes detectable changes at the receiver. When such changes are observed, the associated key is not used for encryption.

Alan Mink works on a programmable printed circuit board used to process data for the new NIST quantum key distribution system.

©Robert Rathe

Compared to previously described QKD systems, the major difference in the NIST system is the way it identifies a photon from the sender among a large number of photons from other sources, such as the sun. To make this distinction, scientists time-stamp the QKD photons, then look for them only when one is expected to arrive.

“To be effective, this observation time has to be very short,” says NIST physicist Joshua Bienfang. “But the more often you can make these very brief observations, then the faster you can generate keys. We have adapted some techniques used in high-speed telecommunications to increase significantly the rate at which we can look for photons.”

The NIST team has packaged data-handling electronics operating in the gigahertz (1 billion bits per second) range in a pair of programmable printed circuited boards that plug into standard PCs. Photon losses caused by imperfections in the photon sources and detectors, optics, and procedures reduce the key generation rate. However, 1 million bps makes QKD practical for a variety of new applications, such as large network distributions or streaming encrypted video.

“We are processing data much faster with this hardware than can currently be done with software,” says NIST electrical engineer Alan Mink. “You would need a computer processing at more than 100 GHz (about 50 times faster than current PCs) to do it with software and you still couldn’t do it fast enough because the operating system would slow you down.”

The NIST quantum system uses an infrared laser to generate the photons and telescopes with 8-inch mirrors to send and receive the photons over the air. The data are processed in real time by printed circuit boards designed and built at NIST, so that a computer produces ready-made keys. NIST researchers also developed a high-speed approach to error correction.

Further research is planned to improve the system, primarily by addressing the need for faster photon detectors, the principal barrier to the development of practical systems for more widespread use. The group plans to incorporate NIST-developed photon sources and detectors. More information about NIST’s quantum information program can be found at http://qubit.nist.gov/.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

For further information on quantum cryptography see:
http://www.nist.gov/public_affairs/releases/quantumkeys_background.htm

*Optics Express is the online rapid publication journal of the Optical Society of America. See: http://www.opticsexpress.org/.

Reporters/Editors: For high-resolution files of the photos on this page contact Gail Porter, (301) 975-3392.

Thin black line
 

Untitled Document
Horizontal rule
www.nist.gov/quantum
 

Disclaimer Notice & Privacy Policy / Security Notice
Send comments or suggestions to webmaster@antd.nist.gov
The National Institute of Standards and Technology is an Agency of the U.S. Commerce Department's Technology Administration

Created, maintained and owned by: ANTD's webmaster
Last updated: August, 2007
Date Created: June, 2007