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The Caussian curvature of the
surface at the point p is the
product of the maxi nrum and m ni num
curvatures in the famly. The
objective of this paper 1is to
provi de a deeper and br oader
understanding of the neaning of
Gaussi an curvature, using some nore
gener al alternative conputational
nmet hods. W define the coefficients
of the expected Fisher Information
Matrix as the coefficients of the
first f undanent al form Four
different formulas, found in Struik
(1961), are wused, although we do
not i ntend to conmpare t he
superiority of these formulas in
conputing the Gaussian curvature.
W found that all four formul as
can conpute the Gaussian curvature
effectively and successfully. This
is denonstrated with three comon
exanpl es.

1. | NTRODUCTI ON

The Gaussian curvature, K, of the
surface, at the point p, is the
product of the extrene values of
curvatures in the famly. If pis a

point on a regular surface in RS
and K(p) is positive, then the two
curvatures have the same sign and
the point p is called an elliptic
point of the surface. If K(p) is
negative, then the two curvatures
have opposite signs and the point p
is called the hyperbolic point of
the surface. Exanples in this paper
denonstrate these cases. If exactly
one curvature equals zero, then the
point p is a parabolic point of the
surface. If the Gaussian curvature
equals zero, then the surface is
ei t her pl anar or devel oper.
Conputing the Gaussian curvature
plays a central role in determ ning
the shape of the surface. It is
also a well known fact that two
surfaces whi ch have the sane

Gaussi an curvature are al ways
isometric and bending invariant.
For instance, Struik D.J. (1961
p120) provided an excellent exanple
that denonstrated a correspondence
between the points of a catenoid
and that of a right helicoid, such
that at corresponding points the

coefficients of t he first
fundanental form and the Gaussian
curvatures are identical. In fact,

one surface can pass into the other
by a continuous bending. This has

been denonstrat ed by t he
def ormati on of Si X di fferent
stages. However, if the Gaussian
curvature is different, then the
two surfaces will not be isonetric.

For exanple, a sphere and plane are
not locally isonetric because the
Gaussian curvature of a sphere is
nonzero whi | e t he Gaussi an
curvature of a plane is zero. This
is why any map of a portion of the
earth nust distort distances. In
this paper, we defi ne t he
coefficients of the expected Fisher
Information Matrix as equal to the

coefficients of t he first
f undanent al form Ther e are
nunerous authors who have used this
concept, i ncl udi ng Bar ndor f f -
Ni el sen OE ,et.al. (1986, p87

equation (3.1) or (4.1)), and Kass
R E (1997, p189). Using these
defined netric tensors, we can then
adopt the sanme notation and apply
the formulas listed in Struik D.J.
(1961). The Gaussian curvature then

becomnes a function of t he
coefficients of t he first
fundanental form and their first
and second derivatives. In this

paper, we suggest the follow ng
four systematic steps to conpute
the Gaussian curvature: Step 1-
conpute the coefficients of the
expected Fisher Information Matrix
or coefficients of t he first
fundamental form nanely, EF and
G Step 2-conpute the needed first



or second derivative of E F and G
and t hus t he Si X Chri st of f el
synbols; Step 3-apply formula (D),
whi ch necessitates in t he
conputation of the mxed R emann

curvature tensors Al,andAZ;; the
subsequent conputation of the inner
product of this tensor wth the
nmetric tensor, F or G results in
the covari ant Ri emann  curvature
tensor Ajy,; Step 4-observe that
the Gaussian curvature has a very
simple relation to R emann synbols
of the second kind. By adhearing to

this pr ocedur e, t he correct
Gaussi an curvature will be
calculated. In the case where F:0
or the parametric lines on the
surface are not orthogonal, the
conput at i onal procedure can be
extrenely tedious. It is always
pr udent to find a pr oper
transformation to form an

ort hogonal system of paranetric
lines in order to sinplify the
conput ati onal procedures.

2. NOTATI ON AND TERM NOLOGY

In this section, we define the
basic notations and term nologies
that will apply in the next two
sections. These not ati ons and
synmbols can also be found in
Struik, D.J. (1961) or Gay, A
(1993). First and forenost, we
define the coefficients of the
first fundamental form as;

E=- E(ﬂ Inf)' F=- E(ﬂ Inf)

and G=- E(11 Inf

>)-

where f(u,v) are two paraneters of

the probability density functions.

It is clear that EF and G are
functions of the paraneters u and
v. The expectations apply to the
whol e sanpl e space where the random
variables are defined. VW al so
assune that the regular conditions
of the information netrics are all

satisfied. The details of these
five conditions are sunmmarized in
Kass R E (1997, page 185, section
7.4.1). Next, we define the six

well known Christoffel synbols (see
Struik D.J. 1961, pl07, equation
(2-7) or Gay A p398)as foll ows:

Q1 2EG - F?) 2EG- )’

> _ 2EF, - EE, - FE, 1 _ 2GR, - GGy - FG,

A e @ 2(EG- =

1 _GEy - FGy 2 _ - 2FR +FGy

G2~ AEG- F?)’ %= 2(EG F2)
Since E, F and G are functions of
par aneters (u,v) and are
continuously twice differentiable,
E,.Ey.R.F.GyandG, all exists and are
al | wel | def i ned. Because F=0,

formula (A) turns out to be a
simplified form of Gauss’ Equati on.
In 1997, Kass R E wused fornula (A
to conpute the Gaussian curvature
of trinomal and t famlies. In the
next section, we wll denonstrate
that formulas (C and (D) are
heavi l y dependant on t he Si X
Christoffel synbols. Additionally,
no assunption is nmade regarding

F=0, and so the paranetric lines
are not necessarily orthogonal .
However , i f F=0, t he Si X

Christoffel symbols can be greatly
simplified. The three distributions
di scussed here belong to this case.

3. THE FORMULA
In this section, we select four

formulas that can be used to
conput e the Gaussian curvature.
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where D2 =EG- F2.
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where (1212) =A1p12 = Q AB19m2.
m=1



I m,
Aijk = .ﬂujc#k Tu jk Gkah’]j ijdmi'

sumon m

where the quantities of A:Jk

conponents of a tensor of the
fourth order. This tensor is called
the m xed Ri emann curvature tensor.
Notice that g41,912 ad gy, are sinply
tensor notation for EF and G
Formula (B) was developed by G
Frobenius while formula (C ) was
derived by J. Liouville. dearly,
formula (A) is a special case that
is valid only when the paranmetric
lines are orthogonal. Fornmula (D)
is a general form represented in
R emann synbols of the first and
second ki nd, respectively. In
forml a (D, Ao, t he i nner
pr oduct of t he m xed R emann
curvature tensor and the netric
tensor, is <called the covariant
R emann curvature tensor; it is a
covariant tensor of the fourth

order. The conponents A}jk and A

are also known as Riemann synbols
of the first and second kind,
respectively. Notice that Ri enmann
synmbols of the second kind wll
satisfy t he rel ati on
A1p12 =-A1p =-Ap115=A 01, the  wel | - known
property of skew synmetry with
respect to the last two indices. It
is useful to be aware of the fact
that the Christoffel synbols depend
only on the coefficients of the
first fundanental form and their
derivatives. The sane holds true
for the mxed R emann curvature
tensor. Fromthis point of view as
| ong as we can find t he
coefficients of t he first
f undament al form of a gi ven
distribution and their first and
second derivatives, we can uniquely
defi ne t he cor respondi ng
Christoffel synmbols and hence m xed
Ri emann curvature tensors. Thus,
t he process of conputi ng t he
covariant Rienmann curvature tensor
and Gaussi an curvature is
simplified. From a di fferent
perspective, we know that the m xed
Ri emann curvature tensor wll link
with the coefficient of the second

are

fundamental form nanely e, f,and g,

by AL, =g"%(eg-?), where

1__ G 12__ -F g2 = E
EG- F? EG- F2 EG- F2

The above relation can then be

easily used to derive Agp,=eg-f2,

g

and the result wll coincide wth
equation (7-3) of Struik D.J. (1961,
p83), t he ori gi nal f undament al

definition of Gaussian curvature.
These points convince us that
formulas (A) and (D) basically
define the sane quantity, but only
in different fornms. The reason why
only formula (D) was selected for
present ation is due to t he
followng tw facts: 1. to avoid
repetition of Kass RE (1997,
p189); 2. when F=0, formulas (B)
and (C) are trivially simlar to
forml a (A . For exanpl e, in
formula (C), we may substitute the
followi ng equation on the left hand
si de:
EV

—_ = _( )_
Gll E 2G 2\/EG

D \EG_ Gy
EL2 VE2G 2/EG

W can imediately calculate the
sane results as found from fornula
(A) while formula (D) results in a
Ri emann representation. In this
way, we have supplied some nore
gener al alternative met hods to
conpute the (Gaussian curvature,
i ncl udi ng the case when F1 0.

4. THREE EXAMPLES

In this section, we give the
details of three exanples and
denonstrate how we could apply
formula (D) to conpute our Gaussian
curvature. The three exanples wll
deal with the location-scale famly
of densities and the nmethods of
finding t hose with negati ve
Gaussi an curvature. Kass
R E. (1997, p192 theorem 7.4.6) gave
the general form of a |ocation-
scal e mani fold of density:

+}

for sone density function f. Then,
the information nmetric of t he




R emanni an geonetry space has
const ant negative curvature. Ve
provide the derivation of t he
formula for the Gaussian curvature
of normal distribution in exanple
1, Cauchy distribution in exanple 2
and t famly di stribution in
exanpl e 3.

Example 1: Let W, be a location

scale manifold of density that has
the foll owi ng general form
2

\Aﬁ—!:f(X)—‘/ 1 ep- (Xz; ) @i R R.)

2pv2 v
where u is the location paraneter
and v is the scale paraneter. W
al so assune t hat t he regul ar
condi ti ons of t he i nformati on
metric are satisfied. The first and
second partial derivative, w th
respect to paranetric lines u and
v, are given as:

(4.1) Pinf _-1  9%Inf _ 1 3(x- u)zl

w2 w2’ w2 _?_ v4
It is comonly known that the
expected value and variance of the

random variable x are u and v?,
respectively. From this, we could

easily derive the coefficient of
the first fundamental form

E:i, F=0, G:i.,
V2 V2
as well as their correspondi ng

derivatives wth respect to the
paranetric lines u and v :

Eu 0 EV —-—g, Gu 0, sz—g
(4.2) 2 2
1 Y
EG—— \/EG—— and —— =—r
v4 JEG V2
Substituting the listed results

into formula (A), (B) or (O, it
should be easy to conpute the

Gaussian curvature, obtaining 71

Again, we present the details for
formula (D) only. W can derive

-l -
=G, =0.

A2 _
Al q_l G31G5 G Gy5=

Example 2: Let W, be the location

scale manifold of density which has
the foll owi ng general form

wz—?f(x)—

p v2 +(x-
where u is the location paraneter
and v is the scale paraneter. The
| ogarithm of t he I'i kelihood
function of Cauchy density with one
observation can be witten as

me [xT R, (V)T R” Ry}

(4.3) Inf=InY - Inw2+(x- u)?).

p
As before, we can derive the first
t wo parti al derivatives with
respect to the paranetric lines u
and v.

12Inf _ 2((x- u)?- v?)
‘ﬂu2 ((x- u)2+v2) ’

(4. 4) 2inf _-1 2(v2-(x u)2)
‘ﬂv2 v2 (v +(x - u))
12Inf _ - 4v(x- u)
MU (V2 +(x- u)d)2
Taking the expected values of

equations (4.4), we finally get the
follow ng results:

2 2
1“Inf, 1 F—Eﬂ Inf

E=-E =, = -
g P

) =0, and

12Inf 1
4.5 G =-E( )=—.
( ) ‘ﬂv2 2v2

The derivatives of the coefficients
of the first fundamental form and
six Christoffel synbols are all
straightforward conputations. Due
to the fact t hat the Cauchy
distribution is the sane as the
nor mal di stribution, t hat is,

=c,=0, we use fornula (D) to
derive the Gaussi an curvature.



Afp = W — & G+

EG=_1 .

A
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K =A1212 _ 4\,4( “1)=-2
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Exanpl e 3: Let W3 be the | ocation-

scale manifold of density that has
the student t distribution and

general ly has t he form
i T+l r+1

We=lroo=2 —2 @22 2
R L

IxT R, (U R Ry}

where u is location paraneter and v
is scale paraneter. Let us define
the following variables to sinplify
the notation:

r+1
G—)
a:ly b:r_+l’ C = 2
r ? Joreh)
Then the logarithm of |1ikelihood
function of famly t, can be

witten as foll ows:
U12) inv.

(4.6)  Inf(x)=Inc, - bIn(l+a(X;/

From equation (4.6), we can derive
t he first and second partial
derivatives :

12Inf _ 2ab(a(x - u)?- v2)
‘ﬂu2 (a(x - u)2+v2)2 '

(4.7)
1Inf _ 2
, 1%
g, - 6abix- w2y 2(1+a(x- u)2v™ 2)+4aZb(x- u)dv 4 ]
8 @+a(x- uv-2)2

12Inf _ dabv(x- u)
WU (agx - u)2 +v2)2

W can now take the expected

values of (4.7), and have the
follow ng results.

12Inf -r _r+1

E=-E =-2ab = ,
( u2) (vz(r+3) V2(r+3)
2
F:-E(ﬂ Inf)_0
viu
72Inf r+1

G=-E( )——( ).

r+3

It now becomas a routine procedure
to conmpute the derivative of the
coef ficient of t he first
f undanent al form and Si X
Christoffel synbols. Conpute the
R emann synbols of the first and
second kind, respectively. Thus,
t he Gaussi an curvature is
cal cul at ed

A= -y 6 - &by + 643, =

(r +1)

m=1 Yr+3)
K =A1212 _- (143
EG 2r

5. CONCLUDI NG REMARK

One of the nost inportant theorens
of the 19" century is ‘Theorema
Egregiumi . Many mathenmaticians at
the end of the 18'" century,
i ncluding Euler and Monge, had used
the Gaussian curvature, but only
when defined as the product of the
principal curvatures. Since each
principal curvature of a surface
depends on the particular way the

surface is defined in R® there is
no obvious reason for the product
of the principal curvatures to be
intrinsic to t hat particul ar
surface. Gauss published in 1827
that the product of the principal
curvatures depends only on the
intrinsic geonmetry of the surface
revol uti oni zed differential

geonetry. Gauss w ot e “*The
Gaussian curvature of a surface is
a bending invariant’ ,’a mnost
excel | ent t heoreni This is a
Theor erma egregium ”. In this
t heor em Gauss proved that the
Gaussi an curvature , K of a
surface, depends only on t he
coefficient of t he first

fundanental form and their first



and second deri vati ves. Thi s
i nportant geonetric fact will link
t he concepts of bendi ng and

i sometric mappi ng. By bendi ng
invariant, we nmean that it s
unchanged by such deformations of
the surface when restricted to a
limted regi on t hat does not
i nvolve stretching, shrinking, or
tearing. When neasured along a
curve on the surface, the distance
between two points on the surface
is unchanged. The angle of the two
tangent directions at the point is
al so unchanged. This property of
surfaces expressible as bending
invariant is called the intrinsic
property. W would like to concl ude
this study by repeating Kass

(1989, 1997) favorite and nost
i nteresting pi ece of trivia:
“Suppose we ask which distribution
inthet famly is half way between
Nor mal and Cauchy on t he
statistical curvature scale, the
scale of sufficiency loss of the
Maxi mum Li kel i hood Estimator. For

1
Normal , g=0 and for Cauchy, 9:0;2.

1
Thus, we seek ¢ such that g:%(g)Z.

There is no reason why ¢ should

turn out to be an integer; it
nmerely has to be a nunber greater
than 1. Since g=1 for Cauchy and
g=¥ for Nornmal, the answer is g¢g=3.
Thus, in t he sense of t he
i nsufficiency of t he M_E, as
measured by statistical curvature ,
the t, on 3 degrees of freedom is
hal fway between Normal and Cauchy.
This neans that the statistical
curvature of the t; distribution is

t he arithnetic nmean of t he
statistical curvat ures for t he
Cauchy and  Nor mal di stribution.
From the Gaussian curvature that we
derived in this paper, we showed
t hat in Nornal distribution we
obt ai n K:—% , and in Cauchy
distribution we obtain K=-2 while
in t famly distribution with r
r+3

degrees of freedom we get K-=- o

In ot her wor ds, t he Gaussi an
curvature of the t; distribution is

t he geonetric mean of t he
curvatures for the Cauchy and
Nor mal di stri bution. Thus, we
conclude that whether one uses
statistical or geonetric nmean
curvature, the t3 may be considered

half way in between a Normal and
Cauchy distribution.”
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