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   The Gaussian curvature of the
surface at the point p is the
product of the maximum and minimum
curvatures in the family. The
objective of this paper is to
provide a deeper and broader
understanding of the meaning of
Gaussian curvature, using some more
general alternative computational
methods. We define the coefficients
of the expected Fisher Information
Matrix as the coefficients of the
first fundamental form. Four
different formulas, found in Struik
(1961), are used, although we do
not intend to compare the
superiority of these formulas in
computing the Gaussian curvature.
We found that all four  formulas
can compute the Gaussian curvature
effectively and successfully. This
is demonstrated with three common
examples.

1. INTRODUCTION

The Gaussian curvature, K, of the
surface, at the point p, is the
product of the extreme values of
curvatures in the family. If p is a
point on a regular surface in 3R
and K(p) is positive, then the two
curvatures have the same sign and
the point p is called an elliptic
point of the surface. If K(p) is
negative, then the two curvatures
have opposite signs and the point p
is called the hyperbolic point of
the surface. Examples in this paper
demonstrate these cases. If exactly
one curvature equals zero, then the
point p is a parabolic point of the
surface. If the Gaussian curvature
equals zero, then the surface is
either planar or developer.
Computing the Gaussian curvature
plays a central role in determining
the shape of the surface. It is
also a well known fact that two
surfaces which have the same

Gaussian curvature are always
isometric and bending invariant.
For instance, Struik D.J. (1961,
p120) provided an excellent example
that demonstrated a correspondence
between the points of a catenoid
and that of a right helicoid, such
that at corresponding points the
coefficients of the first
fundamental form and the Gaussian
curvatures are identical. In fact,
one surface can pass into the other
by a continuous bending. This has
been demonstrated by the
deformation of six different
stages. However, if the Gaussian
curvature is different, then the
two surfaces will not be isometric.
For example, a sphere and plane are
not locally isometric because the
Gaussian curvature of a sphere is
nonzero while the Gaussian
curvature of a plane is zero. This
is why any map of a portion of the
earth must distort distances. In
this paper, we define the
coefficients of the expected Fisher
Information Matrix as equal to the
coefficients of the first
fundamental form. There are
numerous authors who have used this
concept, including Barndorff-
Nielsen O.E.,et.al.(1986, p87
equation (3.1) or (4.1)), and Kass
R.E. (1997, p189). Using these
defined metric tensors, we can then
adopt the same notation and apply
the formulas listed in Struik D.J.
(1961). The Gaussian curvature then
becomes a function of the
coefficients of the first
fundamental form and their first
and second derivatives. In this
paper, we suggest the following
four systematic steps to compute
the Gaussian curvature: Step 1-
compute the coefficients of the
expected Fisher Information Matrix
or coefficients of the first
fundamental form, namely, E,F and
G; Step 2-compute the needed first



or second derivative of E,F and G,
and thus the six Christoffel
symbols; Step 3-apply formula (D),
which necessitates in the
computation of the mixed Riemann
curvature tensors 2

121
1
121   and ℜℜ ; the

subsequent computation of the inner
product of this tensor with the
metric tensor, F or G, results in
the covariant Riemann curvature
tensor 1212ℜ ; Step 4-observe that
the Gaussian curvature has a very
simple relation to Riemann symbols
of the second kind. By adhearing to
this procedure, the correct
Gaussian curvature will be
calculated. In the case where 0F ≠
or the parametric lines on the
surface are not orthogonal, the
computational procedure can be
extremely tedious. It is always
prudent to find a proper
transformation to form an
orthogonal system of parametric
lines in order to simplify the
computational procedures.

2. NOTATION AND TERMINOLOGY

In this section, we define the
basic notations and terminologies
that will apply in the next two
sections. These notations and
symbols can also be found in
Struik, D.J. (1961) or Gray, A.
(1993). First and foremost, we
define the coefficients of the
first fundamental form as;
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where f(u,v) are two parameters of
the probability density functions.
It is clear that E,F and G are
functions of the parameters u and
v. The expectations apply to the
whole sample space where the random
variables are defined. We also
assume that the regular conditions
of the information metrics are all
satisfied. The details of these
five conditions are summarized in
Kass R.E. (1997, page 185, section
7.4.1). Next, we define the six

well known Christoffel symbols (see
Struik D.J. 1961, p107, equation
(2-7) or Gray A p398)as follows:
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Since E, F and G are functions of
parameters (u,v) and are
continuously twice differentiable,

vuvuvu G and G,F,F,E,E  all exists and are
all well defined. Because F=0,
formula (A) turns out to be a
simplified form of Gauss’ Equation.
In 1997, Kass R.E. used formula (A)
to compute the Gaussian curvature
of trinomial and t families. In the
next section, we will demonstrate
that formulas (C) and (D) are
heavily dependant on the six
Christoffel symbols. Additionally,
no assumption is made regarding
F=0, and so the parametric lines
are not necessarily orthogonal.
However, if F=0, the six
Christoffel symbols can be greatly
simplified. The three distributions
discussed here belong to this case.

3. THE FORMULA

In this section, we select four
formulas that can be used to
compute the Gaussian curvature.
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 sum on m,
where the quantities of l

ijkℜ  are
components of a tensor of the
fourth order. This tensor is called
the mixed Riemann curvature tensor.
Notice that   221211 g and g,g are simply
tensor notation for E,F and G.
Formula (B) was developed by G.
Frobenius while formula (C ) was
derived by J. Liouville. Clearly,
formula (A) is a special case that
is valid only when the parametric
lines are orthogonal. Formula (D)
is a general form represented in
Riemann symbols of the first and
second kind, respectively. In
formula (D), 1212ℜ , the inner
product of the mixed Riemann
curvature tensor and the metric
tensor, is called the covariant
Riemann curvature tensor; it is a
covariant tensor of the fourth
order. The components l

ijkℜ  and 1212ℜ

are also known as Riemann symbols
of the first and second kind,
respectively. Notice that Riemann
symbols of the second kind will
satisfy the relation

2121211212211212 ℜ=− ℜ=− ℜ=ℜ ,the well-known
property of skew-symmetry with
respect to the last two indices. It
is useful to be aware of the fact
that the Christoffel symbols depend
only on the coefficients of the
first fundamental form and their
derivatives. The same holds true
for the mixed Riemann curvature
tensor. From this point of view, as
long as we can find the
coefficients of the first
fundamental form of a given
distribution and their first and
second derivatives, we can uniquely
define the corresponding
Christoffel symbols and hence mixed
Riemann curvature tensors. Thus,
the process of computing the
covariant Riemann curvature tensor
and Gaussian curvature is
simplified. From a different
perspective, we know that the mixed
Riemann curvature tensor will link
with the coefficient of the second

fundamental form; namely e,f,and g,
by )feg(g 22nn
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The above relation can then be
easily used to derive 2

1212 feg −=ℜ ,
and the result will coincide with
equation (7-3) of Struik D.J.(1961,
p83), the original fundamental
definition of Gaussian curvature.
These points convince us that
formulas (A) and (D) basically
define the same quantity, but only
in different forms. The reason why
only formula (D) was selected for
presentation is due to the
following two facts: 1. to avoid
repetition of Kass R.E (1997,
p189); 2. when F=0, formulas (B)
and (C) are trivially similar to
formula (A). For example, in
formula (C), we may substitute the
following equation on the left hand
side:
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We can immediately calculate the
same results as found from formula
(A) while formula (D) results in a
Riemann representation. In this
way, we have supplied some more
general alternative methods to
compute the Gaussian curvature,
including the case when .0F ≠

4. THREE EXAMPLES

In this section, we give the
details of three examples and
demonstrate how we could apply
formula (D) to compute our Gaussian
curvature. The three examples will
deal with the location-scale family
of densities and the methods of
finding those with negative
Gaussian curvature. Kass
R.E.(1997,p192 theorem 7.4.6) gave
the general form of a location-
scale manifold of density:
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for some density function f. Then,
the information metric of the



Riemannian geometry space has
constant negative curvature. We
provide the derivation of the
formula for the Gaussian curvature
of normal distribution in example
1, Cauchy distribution in example 2
and t family distribution in
example 3.
Example 1: Let 1Ω  be a location
scale manifold of density that has
the following general form:
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where u is the location parameter
and v is the scale parameter. We
also assume that the regular
conditions of the information
metric are satisfied. The first and
second partial derivative, with
respect to parametric lines u and
v, are given as:
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It is commonly known that the
expected value and variance of the
random variable x are ,  vand  u 2

respectively. From this, we could
easily derive the coefficient of
the first fundamental form
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as well as their corresponding
derivatives with respect to the
parametric lines u and v :
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Substituting the listed results
into formula (A), (B) or (C), it
should be easy to compute the
Gaussian curvature, obtaining 2

1− .
Again, we present the details for
formula (D) only. We can derive
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Example 2: Let 2Ω  be the location
scale manifold of density which has
the following general form:
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where u is the location parameter
and v is the scale parameter. The
logarithm of the likelihood
function of Cauchy density with one
observation can be written as
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As before, we can derive the first
two partial derivatives with
respect to the parametric lines u
and v.
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Taking the expected values of
equations (4.4), we finally get the
following results:

(4.5) 
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The derivatives of the coefficients
of the first fundamental form and
six Christoffel symbols are all
straightforward computations. Due
to the fact that the Cauchy
distribution is the same as the
normal distribution, that is,

.01
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1
11 =Γ=Γ=Γ , we use formula (D) to
derive the Gaussian curvature.
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Example 3: Let 3Ω  be the location-
scale manifold of density that has
the student t distribution and
generally has the form:
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where u is location parameter and v
is scale parameter. Let us define
the following variables to simplify
the notation:

    .
)

2
r

(r

)
2

1r
(

c        ,
2

1r
b        ,

r
1

a r
Γπ

+Γ
=+==

Then the logarithm of likelihood
function of family t, can be
written as follows:
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From equation (4.6), we can derive
the first and second partial
derivatives :
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We can now take the expected
values of (4.7), and have the
following results.
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It now becomes a routine procedure
to compute the derivative of the
coefficient of the first
fundamental form and six
Christoffel symbols. Compute the
Riemann symbols of the first and
second kind, respectively. Thus,
the Gaussian curvature is
calculated.
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5. CONCLUDING REMARK

One of the most important theorems
of the 19th century is ‘Theorema
Egregium’. Many mathematicians at
the end of the 18th century,
including Euler and Monge, had used
the Gaussian curvature, but only
when defined as the product of the
principal curvatures. Since each
principal curvature of a surface
depends on the particular way the
surface is defined in 3R , there is
no obvious reason for the product
of the principal curvatures to be
intrinsic to that particular
surface. Gauss published in 1827
that the product of the principal
curvatures depends only on the
intrinsic geometry of the surface
revolutionized differential
geometry.  Gauss wrote “‘The
Gaussian curvature of a surface is
a bending invariant’ ,’a most
excellent theorem’, This is a
Theorema egregium’”. In this
theorem, Gauss proved that the
Gaussian curvature ,K, of a
surface, depends only on the
coefficient of the first
fundamental form and their first



and second derivatives. This
important geometric fact will link
the concepts of bending and
isometric mapping. By bending
invariant, we mean that it is
unchanged by such deformations of
the surface when restricted to a
limited region that does not
involve stretching, shrinking, or
tearing. When measured along a
curve on the surface, the distance
between two points on the surface
is unchanged. The angle of the two
tangent directions at the point is
also unchanged. This property of
surfaces expressible as bending
invariant is called the intrinsic
property. We would like to conclude
this study by repeating Kass’
(1989,1997) favorite and most
interesting piece of trivia:
“Suppose we ask which distribution
in the t family is half way between
Normal and Cauchy on the
statistical curvature scale, the
scale of sufficiency loss of the
Maximum Likelihood Estimator. For

Normal, 0=γ  and for Cauchy, 2
1
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There is no reason why γ should
turn out to be an integer; it
merely has to be a number greater
than 1. Since 1=γ  for Cauchy and

∞=γ  for Normal, the answer is 3=γ .
Thus, in the sense of the
insufficiency of the MLE, as
measured by statistical curvature ,
the t, on 3 degrees of freedom, is
halfway between Normal and Cauchy.
This means that the statistical
curvature of the 3t  distribution is
the arithmetic mean of the
statistical curvatures for the
Cauchy and Normal distribution.
From the Gaussian curvature that we
derived in this paper, we showed
that in Normal distribution we

obtain 
2
1−=Κ ,and in Cauchy

distribution we obtain ,2−=Κ  while
in t family distribution with r

degrees of freedom, we get 
r2
3r +−=Κ .

In other words, the Gaussian
curvature of the 3t  distribution is
the geometric mean of the
curvatures for the Cauchy and
Normal distribution. Thus, we
conclude that whether one uses
statistical or geometric mean
curvature, the 3t  may be considered
half way in between a Normal and
Cauchy distribution.”
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