Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Overview of COVID-19

Last Updated: December 17, 2020

Epidemiology

The COVID-19 pandemic has exploded since cases were first reported in China in December 2019. As of December 5, 2020, more than 66 million cases of COVID-19—caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection—have been reported globally, including more than 1.5 million deaths.1,2

Individuals of all ages are at risk for infection and severe disease. However, the probability of serious COVID-19 disease is higher in people aged ≥60 years, those living in a nursing home or long-term care facility, and those with chronic medical conditions. In an analysis of more than 1.3 million laboratory-confirmed cases that were reported in the United States between January and May 2020, 14% of patients required hospitalization, 2% were admitted to the intensive care unit, and 5% died.3 The percentage of patients who died was 12 times higher (19.5% vs. 1.6%) and the percentage of patients who were hospitalized was six times higher (45.4% vs. 7.6%) in those with reported medical conditions than in those without medical conditions. The mortality rate was highest in those aged >70 years, regardless of the presence of chronic medical conditions. Among those with available data on health conditions, 32% had cardiovascular disease, 30% had diabetes, and 18% had chronic lung disease. Other conditions that may lead to a high risk for severe COVID-19 include cancer, kidney disease, obesity, sickle cell disease, and other immunocompromising conditions. Transplant recipients and pregnant people are also at a higher risk of severe COVID-19.2,4-10

Emerging data from the United States suggest that racial and ethnic minorities experience higher rates of COVID-19 and subsequent hospitalization and death.11-15 However, surveillance data that include race and ethnicity are not available for most reported cases of COVID-19 in the United States.2,16 Factors that contribute to the increased burden of COVID-19 in these populations may include over-representation in work environments that confer higher risks of exposure to COVID-19, economic inequality (which limits people’s ability to protect themselves against COVID-19 exposure), neighborhood disadvantage,17 and a lack of access to health care.16 Structural inequalities in society contribute to health disparities for racial and ethnic minority groups, including higher rates of comorbid conditions (e.g., cardiac disease, diabetes, hypertension, obesity, pulmonary diseases), which further increases the risk of developing severe COVID-19.15

Clinical Presentation

The estimated incubation period for COVID-19 is up to 14 days from the time of exposure, with a median incubation period of 4 to 5 days.6,18,19 The spectrum of illness can range from asymptomatic infection to severe pneumonia with acute respiratory distress syndrome (ARDS) and death. Among 72,314 persons with COVID-19 in China, 81% of cases were reported to be mild (defined in this study as no pneumonia or mild pneumonia), 14% were severe (defined as dyspnea, respiratory frequency ≥30 breaths/min, saturation of oxygen [SpO2] ≤93%, a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen [PaO2/FiO2] <300 mm Hg, and/or lung infiltrates >50% within 24 to 48 hours), and 5% were critical (defined as respiratory failure, septic shock, and/or multiorgan dysfunction or failure).20 In a report on more than 370,000 confirmed COVID-19 cases with reported symptoms in the United States, 70% of patients experienced fever, cough, or shortness of breath, 36% had muscle aches, and 34% reported headaches.3 Other reported symptoms have included, but are not limited to, diarrhea, dizziness, rhinorrhea, anosmia, dysgeusia, sore throat, abdominal pain, anorexia, and vomiting.

The abnormalities seen in chest X-rays vary, but bilateral multifocal opacities are the most common. The abnormalities seen in computed tomography of the chest also vary, but the most common are bilateral peripheral ground-glass opacities, with areas of consolidation developing later in the clinical course.21 Imaging may be normal early in infection and can be abnormal in the absence of symptoms.21

Common laboratory findings in patients with COVID-19 include leukopenia and lymphopenia. Other laboratory abnormalities have included elevated levels of aminotransferase, C-reactive protein, D-dimer, ferritin, and lactate dehydrogenase.

While COVID-19 is primarily a pulmonary disease, emerging data suggest that it also leads to cardiac,22,23 dermatologic,24 hematological,25 hepatic,26 neurological,27,28 renal,29,30 and other complications. Thromboembolic events also occur in patients with COVID-19, with the highest risk occurring in critically ill patients.31

The long-term sequelae of COVID-19 survivors are currently unknown. Persistent symptoms after recovery from acute COVID-19 have been described (see Clinical Spectrum of SARS-CoV-2 Infection). Lastly, SARS-CoV-2 infection has been associated with a potentially severe inflammatory syndrome in children (multisystem inflammatory syndrome in children, or MIS-C).32,33 Please see Special Considerations in Children for more information.

  1. World Health Organization. Coronavirus disease (COVID-2019) situation reports. 2020. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/. Accessed November 25, 2020.
  2. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): cases in U.S. 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html. Accessed November 25, 2020.
  3. Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus disease 2019 case surveillance — United States, January 22–May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020. Available at: https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6924e2-H.pdf.
  4. Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392-1398. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32409502.
  5. Garg S, Kim L, Whitaker M, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 - COVID—NET, 14 states, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458-464. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32298251.
  6. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32109013.
  7. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32167524.
  8. Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32422233.
  9. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): people who are at increased risk for severe illness. 2020; https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-at-increased-risk.html. Accessed November 25, 2020.
  10. Zambrano LD, Ellington S, Strid P, et al. Update: characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status—United States, January 22-October 3, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(44):1641-1647. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33151921.
  11. Azar KMJ, Shen Z, Romanelli RJ, et al. Disparities in outcomes among COVID-19 patients in a large health care system in California. Health Aff (Millwood). 2020;39(7):1253-1262. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32437224.
  12. Gold JAW, Wong KK, Szablewski CM, et al. Characteristics and clinical outcomes of adult patients hospitalized with COVID-19—Georgia, March 2020. MMWR Morb Mortal Wkly Rep. 2020;69(18):545-550. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32379729.
  13. Gross CP, Essien UR, Pasha S, Gross JR, Wang S, Nunez-Smith M. Racial and ethnic disparities in population level COVID-19 mortality. J Gen Intern Med. 2020; 35(10): 3097–3099. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402388.
  14. Nayak A, Islam SJ, Mehta A, et al. Impact of social vulnerability on COVID-19 incidence and outcomes in the United States. medRxiv. 2020;Preprint. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32511437.
  15. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med. 2020;382(26):2534-2543. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32459916.
  16. Centers for Disease Control and Prevention. Health equity considerations and racial and ethnic minority groups. 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/racial-ethnic-minorities.html. Accessed November 25, 2020.
  17. Kind AJH, Buckingham WR. Making neighborhood-disadvantage metrics accessible—the neighborhood atlas. N Engl J Med. 2018;378(26):2456-2458. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29949490.
  18. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-1207. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31995857.
  19. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and Application. Ann Intern Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32150748.
  20. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32091533.
  21. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425-434. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32105637.
  22. Liu PP, Blet A, Smyth D, Li H. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32293910.
  23. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32219363.
  24. Sachdeva M, Gianotti R, Shah M, et al. Cutaneous manifestations of COVID-19: report of three cases and a review of literature. J Dermatol Sci. 2020;98(2):75-81. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32381430.
  25. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021-1028. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32286245.
  26. Agarwal A, Chen A, Ravindran N, To C, Thuluvath PJ. Gastrointestinal and liver manifestations of COVID-19. J Clin Exp Hepatol. 2020;10(3):263-265. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32405183.
  27. Whittaker A, Anson M, Harky A. Neurological manifestations of COVID-19: a systematic review and current update. Acta Neurol Scand. 2020;142(1):14-22. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32412088.
  28. Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32314810.
  29. Pei G, Zhang Z, Peng J, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 2020;31(6):1157-1165. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32345702.
  30. Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219-227. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32327202.
  31. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32311448.
  32. Chiotos K, Bassiri H, Behrens EM, et al. Multisystem inflammatory syndrome in children during the COVID-19 pandemic: a case series. J Pediatric Infect Dis Soc. 2020 13;9(3):393-398. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32463092.
  33. Belhadjer Z, Meot M, Bajolle F, et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32418446.