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INTRODUCTION 
Biological evolution can be viewed as a process 
of optimizing a species to (or increasing its 
fitness for) its environment.  Evolutionary 
Algorithms (EAs), sometimes called Genetic 
Algorithms after their most common variant, 
adopt biological evolution as a model for 
computation.  These algorithms are used most 
often for finding approximate solutions to 
computationally intractable optimization 
problems.  In this paper, an evolutionary 
algorithm is applied to the problem of 
multivariate optimal allocation in stratified 
sample designs. 
 
The work reported on in this paper focuses on 
the design of an EA for solving the multivariate 
optimal allocation problem and an investigation 
of the performance of that algorithm on a simple, 
well-known example. One of the most attractive 
features of EAs is the flexibility of their “fitness” 
(or objective) functions. Many characteristics 
can be optimized simultaneously. Future 
research will explore how an EA might be used 
to find the optimal strata boundaries and the 
optimal allocation of sample units to strata 
simultaneously, with the goal of producing a 
better result than doing so in serial fashion using 
standard methods 
 
Stratified sample designs are employed for 
several reasons. These include: 1) to increase the 
precision of estimates for the whole population 
for one or more key data items being collected in 
the survey; 2) to obtain more precise estimates 
for interesting domains; 3) to allow the use of 
different sampling, nonresponse adjustment, 
editing, or estimation methods for domains with 
differing characteristics affecting the choice of 
method, and 4) to facilitate administration of the 
survey [1].  This paper focuses on the first two 
reasons. 
 
Once stratified sampling has been chosen, it is 
necessary to determine how to divide the 
population into strata, and how to allocate the 
sample to those strata.  One decision that must be 

made is the choice of a variable or variables on 
which to stratify. Since it is rare to conduct a 
survey with only one item of interest, the 
stratification variable or variables are chosen (or 
constructed) to have a strong correlation with as 
many items of interest as possible.  Methods for 
construction of optimal stratum boundaries (with 
the goal of improving the precision of estimates) 
have been proposed by Dalenius and Hodges [2], 
Singh [3], Lavallée and Hidiroglou [4], and 
Sweet and Sigman [5].  
 
Once stratum boundaries have been defined, and 
a maximum sample size or total cost determined, 
it is straightforward to determine the number of 
sample units to allocate to each stratum if the 
allocation is done on a single variable [6].  The 
problem becomes more difficult if the allocation 
is done on multiple variables.  A number of 
approaches have been use to find good 
approximations to the optimum allocation [7-11].  
This paper proposes the use of another method.   
  

EVOLUTIONARY ALGORITHMS 
As described in the introduction, evolutionary 
algorithms adopt biological evolution as a model 
for computing.  While there are a number of 
canonical variants of evolutionary algorithms, it 
is common for practitioners to adapt features of 
two or more variants to develop algorithms 
specific to the solution of their problems.   
 
In general, evolutionary algorithms start with a 
“population.” Each individual in the population 
consists of one candidate solution for the 
problem the EA is trying to solve.  Borrowing 
terminology from biology, each variable in a 
solution is referred to as a gene, the value for 
each gene is called an allele, and the structure of 
the whole solution is referred to as a genome.  
These candidate solutions are usually generated 
at random from the space (or a well-chosen 
subspace) of all possible solutions.  For example, 
if an EA were designed to find the rational roots 
of a quadratic equation, the solutions might be 
represented by a vector in Q2 (a vector of two 
floating point numbers).  The genome would be 



a vector of two floating pointing numbers, each 
of the two variables would be a gene, and the 
value assigned to each variable an allele. The 
representation of candidate solutions is an 
important factor in the success of an EA; 
therefore, representations must be chosen with 
care. 
 
The “fitness” of each individual is then 
evaluated; that is, the value of the objective 
function of the optimization problem being 
solved is determined for each individual. Note 
that the objective function can be as complicated 
as a simulation for flow of a gas or liquid 
through a manifold or as simple as a single 
polynomial, so long as it is possible to rank the 
candidate solutions on their fitnesses. 
 
Next, pairs (or n-tuples, should the practitioner 
wish) of individuals are selected to “reproduce.”  
This selection is done proportionate to the 
individuals’ fitness. How the fitnesses are 
weighted in determining the probability of an 
individual’s selection to reproduce is one of, as 
Kenneth DeJong calls them, the “knobs” that one 
has to turn in tuning an EA for optimal 
performance.  If fitter individuals are given a 
great deal higher probability of selection than 
those that are less fit, then the EA is expected to 
converge more quickly to an answer, but at 
greater risk of finding a local, rather than the 
global, optimum.  The less “selection pressure” 
is applied, the more fully the EA is allowed to 
explore the solution space, at the cost of slower 
convergence and at the risk of not converging at 
all.  This trade-off is referred to as “exploitation 
versus exploration,” and a well-designed EA 
must balance the two competing goals so that 
progress is made toward convergence without 
the EA getting stuck in a local optimum. 
 
During reproduction, two operations can be used 
to produce “children” (the next “generation” of 
candidate solutions). One consists of taking one 
part of one of the individuals selected to 
reproduce and appending it to the 
complementary part of the individual it was 
paired with during selection.  This is referred to 
as “crossover” in the EA literature, and is 
analogous to recombination in biological 
reproduction.  Given possible constraints on the 
structure of solutions, the design of crossover 
operators can become quite creative.  The desire 
for simpler or more effective crossover operators 
can also impact the representation of solutions.   

The second reproductive operator is mutation.  
As one might suspect, it consists in changing the 
value of one of the genes with some probability.  
Similarly to selection pressure, if the mutation 
rate (the probability of a mutation) is high, the 
EA will be expected to more fully explore the 
solution space, if it is lower, convergence is 
expected to occur more quickly. 
 
Following reproduction, each child’s fitness is 
assessed.  Children are allowed to survive into 
the next generation (where they become the 
initial population) in proportion to their fitness.  
The earlier comments about selection pressure 
apply to survival selection as well as they do to 
reproductive selection.  
 
This process continues, with the children 
becoming the next generation’s parents, until 
some convergence criterion is reached, or a 
maximum number of generations is reached.  
One problem with EAs as described to this point 
is that the best solution may be lost; that is, the 
solution with the overall highest (if maximizing) 
or lowest (if minimizing) value of the objective 
function may disappear as the algorithm moves 
from generation to generation, never to be seen 
again.  To address this problem, practitioners 
usually employ “elitism,” allowing the k highest 
valued members of the current population to 
survive into the next generation. 
 

THE MULTIVARIATE OPTIMAL 
ALLOCATION PROBLEM 

In stratified sampling, the problem arises of how 
many sample units to allocate to each stratum.  If 
the survey practitioner wishes only to make as 
precise as possible an estimate for one variable 
given a fixed cost, or find the minimum cost 
design to achieve a target variance, this problem 
has a well-known solution [12]: 
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where nh is the number of sample units allocated 
to stratum h, Nh is the number of population units 
in stratum h, ch is the cost per unit in stratum h, 
Sh is the population standard deviation for the 
variable of interest in stratum h, and n is the total 
sample size.  (Sh  is usually estimated from frame 
information or earlier samples.)  If a target 
variance is fixed and cost is to be minimized, 
then: 
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where W = Nh/N. If cost is fixed and variance is 
to be minimized then: 
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While it is rarely the case that a survey is 
conducted to find the value of only one variable, 
this formula is still broadly useful, since an 
allocation that is optimal for one variable may be 
near-optimal for variables that are strongly 
correlated with it.  If, however, precise estimates 
of several variables are needed, and those 
variables are not all highly correlated with each 
other, it is desirable to have a method to find a 
good compromise allocation that will give 
adequate precision for all of the variables of 
interest.  This is the usual goal of multivariate 
optimal allocation. 
 
There are two common ways to approach this 
problem.  One is to minimize a weighted sum of 
the variances of the variables of interest.  Khan 
and Ahsan [13] propose a method in which they 
formulate this problem as a nonlinear 
programming problem and use a dynamic 
programming technique to find a solution.  One 
problem with this approach is how to weight the 
variances.  There is no single solution for doing 
this, and it is not always easy to predict what the 
consequences of a particular choice of weights 
are. 
 
The other approach is to choose an acceptable 
coefficient of variation for each of the variables 
on which the allocation is to be done. These 
become constraints on a cost function that can be 
minimized, giving the following convex 
programming problem:  
 
Min: ∑ hhnc  
 
s.t.     for every j 
     
  0>n  
 
Where tj is the target coefficient of variation 
(CV) of the jth variable and jY is the population 
mean of jth variable [14]. 
 

 
DESIGN OF AN EA TO SOLVE THE 

MULTIVARIATE OPTIMAL 
ALLOCATION PROBLEM  

When designing an EA (or any other 
optimization algorithm), it is important to 
incorporate any special features of the problem 
to be solved.  The multivariate optimal allocation 
problem has two features that should be 
accounted for in the design.  First, it is really two 
problems, minimize a function of variances for a 
fixed cost or minimize cost subject to fixed 
variance targets.  A good solution will allow the 
statistician to choose which of these approaches 
to follow. 
 
Second, any solution that results in enough of the 
available budget (total cost) being left over to 
allocate another unit in any stratum is sub-
optimal; that is, any optimal solution must use 
the entire budget.  This implies that, rather than 
searching the entire space of feasible allocations, 
the EA can concentrate on a bounding 
hyperplane of that space, enormously reducing 
the size of the set to be searched and reducing 
time to convergence. 
 
In order to produce a method that can use either 
the fixed cost or fixed variance targets approach, 
a decision was made to design an EA that was a 
framework for optimization.  This framework 
searches for a solution that meets a vector of 
target CVs with a fixed budget and terminates 
either when a solution is found or when a 
maximum number of generations is reached.  
The EA framework is then embedded in a 
program that allows the user to find the 
minimum cost for fixed variance targets or the 
minimum variances for a fixed budget (total 
cost) using a binary search approach.  Note that 
the method can be adapted so that the variance 
targets in the second approach can be searched 
with any priority scheme the user desires. 
Candidate solutions to the multivariate optimal 
allocation problem (individuals) are represented 
as integer vectors of length H, where H is the 
number of strata.  Each element of the vector 
(gene) is assigned a fraction of the total budget 
for the sample [15]. The stratum budget is 
chosen such that it is divisible by the cost of a 
unit in that stratum. 
 
Given a vector of allocations to strata, the 
program calculates a “standardized precision 
unit” (SPU) [16] for each variable j as follows: 
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Note that this is the left-hand-side of the first 
constraint on the cost minimization problem 
discussed earlier.  Further, the variance 
constraint on the jth variable is met when this 
quantity is equal to one.  Using the SPUs a 
fitness function can be formed.  This EA uses: 
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as its fitness function. This function is 
minimized. 
 
 The EA is designed to constrain the search to 
the bounding hyperplane where the optimum 
solution lies by embedding this constraint in the 
initialization, mutation, and crossover operators. 
When creating an initial population of candidate 
solutions, the initialization operator first chooses 
one gene at random with uniform probability.  
The operator then assigns some fraction (again, 
chosen at random) of the budget to that gene as 
its value, taking care to always leave enough 
budget so that no gene is initially assigned a 
budget less than the cost of two units, or greater 
than the budget required to sample the stratum at 
100 percent.  The operator then proceeds to fill 
in the rest of the vector in a similar fashion, 
resulting in a vector that uses the whole budget 
without exceeding it. So, the EA starts with an 
initial population of vectors that lie in the 
hyperplane with the optimal solution. 
 
If the search is to be constrained to that 
hyperplane, mutation and crossover operators 
must operate to keep children in that region of 
the solution space as well.  The mutation 
operator uses a parameter that contains the 
probability of mutation to decide whether or not 
to mutate a particular gene.  If a gene is chosen 
for mutation, its value is increased or decreased 
(with equal probability) by the cost of one unit in 
that stratum, subject to the constraints that no  

stratum is allocated fewer than two nor more 
than Nh units.  Another gene is chosen at random 
(with equal probability) to be adjusted to 
maintain the constraint that the whole budget is 
used and not exceeded. Designing a crossover 
operator was more challenging.  In simple 
situations, one-point crossover (which was used 
in this EA) simply takes one parent’s gene values 
prior to the crossover point and appends the 
other parent’s gene values after that point.  
Clearly, this would not guarantee that the 
constraint that the whole budget must be used 
but not exceeded would be met.  A proportional 
crossover operator was designed instead.  This 
operator created a child by taking one parent’s 
values prior to the crossover point, and allocating 
the remaining budget according to the proportion 
of the remaining budget after the crossover point 
in the second parent assigned to each gene in the 
second parent.  For example, if there were two 
parents in a problem with n = 60, (25, 21, 10, 4) 
and (10, 15, 15, 20), and the randomly chosen 
crossover point was after gene 2, then the first 
child would have its first two values equal (25, 
21, …).  The last two values would be 
determined as follows. A budget of 14 (60 – (25 
+ 21)) remains to be allocated. The second 
parent’s last two genes have values in the 
proportion 3:4.  Allocating the remaining budget 
of 14 in the proportion 3:4 results in a child with 
the allocation (25, 21, 6, 8).   
 

Selection for reproduction is done using the 
roulette-wheel method.  This method selects an 

individual i from the population with probability 
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Where m is the number of individuals in the 
population.  Survival selection will also be done 
using the roulette-wheel method.  As in most 
implementations, elitism is employed to avoid 
losing the best solution found to that point. 
 

PERFORMANCE ON AN EXAMPLE 
PROBLEM 

In order the test the performance of the EA 
framework, a simple problem from the literature 



  
 
 

Table 1.  Results from Runs 1 through 10 of EA Framework on Bethel’s Problem  

Run 
No. 

Allocation CVs 

1 90 31 28 39 33 20 .060 .060 .047 .050 

2 90 31 29 40 34 17 .060 .060 .048 .050 

3 89 32 29 40 32 19 .060 .060 .047 .050 

4 91 28 30 40 33 19 .060 .060 .048 .050 

5 92 28 23 45 36 17 .060 .060 .048 .050 

6 92 25 27 47 33 17 .060 .060 .049 .051 

7 89 33 27 43 32 17 .060 .060 .047 .050 

8 91 29 24 40 39 18 .060 .060 .048 .050 

9 92 25 28 43 35 18 .060 .060 .049 .050 

10 92 25 28 44 33 19 .060 .060 .049 .050 

 
 

was chosen.  This problem is well-described in 
Bethel’s 1987 paper [17]. A correction to a 
misprinted value in the problem can be found in 
Zayatz and Sigman [18].  The problem involves 
an allocation to six strata based on four variables.  
Bethel finds a minimum cost of 241 units to 
meet a desired CV of 0.06 for each of the four 
variables. (All strata have equal unit costs.)  

Bethel found the solution (90, 29, 27, 43, 34, 18) 
with resulting CVs of 0.060, 0.060, 0.048, and 
0.050.  Note that the last two variables’ target 
CVs are not binding constraints. 
 
Results from ten runs of the EA framework with 
same target CVs and a budget of 241 are 
contained in Table 1. 



Given the same budget and variance constraints, 
the EA found ten different solutions, all of which 
produced CVs that were the same or very nearly 
the same as those found by Bethel. That a 
number of different solutions exist to an 
optimization problem that involves minimization 
of a convex function should be no surprise. 
 
Convergence properties of the algorithm were 
remarkably good.  The algorithm never failed to 
find the optimum solution in less than 5,000 
generations, and in only one run did it require 
more than 500.  This required a few seconds on a 
slow computer.  It is extremely rare to find an 
EA that converges in so few generations; 
hundreds of thousands or millions of generations 
are more the norm.  It will be interesting to see if 
this performance holds up when larger, more 
difficult problems are attempted. 
 
As a demonstration of the use of the framework 
to actually find an optimal solution, a program 
was run that conducted a binary search for the 
minimum cost solution to Bethel’s problem with 
the stated target CVs, using the EA to test 
whether a solution could be found with a given 
budget in 5,000 generations.  Using upper and 
lower bounds of 300 and 0 for the range of the 
cost search, the program found a solution using 
240 units in seven iterations.  (The cost was one 
unit less than Bethel’s due to his rounding a real-
valued solution to integers, while this method 
solves for an integer solution directly.)   

 
CONCLUSIONS AND FUTURE WORK 

An Evolutionary Algorithm can be used to solve 
the multivariate optimal allocation problem.  
Results are similar to other methods.  The real 
promise of this technique lies in extensions to 
more complicated problems.  Today, optimal 
stratum boundaries and optimal allocations given 
those boundaries are found separately.  With a 
more complicated representation, it should be 
possible to solve for optimal stratum boundaries 
and multivariate optimal allocations to those 
strata simultaneously.  In addition, more 
complicated representations and objective 
functions could be used to solve for allocations 
on criteria other than minimizing variance or 
cost, such as inclusion of a sufficient number of 
units with a particular condition to allow good 
modeling results from a sample. 
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