October 31, 2008

NIEM NAMING
AND DESIGN RULES

VERSION 1.3

URI: http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

NATIONAL INFORMATION EXCHANGE MODEL | NIEM.gov

http://reference.niem.gov/niem/specification/naming-and-design-rules/1.3/

NIEM NIEM Naming and Design Rules

Editors:
Webb Roberts, Georgia Tech Research Institute
Susan Liebeskind, Georgia Tech Research Institute
Mark Kindl, Georgia Tech Research Institute
Abstract:

This document specifies the data model, XML components, and XML data for use with
the National Information Exchange Model (NIEM) version 2.0.

Status:

This document is a specification for NIEM-conformant XML Schema documents,
components, and instances. It represents the design that has evolved from the
collaborative work of the NIEM Business Architecture Committee (NBAC) and the NIEM
Technical Architecture Committee (NTAC) and their predecessors.

This specification is a product of the NIEM Program Management Office (PMO).

Send comments on this specification via email to
nisshelp@ijis.oraqg.

mailto:nisshelp@ijis.org

NIEM NIEM Naming and Design Rules
Record of Changes
Reference: All, Page, A = Add.
No. Date Table, Figure, M = Mod. Revised By Change Description
Paragraph D = Del.
1.0 06/08/2007 All A Webb Roberts, Initial version
Susan Liebeskind, Internal draft
Mark Kindl
1.1 06/27/2007 All M Webb Roberts, Internal draft
Susan Liebeskind,
Mark Kindl
1.2 08/07/2007 All M Webb Roberts, Public draft
Susan Liebeskind,
Mark Kindl
1.3 10/31/2008 All M NTAC, Final

Webb Roberts,
Mark Kindl

NIEM NIEM Naming and Design Rules

1

Contents
T} oo [V 1 4 o o HPU PR UPRRRUS 1
Rt Y ol o = SRR 1
0 2 AU o [=Y o Vol PP 2
1.3 DOCUMENT CONVENTIONS ..uvveiiiiiiiiiiiiitiiiiitititititee bbb baaababebaasaebabsbsbebsssbessbsbnsssnsnsnrnnes 2
1.3.1 DoCUMENt REFEIENCESuvveeiiiieee ettt e e e e 2
1.3.2 Normative and Informative Content..........cceeeiiieieiiiiieeecee e, 2
IS 195 B oo T 0 1= o f [o V- R 3
O S 1= 5 401 o] o =4SSR 4
1.4.1 RFC 2119 TermMinNOIOBY ..cccuvvrrreieeeieiiccieiieeee e e e e eecctrrre e e e e e e sserere e e e e e e e e nnenraneeeeeeas 4
1.4.2 XML Information Set TerminolOgYcccccuueeiiiiiiieieiiee e 4
1.4.3 XML Schema TermMiNOIOBYcueiiiiiiicciiiiiee e e e e e e e e e seeae e e e e e 5
1.4.4 XML Namespace TerMIiNOIOBY......cccccuuririeeeeeeeeciiireee e e e e e et ee e e e e e e snaraaeeeee e 5
1.5 DocumeNnt OrganizatioN..........ueuuueuuuuiuiiiiiuiiiiiiirieieiereieiriererr—————————————————————————.———————. 5
NIEM CONTOIMANCE.. . iiiiiei et crre e e e e e e e et e e e e e e e e se s nstaeeeeeaeesesassrtanneaaaens 6
2.1 Conformance Targets OVEIVIEWccccuuuiiiiiieeeeecectiieeee e e e e e escrreee e e e e e e e eavtaeeeeeeeeeesnnsreaees 7
2.2 REfEIrENCE SCNEMAS.cciii it e e e e e e e st e e e e e e e e e e netbeeeeeaeeeennssrennes 7
2.3 |EPD SUDBSEL SChEMAS ... e e e e e e e e e araes 8
2.4 |EPD Extension Schemas and Exchange Schemas.......cccccooovciiieeeei e, 9
2.5 |EPD Constraint SChEMASuuiiiiiiiiiciieiee ettt e e e e et r e e e e e e e e e nareees 11
2.6 NIEM-Conformant XML Documents and Elementscccccovveeeeieeiicccciieeeee e, 12
The NIEM Conceptual MOEl......cooiuiiiiieiiee et e e e naaeae s 13
3.1 NIEM and the RDF MOEIuuriiiiiiiiieeciteeeee ettt e e e e e e e s anrraeee e e e e eeanes 14
3.2 NIEM Properties. oo 16
3.3 Unique Identification of Data ObjJECtSccccvcuieeiieiiiie et e e e 17
3.4 NIEM Data Model Is Explicit, NOt IMPliCit......cceeeiiriiiieiiiiiiee et 17
3.5 NIEM Data Model Implementation in XML Schema........cccccevveiieieinicieeecsieee e 17
GUIING PrINCIPIES coieeeeeiittieeee ettt e e e e st e e e e e e e e bbraeeeeeeeeesesssbsnseeeeessennnns 19
4.1 SPeCification GUIAEIINES.......coiiiicireeeeie et e e e seararr e e e e e s e seabrrrereeeeens 19
4.1.1 Keep Specification to @ MiNiMUMceciiiiiiiiiiiieeec e e, 19
4.1.2 Focus on RUles fOr SChEMASccccuiiieiciiiee et 20
4.1.3 Use SpecCific, CONCISE RUIESccccurvveeiieiiieiicireeeeee et e e eearaee e e e e e e eeanns 20
4.2 XML Schema DeSigN GUIAEIINESuueeeiiiiiiiicirieiiee ettt e e e e e e searrrereee e 20
4.2.1 Disallow Content Modification With XML Processorscccccccuveeeecvreeeesnnennn. 20
4.2.2 Use XML Validating Parsers for Content Validation...........cccoeevveeieciieeeccnnennn. 21
4.2.3 Validate for Conformance to Reference Schemas.........ccccceeeveieeeiecciieecccnnennn. 21
4.2.4 Allow Multiple Schemas for XML Constraints........ccccceeeveiveeesiiieeeeeiieee e, 21
4.2.5 Define One Reference Schema Per Namespaceccccccvvveeevcieeeeeecveeeeecveenn, 22
4.2.6 Disallow Mixed CONLENT ...ccceiiieciieee e e e e e e e e e eanes 22
4.2.7 Specify Types for All CONSEIUCESceeeeiiuiieeieiiee et 22
4.2.8 Avoid Wildcards in Reference Schemas........ccceeeviiiieccciieeee e, 22
4.2.9 Provide Default Reference Schema Locationsccccccuvvieeieeiieieciiiiieeee e, 23

NIEM

NIEM Naming and Design Rules

4.2.10 Use OPEN StaNdardS......uuuuuuuuruurerriursrursrsrsrsrsisrsressrsrsrsrsrsr........—...———————. 23

4.3 Modeling Design GUIAEIINESccccvvveeiiieeiieicirieeeee et e e e e e e e e e seaarrrereeeeens 23
4.3.1 Namespaces ENNanCe REUSEuuvveeiiiiiiiiiiiiieieee e eeccirreee e e eeeeanreeeeeeeeeseanns 23

4.3.2 Design NIEM for EXtENSIDIlITY ..occcvvvveeiieiiiiiiiiieeeee et 24

4.4 Implementation GUIAEIINESeviiiiiieee e e e rrre e e e 24
4.4.1 Avoid Displaying Raw XIML Data.......cceeeeieieiiiiiiiiee e e e vvreeee e e e 24

4.4.2 Leave Implementation Decisions to Implementerscccccceeeeeiecciiiieeeeeee e, 25

I |V o Yo [T oY= U 1o 1] 1T =SS 25
TR A B To Tol U] ¢ =Y o) = o] o 1SRt 25

4.5.2 ConSiSTENT NAMING ..vvvviiiiiiiiiiiiiiiiiiiieieierrieiee ... 26

4.5.3 Reflect the REal WOrIdcceieiiieeeeee et e e e 26

4.5.4 Be CONSISTENT .. .o e e e e e e 26

4.5.5 Reserve Inheritance for Specialization.......ccccvveveiiiiiieiiiniiiec e, 26

4.5.6 Do Not Duplicate Definitions........ccueeiiiiiiiiiiiiiiee e 27

4.5.7 KEEP It SIMPIE .t e s 27

4.5.8 Be AWAre Of SCOPE coiiiiiiiiiiiiiiee ettt e et e e s saee e e e e nnaeee s 27

4.5.9 Be Mindful of Namespace COhESIONceviviiiiiiiiiiiiecciiiee e 28

5 Relation tO StaNAArds.......oeei oo e e e e e e e e aarraes 28
5.1 XIMIL 1.0 ceeeieeiiiee ettt ettt e e e ettt e e e e e e e s et e e e e e e e e nbataaeeaeeeesananrrnaeaeeeeeanans 28
oI A 1Y | I N F=] U= o Y= o =S 28
LT T (1Y Yol o T=T o o - T UPRUPSP 29
LR Y @ I B 2 TR - T o P PUPRRT 29
T R @ 0 2 TR - T o i P UPURRR 31
6 XML SChema DESIZN RUIESuvvveiieiieiieiiteteiec ettt eeeerbere e e e e e s e s eabrreee e e e e sesnnsarraaeeeeeens 32
6.1 Restrictions on XML Schema CONSEIUCESeeveeiiiiieeieiiiee e 32
T 0 A \VFo T Y=o I @] o} =Y o SR 33

6.1.2 NONOTAtIONS cooiiiiii 33

6.1.3 NO SChema INCIUSION ..cccooeeieeeee e e e e 33

6.1.4 No Schema RedefinitioN.......ccccccuuiiiiciiiie e e 34

6.1.5 Wildcard ReStriCtions ...ccccceeeiiiiieee e e 34
6.1.5.1 No Unconstrained Type Substitution........cccccceevecciiiieeeies e, 34

6.1.5.2 No Unconstrained Text SUbstitution........cccccceeevccciiieeee e, 34

6.1.5.3 Untyped Elements Must Be Abstract.......ccccccceeeeecciiiiieeiieieciieeee, 35

6.1.5.4 No Untyped Attributes......ccccviiieee i, 35

6.1.5.5 No Unconstrained Element Substitutionccccccoviiieeeiiiieicciiineeeenn, 35

6.1.5.6 No Unconstrained Attribute Substitution..........ccccciiveeeiiiicicciieeee, 35

6.1.6 Component Naming Restrictionsccccceviiiiiiiiieeeeeee, 36
6.1.6.1 No Anonymous Type Definitionsccccocveeieiiieiccciie e, 36

6.1.6.2 No Local Element Declarationsccccovveieeeeiieccciiiiieee e, 36

6.1.6.3 No Local Attribute Definitionsccccciiiieeeii e, 36

6.1.7 No Uniqueness Constraints.......ccccciiiiiiiiiiiiiieee 37

6.1.8 Model Group RESEIHCTIONS ...eiviiiiiiieiciiie et 37
6.1.8.1 Restrictions on Particle Ordering......ccccovvveeeeeiieicciiiieeeee e, 37

6.1.8.2 No Recursively Defined Model Groups.......cccoecveeeeeiiieeeesciieeeeeieee e 38

NIEM NIEM Naming and Design Rules
6.1.8.3 Restrictions on Named GroUpPScccevvveveieieiiieieeeeeeeeeeeeeeeeeeeeeeeeee e, 38

6.1.8.4 Particle Cardinality ReStriCtionscooevveeerieiiieiiiiieeeee e, 39

6.1.9 Block Substitution ReStriCtioNs.......ccccuueiiieiiiie e 39
6.1.10 Final Value ReStriCtiONSceeieiiiiee e s e e 40
6.1.11 Default Value ReStriCtions........ueeeiieiiecciiieeee et 40

6.2 xsd:schema Document EIEMENteeeiiiiiiiiiceeeee e 41
ST T\ F=T 0 a T=T o 1= [0l TN [] o Yo 3SR 42
6.3.1 xsd:import Element RestriCtions......ccoocoeeiiiiciiiiiiieeeee e, 43

6.3.2 Including XML Content From Other Namespaces.......cccceveevvveeeeerciiieeessieeeesenns 44

o Y oV [0 =1 (o] o TSP 45
6.4.1 Human-Readable Documentationcccceeeeeiiiieciiiiiieeee e, 45

6.4.2 Machine-Readable ANNOtations........ccccuviiiiieiii i, 46

6.5 TYPE DEIINITIONS weeiiiiiiiie et e e e st e e s s ae e e e e s baee e e sarees 47
6.5.1 Complex Type Definitionsccvveeeiieiieiiciirieeee e e e 47

6.5.2 Simple Content (CSC) RESLIICLIONS ..ccoccuvrrieeieeeeeiecirrreeee e e 47

6.5.3 Complex Content (CCC) RESLICLIONSuuvrveeeeeeeiiiiiiiirreeeeeeeecetrree e e e eesaareeees 49

6.6 Additional Definitions and Declarations.........cccoecuvieiiiiiiee e 50
6.6.1 Element Declarationsccueeieciiiii i 50

6.6.2 Attribute DeclarationsS.........cceieiiiiiiiiciie e 51

6.6.3 Attribute Group Definitionseeeeieeiieicciiiieeee e 51

A/ o Yo 1= 1T g T~ U] =SS 51
7.1 xsd:schema Document Element Restrictionsccceeeeeiiecciiiiieeeec e 52
7.2 ANNOTATIONS. .. e e e et e e e e e aaea 53
7.2.1 Human-Readable Documentationcccccveeeeeiiiicciiieeeee e 53

7.2.2 Machine-Readable ANNOtationsS........cooocciiiieiiee i 57
2 2 0 R B =T o] {=Tor-) d To] o FS 58

7.2.2.2 Indicating ConformManCe......cccuveeeieiiiiiiiiieeeeee et arraer e e 58

7.2.2.3 Bases of Derived COMPONENTS ...ceiviiiiieiiirieeeee et eeeerrraeeee e 58

7.2.2.4 Application of CONSTIUCTES......cuvveiieiiiiiiiiiiieeee e 60

7.2.2.5 Targets Of REFErENCESoovccvrreeiiei et 61

7.3 SiMpPle TYPe DefiNiTiONS ..cccoieirieiiee e e e e e e e e e seaabrereeeeeesennnns 62
7.4 Complex TYPE DefinitioNSccccveeeiiiie ettt e e e e s aabree e e e e e e sennns 63
S R O] o 11Tt f Y/ o 1= PSP 64

N (oY [T Y7 TSP 64

7.4.3 ASSOCIATION TYPES cceiiiiiiiiiiiiieceieecreceeeeee e e e e e e e e e e e e e e e e e s 66

|V =1 - To =1 - T NV o =SSP 69

7.4.5 AUEMENTATION TYPES ciiiiiiiiiiiiiiiiiieieeerreeee e e e e e e e e e e e e e e e e e e eaeaeees 70

7.5 COMPONENT USAEE .uuuieiiiiiiiiiiiiiiiie e cceettrirese e ee ettt sss s e s e e eteaabaa s s s seeeseeassaassnsseeeeensnssnnns 72
7.6 NIEM Structural FACilities........uvuiiiieiii e e e e e e e e nreer e e e e e e e ennes 73
ST Y=o [=T o Lol 1 B U PP PSS PPPPPPPPN: 74

7.6.2 Reference El@mMENES ...ooove i 75

7.7 Using EXtErNal SCREMAS ...ttt e e e e e e e e e e s abr e e e e e e e e eeanes 78
7.8 NIEM SUDSEt SCNEMAS ..ot e e e e e e e e e s earrree e e e e e e eeaans 81
RS I oY1 =Y [T=T gl = U=T 0 =Y o) 03U UUURT 81

NIEM NIEM Naming and Design Rules

8 XML INSLANCE RUIES ettt ettt et e e e s e e e et e e e e e sae e e e e saneeeeesnseeeeennseneenanns 83
8.1 INStance Validationooeeeiiiii e e e 83
I A 1 1) =Y (ol <IN 1Y/ =T 1 U 83
8.3 Component REPreSENtationccoceiieiiiiiiiieie e e et e e e e e e e e 84
L 0o T g o oY =Y Y A @ o [=Y o o USRS 85
8.5 INSTANCe Metadata.....cciiei i e e et e e e e e e e eaaes 86

9 NAMING RUIES oot e e e e e e et e e e e e e e e s et e e e e e eeeaeseannstaeaeaeaeseenannsreanns 89
9.1 Extension of XSD Namespace Simple TYPES ..ccceiir ittt e e eevrree e e e e e e 89
S I U 1= o 1 oY ={ 1 1] o T URURU 90
9.3 Characters iN NAMIES ...cciei ittt ee e e e e e e e st er e e e e e e e s e ebareaeeeeeesesensstaneeaeaessenanes 90
S O -1 o T o =T o - 1Y < T U URURU 91
9.5 Use of Acronyms and Abbreviations...........coccviieiiiiiie i 91
9.6 WOI FOIMS coiiiiiiitieeee ettt e e e e ettt e e e e e e e e se b taeeeeeeaeeesastsaaaeeaeeeesannasssaaeaeanseennnns 93
1 A \F- 1 0 T= R L=t [T - L o [0 o [PP 94
R B @] oY [=Tol O = F - =T o [PSPPSR 94
0.9 PrOPeILY T et 95
1S I (O I O TUF- | 13 =T g =T o o o U UUURUN 95
9.11 Representation Term .. 96
9.12 NIEM TYPE NAMES. ..t i e e ettt re e e e e e e ettt e s e e e e e s e e atsa e e seeeeesessnanaaeeeeeenersnnnnn 100

9.12.1 All TYPE COMPONENTS ceeeiieeiieieiiirreieeeeeeeeiciirrreeeeeeeeeesitrreeeeeeeseesesnsreeseeseessensnns 100
9.12.2 Simple TYPE COMPONENTS.....ccciiireeeeeeeeeeiccirrreeeeeeeeeesitrrreeeeeeeeeseanreeeeeseessennns 100
9.12.3 Code TYPE COMPONENTS ...cceeieiirieeeeeeeeeeiceirrreeeeeeeeeesitrreeeeeeeeeeiensnsreeseeseessensnns 101
9.12.4 Association Type COMPONENTS ..ccevviuuieeiieeeeeiiicce e e e e e reeetcre e e e e e e e e eaeae e e e e e eeenes 101
9.12.5 Augmentation Type COMPONENTSuuieiiiiiiiiiiiciie e e eeeerae e e e e e eeees 102
9.12.6 Metadata TYPe COMPONENTS.....uvveeeeieeiiiiiiirriereeeeeeieiirrreeereeeeeeiesanreereeseessennnns 102
9.13 NIEM Property NAmMESccuuuuuiieiiiiiiiiiiiiiieneeeeetieiiiiieseseeeseesssniessseessessmsmnnsnsseseseesrsnnnes 102
9.13.1 Attribute Group NAmMES...cccoe et e e e e e s e e e e e e e eanes 102
9.13.2 ReferenCe NAMESuviiiiciieee ettt ettt e e e e aaae e e e ara e e e e snnaeea s 102
9.13.3 ASSOCIAtiON NAMES .ciiiiiiiiiiieieeereceeeree e e e e e e e e e e e 103
9.13.4 AugmeNtation NAMES ...cciviiiiiiiiiiiicieceeere e e e e e e e 103
9.13.5 Metadata NamMES......uuiiiiieeiieccireeee e e e e e e et e e e e e e e s ennrereeeeeeesennes 103
9.13.6 ROIE NAMES..cceiii i e e e e e e e e e e e s et ree e e e e e e eeseanntaneeeeeeesennnes 103

APPENIX Az NIEIM OVEIVIEW ...eiiieiiieiiieteee e ettt e e e e e e e e setrree e e e e e s e sesnstseseeeaaesesasstsaneeaeesesannees A-1

Appendix B: Name Syntax for Special CompPonentsccccuviiiiieeiee e eeccrreee e e B-1

Appendix C: SUPPOrting SChEMASuuiiiiiiee e e e e e e e st e e e e e e e e e eanees C-1

APPENIX D: REFEIENCES... .ttt e e e e e e et e e e e e e s eseasaraeeeaeesesnnnees D-1

Appendix E: List Of PrinCiPles ...ceiee ittt ettt e e et e e e e e e e sarrra e e e e e e e e s ennees E-1

Appendix F: List of DefinitioNnScooeeeeiiiieeee e e e e e e F-1

ApPPENiX G: LISt OF RUIES ...t e e et e e e e e e e s e e e e e e e e e e s ennnes G-1

FAN o] 01T oo [Pt o R ' o [U SUPURNE H-1

APPENAIX 11 NOTICES 1eeiieiiiiie ettt et e e s e e e st e e e s sate e e e e ssbaeeeesabaeeesesseeeeesnneeeens -1

vi

NIEM

NIEM Naming and Design Rules

Figure 1-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:
Figure 5-1:
Figure 6-1:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:
Figure 7-10
Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure A-1:
Figure C-1:
Figure C-2:
Figure C-3:
Figure C-4:
Figure C-5:
Figure C-6:
Figure C-7:
Figure C-8:
Figure C-9:

Figure C-10:
Figure C-11:
Figure C-12:
Figure C-13:
Figure C-14:
Figure C-15:
Figure C-16:
Figure C-17:
Figure C-18:

Figures

Example of an XML fragmenteeee ittt e e 4
Conceptual class rendered as XML Schema complex type.......ccccveeevvvveeeenciieeeennnee 17
Conceptual property rendered as element declaration.......cccccccvvveeeieeeeeiccnnneeeeneenn. 18
Sample fragment of NIEM-conformant data........cccecevveeeieiieiicciiiieeeee e, 18
Schema declaration for element nc:ActivityReference .eeennnee. 18
Valid instance for above schema that does NOT conform to NIEM rules................. 19
Example of the use of @ NAMESPACEuiviiiiiiiiiie e 24
Example of data definition of MeasureMetadataTypPe ..covvceerccreeeeeeciveeeeesvneennn 30
Example of CSC derived from a Simple type....cooeeeeeee e 49
A definition that describes mathematical representation.........cccccceeeeeieeccniiennnenn. 55
A definition that describes syntactic representationccccccoeecciiieeiee e, 55
An element definition that constitutes a role without the use of a role type........... 64
A definition of @ 10l tYPe .o e 65
A role type used in @N INSEANCE......cviiii i e e 66
An assoCiation iN @N INSTANCEuei s 67
A definition of an assoCiation tYPeuviiviiiie i 68
AN iNStaNCe Of @ NAME LYPE ceviiuiiiieieiee e e e e s bee e e e 74
An instance of a name type that uses structures:sequenceID...cceeennns 75
: Use of external components to create a NIEM-conformant type........cccccceeeeeennnee 78
Example of element containMmeNtcoooeiieiiiiiii e 84
Example of element referencCe v 84
Example of metadata used in an iNStaNCe......cccveeeeeee e 87
A metadata type that describes applicability using st ructures:AppliesTo.. 88
The NIEM XML Reference Archit@Cturecccoovveviiieeiiieeeiieeseecseeesee e A-1
Schema document €leMEeNt......coooiiiiiiii e C-1
Element appinfo:iRESOUTCE ittt e s s saee e e C-1
Element appinfo:DepreCated e eciree e setree e e e e rae e e esaeeeeeenes C-2
Element appinto i BaSe ettt C-2
Element appinfo:ReferenceTarget i iieeeeriieee e e C-2
Element appinfo i APP1iESTO cieiiriieieeeiiteeeeetre e e serte e e e e sare e e e s earee e e esnaeeeeenes C-3
Element appinfo:Conformant INAiCator i C-3
Element appinfo:ExternalAdapterTypeIndicator v ieeennnnne C-3
Full XML Schema for Appinfo NamesSpaceccooveccviiiieeee e C-4

Schema document €I@MENTcoviiiiiiiie e C-5

[gaToYe] u o] = o) ol e ik PSSR C-5

Resource structuUres :ODJECT vttt C-5

Resource structures :ASsoCiation wiiiiin e C-5

AttribUte ST rUCTULES t 1 ciiiiiiiiee ittt e e e et e e e e e e e e e anraeeeeas C-6

Attribute structures: 1inkMetadata .coeeee e C-6

Attribute structures imetadata e C-6

AttribULe ST UCTUTES 1 T T it raee e C-6

Attribute st ruCtUures: SEqQUENCETID ittt e e e e C-6

vii

NIEM NIEM Naming and Design Rules

Figure C-19: Attribute group structures:SimpleObjectAttributeGroup ...cccuunu. c-7
Figure C-20: Element structures : AUgmentation e erreee e c-7
Figure C-21: Element structures :Metadata ci e eiiee et ssiree e siee e C-7
Figure C-22: Complex type structures : AugmentatioNTYPE werrrieeeerirreeesrenneeeannns C-8
Figure C-23: Type structures:ComplexXODJeCETYPE tivririrrrrriri e C-8
Figure C-24: Type structures:MetadataT Ve i eiieeeeeeeereiiiieeeee e s e seiiereeeeeeeeas C-8
Figure C-25: Type structures :RefereNCETYPE iviviviriririiirii s C-9
Figure C-26: Full XML Schema for Structures NameSpace........ccccvvveeeeeeeeeeccrinieeeeeeeeecevveneeens C-10
Tables
Table 2-1: Codes Representing Conformance Targetsccuveeeecvieeeeeciiee e 7
Table 7-1: Standard OpPening PRrases.........uuiiieiii et e e e s e e e e e e rnnrraeeeee e 55
Table 9-1: Abbreviations Used in NIEM COre Namescceueeeiriiiieeeniiiieeeniieeessireee e 92
Table 9-2: Representation TEIMS. ... e e e s e e e e e e e e snreraneeeeeeas 97

viii

NIEM NIEM Naming and Design Rules

1 Introduction

This Naming and Design Rules (NDR) document specifies XML Schema documents for use with
the National Information Exchange Model (NIEM). NIEM is an information sharing framework
based on the World Wide Web Consortium (W3C) Extensible Markup Language (XML) Schema
standard. In February 2005, the U.S. Departments of Justice (DOJ) and Homeland Security (DHS)
signed a cooperative agreement to jointly develop NIEM by leveraging and expanding the Global
Justice XML Data Model (GJXDM) into multiple domains. NIEM is a result of a combined
government and industry effort to improve information interoperability and exchange within
the United States at federal, state, tribal, and local levels of government.

NIEM specifies a set of reusable information components for defining standard information
exchange messages, transactions, and documents on a large scale: across multiple communities
of interest and lines of business. These reusable components are rendered in XML Schema
documents as type, element, and attribute definitions that comply with the W3C XML Schema
specification. The resulting reference schemas are available to government practitioners and
developersat http://niem.gov/.

The W3C XML Schema standard enables information interoperability and sharing by providing a
common language for describing data precisely. The constructs it defines are basic metadata
building blocks — baseline data types and structural components. Users employ these building
blocks to describe their own domain-oriented data semantics and structures, as well as
structures for specific information exchanges and components for reuse across multiple
information exchanges. Rules that profile allowable XML Schema constructs and describe how
to use them help ensure that those components are consistent and reusable.

This document specifies principles and enforceable rules for NIEM data components and
schemas. Schemas and components that obey the rules set forth here are considered to be
NIEM-conformant.

1.1 Scope

This document was developed to specify NIEM 2.0. Later releases of NIEM may be specified by
later versions of this document. The document covers the following issues in depth:

e The underlying NIEM data model

e Guiding principles behind the design of NIEM

* Rules for using XML Schema constructs in NIEM

e Rules for modeling and structuring NIEM-conformant schemas
* Rules for creating NIEM-conformant instances

* Rules for naming NIEM components

* Rules for extending NIEM-conformant components

NIEM NIEM Naming and Design Rules

This document does NOT address the following:
e A formal definition of the NIEM data model.

Such a definition would focus on the Resource Definition Framework (RDF) and concepts
not strictly required for interoperability. This document instead focuses on definition of
schemas that work with the data model, to ensure translatability and interoperability.

e A detailed discussion of NIEM architecture and schema versioning.
Such rules will be addressed in [ARCH].
e The artifacts of the NIEM information exchange process.
The artifacts of the NIEM information exchange process are discussed in [IEPD].

This document is intended as a technical specification. It is not intended to be a tutorial or a
user guide. A brief NIEM overview is provided in Appendix A: NIEM Overview.

1.2 Audience

This document targets practitioners and developers who employ NIEM for information
exchange and interoperability. Such information exchanges may be between or within
organizations. The NIEM reference schemas provide system implementers much content on
which to build specific exchanges. However, there is a need for extended and additional
content. The purpose of this document is to define the rules for such new content so that it will
be consistent with the NIEM reference schemas. These rules are intended to establish and,
more important, enforce a degree of standardization on a national level.

1.3 Document Conventions

This document uses formatting and syntactic conventions to clarify meaning and avoid
ambiguity.

1.3.1 Document References

This document relies on references to many outside documents. Such references are noted by
bold, bracketed inline terms. For example, a reference to RFC 2119 is shown as [RFC2119]. All
reference documents are recorded in Appendix D: References.

1.3.2 Normative and Informative Content

This document includes a variety of content. Some content is normative (binding and
enforceable in implementations), while other content is informative (explanatory, but not part
of the NIEM specification). In general, the informative material appears as supporting text and
specific rationales for the normative material.

Conventions used within this document include:
[Definition: <term>]

A formal definition of a term associated with NIEM.

NIEM NIEM Naming and Design Rules

Definitions are normative.
[Principle <number>]
A guiding principle for NIEM.

The principles represent the requirements, concepts, and goals that have helped shape the
NIEM. Principles are informative, not normative, but act as the basis on which the rules are
defined.

Accompanying each principle is a short discussion section that justifies the application of the
principle to NIEM design.

Principles are numbered in the order in which they appear in the document.
[Rule <section>-<number>] (<applicability>)
An enforceable rule for NIEM.

Rules state specific requirements on artifacts, such as schemas and instances. Most rules
apply to conformant schemas, while others apply to instances. The rules are normative.

Rules are stated using both XML InfoSet terminology (elements and attributes) and XML
Schema terminology (schema components). The choice of terminology is driven by which
standard best expresses the rule. Certain concepts are more clearly expressed using XML
InfoSet information items, others using the XML Schema data model; still others are best
expressed using a combination of terminology drawn from both standards.

Rules have rationales that justify the need for the rule. For clarity, there may be multiple
rules that have the same rationale.

Rules and supporting text may use Extended Backus-Naur Form (EBNF) notation as defined
by [XML].

Rules are numbered according to the section in which they appear and the order in which
they appear within that section. For example, Rule 5-1 is the first rule in Section 5.

Each rule is accompanied by a description of its applicability. This identifies the type of
schema to which the rule applies or indicates whether the rule is applicable to XML
documents or element information items. Each entry in the list is a code from Table 2-1:
Codes Representing Conformance Targets. If a code appears in the applicability list for a
rule, then the rule applies to the corresponding conformance target. The conformance
targets are defined in Section 2, NIEM Conformance.

1.3.3 Formatting

In addition to special formatting for definitions, principles, and rules, this document uses
consistent formatting to identify NIEM components.

Courier: All words appearing in Courier font are values, objects, keywords, or literal XML
text.

NIEM NIEM Naming and Design Rules

Italics: All words appearing in italics, when not titles or used for emphasis, are special terms
with definitions appearing in this document.

Keywords: Keywords reflect concepts or constructs expressed in the language of their source
standard. Keywords have been given an identifying prefix to reflect their source. The following
prefixes are used:

e xsd: identifies keywords from the W3C XML Schema Definition Language specification.

e xsi: identifies keywords from the W3C XML Schema's XML Schema Instance
specification.

e structures: identifies keywords from the NIEM structures namespace.
e appinfo:identifies keywords from the NIEM appinfo namespace.

Throughout the document, fragments of XML Schema or XML instances are used to clarify a
principle or rule. These fragments are specially formatted in Courier font and appear in text
boxes. An example of such a fragment follows:

Figure 1-1: Example of an XML fragment

<xsd:complexType name="PersonType">

</xsd:complexType>

1.4 Terminology

This document uses standard terminology to explain the principles and rules that describe
NIEM.

1.4.1 RFC 2119 Terminology

Within normative content (rules and definitions), the key words MUST, MUST NOT, REQUIRED,
SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this
document are to be interpreted as described in [RFC2119].

1.4.2 XML Information Set Terminology

This document uses the concepts of element information items (“element”), attribute
information items (“attribute”), and their associated properties as defined by [XMLInfoSet] with
clarifications as discussed below. Note that in the clarification that follows, the abstract
property names appear in square brackets adjacent to the information items to which they
belong. For example, “Element[parent]” discusses the abstract property “parent” of the
element information item.

e parent of an element (Element[parent])
child of an element (Element[children])

Note that the InfoSet properties “Element[parent]” and “Element[children]” correspond
to a direct, immediate relationship with an element. Children of an element and their

NIEM NIEM Naming and Design Rules

children, and so on, are collectively referred to as descendants of that element. Parents
of an element and their parents, and so on, are collectively referred to as ancestors of
that element.

e element owning an attribute (Attribute[owner element])
The owner of an attribute is the element that possesses or contains the attribute.
The use of the term document element from [XMLInfoSet] to describe the root of all elements
in an XML document is preferred over the informal and nonstandard term root element.
1.4.3 XML Schema Terminology

The terms W3C XML Schema, XML Schema (upper case “Schema”), and XSD all refer to the XML
Schema definition language, as specified in the two-part XML Schema specification:

e XML Schema Part 1: Structures [XMLSchemaStructures]
e XML Schema Part 2: Datatypes [XMLSchemaDatatypes]

The term XML schema (lower case “schema”) refers to specific XML schema documents that
conform to the XML Schema specifications listed above.

The terms XML instance and XML document refer to an XML instance document, which is
defined by and validates to a particular XML schema.

The term schema component is defined in [XMLSchemaStructures] as a building block for XML
Schema. This document refers to, rather than restates, the definitions of the different schema
components associated with the XML Schema Abstract Data Model, which are defined in the
XML Schema specification. In this document, the name of the referenced schema component
may appear without the suffix “schema component” (e.g., the term “complex type definition”
may be used instead of “complex type definition schema component”) to enhance readability of
the text.

The term NCName is defined in [XMLSchemaDatatypes] and refers to XML noncolonized names,

“w,n

which are XML name strings that do not contain the “:” character.

1.4.4 XML Namespace Terminology

This document uses the concept of an XML Namespace as defined by [XMLNamespaces] and
[XMLNamespacesErrata].

1.5 Document Organization
This remainder of this document is organized into sections as follows:

e NIEM Conformance describes terminology, requirements, and artifacts related to NIEM
conformance.

e The NIEM Conceptual Model discusses the underlying semantic model for NIEM.

e Guiding Principles discusses the principles that serve as the foundation of and guidelines
for the rules.

NIEM NIEM Naming and Design Rules

e Relation to Standards discusses the use of the key standards used in the development of
NIEM.

e XML Schema Design Rules discusses the rules for using XML Schema constructs in NIEM-
conformant schemas.

e Modeling Rules discusses the rules for the additional structures and constraints needed
to build NIEM-conformant schemas.

e XML Instance Rules discusses the rules for NIEM-conformant XML instance documents.
e Naming Rules discusses the rules used in naming NIEM-conformant data components.

NOTE: The ordering of the sections is intended to minimize the number of forward references in
the document. For this reason, the naming rules appear as the last section of the document, so
that the concepts being named have already been discussed.

This document also contains appendices of reference material as follows:
e A brief, non-normative overview of NIEM.
e Indexes of principles, rules, and definitions.

e Discussion and full listings of the NIEM 2.0 supporting schemas (structures and
appinfo).

* Anitemized listing of the NIEM 2.0 reference schemas.

e References to external standard documents.

2 NIEM Conformance

This Naming and Design Rules defines NIEM conformance. This definition is performed through
terminology definitions and rules. Together, these define several classes of schemas, as well as
defining conformance for XML instances of NIEM-conformant schemas. These classes of
schemas are defined, along with the definition of NIEM conformance for XML documents, in
Section 2.1, Conformance Targets, below. The schemas defined therein are NIEM-conformant
schemas:

[Definition: NIEM-conformant schema]

An XML Schema document is a NIEM-conformant schema if and only if it is a reference
schema, a subset schema, an extension schema, an exchange schema, or a constraint
schema.

Neither constraint schemas nor subset schemas serve as the primary (cardinal) definitions for
components they define. The primary definitions come from reference schemas, exchange
schemas, and extension schemas. The XML Schema components defined by these schemas are
NIEM-conformant components.

NIEM NIEM Naming and Design Rules

[Definition: NIEM-conformant component]

A NIEM-conformant component is an XML Schema component that is defined by a
reference schema, an extension schema, or an exchange schema.

The NIEM support schemas, structures and appinfo, are considered part of the
infrastructure of NIEM schemas and are not themselves considered to be NIEM-conformant
schemas.

2.1 Conformance Targets Overview

The sections below define the conformance targets for this document. Each rule in this
document is applicable to one or more of the conformance targets.

Throughout the document, each rule definition contains a list of applicable conformance targets
(as described in Section 1.3.2, Normative and Informative Content, above). The rule is binding
for the targets on this list. This list is normative. This list uses the following codes:

Table 2-1: Codes Representing Conformance Targets

Code Conformance target

REF Reference schemas

SUB Subset schemas

EXT Extension and exchange schemas
CON Constraint schemas

INS XML instance data

Each section below provides a list of rules that apply to its conformance target. These lists are
informative, not normative. The applicability of a rule to a conformance target is normatively
specified by the applicability list contained in the rule definition.

These conformance targets define the scope of the NDR. Anything not on this list of
conformance targets is explicitly not addressed.

2.2 Reference Schemas

A NIEM reference schema is a schema that is intended to be the authoritative definition schema
for a NIEM namespace. This includes the reference schemas for the NIEM Core schema and
NIEM domain schemas.

[Definition: reference schemal]
A reference schema is an XML Schema document that meets all of the following criteria:

e |tis explicitly designated as a reference schema. This may be declared by an IEPD
catalog or by a tool-specific mechanism outside the schema.

e |t provides the broadest, most fundamental definitions of components in its
namespace.

NIEM

NIEM Naming and Design Rules

It provides the authoritative definition of business semantics for components in its
namespace.

It is intended to serve as the basis for components in IEPD schemas, including subset
schemas, constraint schemas, extension schemas, and exchange schemas.

It satisfies all rules specified in the Naming and Design Rules for reference schemas.

Any schema that defines components that are intended to be incorporated into NIEM Core or a
NIEM domain may be defined as a reference schema.

The rules for reference schemas are more stringent than are the rules for other classes of NIEM-
conformant schemas. Reference schemas are intended to support the broadest reuse. They are
very uniform in their structure. As they are the primary definitions for data components, they
do not need to restrict other data definitions, and they are not allowed to use XML Schema's
restriction mechanisms. Reference schemas are intended to be as regular and simple as

possible.

The following rules apply to reference schemas:

2.3

All rules in Section 5

All rules in Section 6, except [Rule 6-20] through [Rule 6-22] and [Rule 6-57]

All rules in Section 7, except [Rule 7-69] and [Rule 7-70]
[Rule 8-7]

All rules in Section 9

IEPD Subset Schemas

[Definition: subset schema]

A subset schema is an XML Schema document that meets all of the following criteria:

It is explicitly designated as a subset schema. This may be declared by an IEPD
catalog or by a tool-specific mechanism outside the schema.

It has a target namespace previously defined by a reference schema. That is, it does
not provide original definitions for schema components, but instead provides an
alternate schema representation of components that are defined by a reference
schema.

It does not alter the business semantics of components in its namespace. The
reference schema defines these business semantics.

It is intended to express the limited vocabulary necessary for an IEPD and to support
XML Schema validation for an IEPD.

It satisfies all rules specified in the Naming and Design Rules for subset schemas.

A subset schema is based on another NIEM-conformant schema: a reference schema. A subset
schema is defined such that any valid instance of the subset schema is also a valid instance of

NIEM NIEM Naming and Design Rules

the base (reference) schema. This means that a subset schema is not allowed to introduce new
content, nor is it allowed to extend the data content defined by a component of the reference
schema.

For example, a subset schema would not be allowed to introduce a new U.S. state (e.g., "West
Michigan") into a list of states defined by the reference schema. Any XML instance that
included the new state would validate against the supposed subset schema but would not
validate against the reference schema. This would violate the basic premise underlying the use
of subsets: subsets must be as restrictive as or more restrictive than the reference schema.

A subset schema may omit any construct of the base schema that has no effect on schema
validation, including xsd:documentation and xsd: appinfo annotations. The reference
schema on which a subset schema is based is considered the authoritative source of such
annotations.

The following rules apply to subset schemas:
e Allrulesin Section 5, except [Rule 5-4]

e Allrulesin Section 6, except [Rule 6-16], [Rule 6-20] through [Rule 6-22], [Rule 6-26],
[Rule 6-27], [Rule 6-46], [Rule 6-47], [Rule 6-49] through [Rule 6-51], [Rule 6-53], [Rule 6-
55], and [Rule 6-57]

e |nSection 7, [Rule 7-2], [Rule 7-3], [Rule 7-37], [Rule 7-38], [Rule 7-40], [Rule 7-42]
through [Rule 7-44], [Rule 7-47], [Rule 7-48], [Rule 7-51] through [Rule 7-53], [Rule 7-55]
through [Rule 7-59], [Rule 7-64], [Rule 7-65], [Rule 7-68] through [Rule 7-70]

e All rulesin Section 9

2.4 |EPD Extension Schemas and Exchange Schemas
[Definition: extension schemal
An extension schema is an XML Schema document that meets all of the following criteria:

e ltis explicitly designated as an extension schema. This may be declared by an IEPD
catalog or by a tool-specific mechanism outside the schema.

e |t provides the broadest, most fundamental definitions of components in its
namespace.

e It provides the authoritative definition of business semantics for components in its
namespace.

e |t contains components that, when appropriate, use or are derived from the
components in reference schemas or exchange schemas. When a reference schema
contains relevant components, it is preferred to an exchange schema.

e ltisintended to express the additional vocabulary required for an IEPD, above and
beyond the vocabulary available from reference schemas, and to support XML
Schema validation for an IEPD.

NIEM NIEM Naming and Design Rules

e |t satisfies all rules specified in the Naming and Design Rules for extension schemas.
[Definition: exchange schemal
An exchange schema is an XML Schema document that meets all of the following criteria:

e ltis explicitly designated as an exchange schema. This may be declared by an IEPD
catalog or by a tool-specific mechanism outside the schema.

e |t provides the broadest, most fundamental definitions of components in its
namespace.

e |t provides the authoritative definition of business semantics for components in its
namespace.

e |t contains components that use or are derived from the components in reference
schemas or exchange schemas.

e |tisintended to identify and define the document element information item for a
particular information exchange that is described by an IEPD.

e |t satisfies all rules specified in the Naming and Design Rules for exchange schemas.

An extension schema in an IEPD serves several functions. First, it defines new content within a
new namespace, which may be an IEPD-specific namespace or a namespace shared by several
IEPDs. This content is NIEM-conformant but has fewer restrictions on it than do NIEM reference
schemas. Second, the extension schema bases its content on content from NIEM reference
schemas, where appropriate. Methods of deriving content include using (by reference) existing
components, as well as creating extensions and restrictions of existing components.

For example, an IEPD may create a type for an IEPD-specific phone number and base that type
on a type defined by the NIEM Core reference schema. This IEPD-specific phone number type
may restrict the NIEM Core type to limit those possibilities that are permitted of the base type.

IEPD extensions and restrictions must include annotations and documentation to be
conformant, but they are allowed to use restriction, choice, and some other constructs that are
not allowed in NIEM reference schemas.

Note that IEPDs may define schemas that meet the criteria of reference schemas for those
components that the IEPD wishes to nominate for inclusion in NIEM Core or in domains.

The following rules apply to extensions and exchange schemas:
e Allrulesin Section 5

e Allrulesin Section 6, except [Rule 6-11], [Rule 6-18], [Rule 6-19], [Rule 6-29] through
[Rule 6-31], [Rule 6-53], and [Rule 6-55]

e All rules in Section 7, except [Rule 7-69] and [Rule 7-70]
e [Rule 8-7]

e All rulesin Section 9

10

NIEM NIEM Naming and Design Rules

2.5 |EPD Constraint Schemas
[Definition: constraint schema]
A constraint schema is an XML Schema document that meets all of the following criteria:

e ltis explicitly designated as a constraint schema. This may be declared by an IEPD
catalog or by a tool-specific mechanism outside the schema.

e |t contains XML Schema components that exist for the purpose of (1) determining
schema-validity of XML documents according to some criteria not easily expressed in
other classes of schema documents, and (2) expressing those criteria in the XML
Schema definition language.

e |t has a target namespace previously defined by a reference schema, extension
schema, or exchange schema, or it is intended to support a constraint schema that
does have such a target namespace.

e ltisintended to express business rules for a class of XML documents, not the
semantics of those XML documents.

e |t satisfies all rules specified in the Naming and Design Rules for constraint schemas.

Constraint schemas provide a mechanism within an IEPD by which the IEPD may use the XML
Schema definition language to describe business rules for NIEM-conformant reference schemas.
A constraint schema need not express the complete syntax for any class of XML documents.
Schema-validity should be assessed using reference or subset schemas as well as constraint
schemas.

A constraint schema is not assumed to be a definitive definition for the components it
describes. Instead, a constraint schema uses the XML Schema definition language to add
constraints and restrictions to components defined by other schemas.

A constraint schema may be used in tandem with a reference schema, extension schema, or
exchange schema to enable validation of specific business rules. Or, a broader constraint
schema, which adds constraints to the rules defined by the reference schemas, may be defined
for an IEPD. Such a schema may be used as the sole yardstick for validation of the namespace,
but combining IEPD constraints with the base schemas may make those constraints harder to
understand and reuse later.

Constraint schemas have far fewer requirements than other forms of schema. As they are
expected to work in tandem with normative schemas, they are allowed to use the XML Schema
language however necessary to express business rules.

The following rules apply to constraint schemas:
e In Section 5, [Rule 5-1] through [Rule 5-3]
* In Section 6, [Rule 6-33], [Rule 6-34], and [Rule 6-35] through [Rule 6-38]
e |nSection 7, [Rule 7-2] and [Rule 7-3]

11

NIEM NIEM Naming and Design Rules

2.6 NIEM-Conformant XML Documents and Elements

This document has specific rules about how NIEM content should be used in XML documents.
As well as containing rules for XML Schema documents, this NDR contains rules for NIEM-
conformant XML content at a finer granularity than the XML document.

[Definition: NIEM-conformant XML document]

A NIEM-conformant XML document is an XML document that satisfies all of the following
criteria:

e The document element is locally schema-valid.

e Each element information item within the XML document that has a namespace
name matching the target namespace of a reference schema, extension schema, or
exchange schema is a NIEM-conformant element information item.

In this definition and the next definition below, the term XML document is as specified in [XML].
The terms document information item, document element, element information item,
namespace name, and local name are as specified in [XMLInfoSet]. The term valid is as
specified in [XMLSchemaStructures].

Schema-validity may be assessed against a single set of schemas or against multiple sets of
schemas. Assessment against schemas is as directed by an IEPD, other instructions, or tools.

Note that the document element (root element) of a NIEM-conformant XML document is not
required to be a NIEM-conformant element information item. Other specifications, such as the
IEPD specification, may add additional constraints to these to specify IEPD or exchange
conformance.

[Definition: NIEM-conformant element information item]

A NIEM-conformant element information item is an element information item that satisfies
all of the following criteria:

e Its namespace name and local name matches an element declared by a reference
schema, extension schema, or exchange schema.

e It occurs within a NIEM-conformant XML document.
e ltis locally schema-valid.

e |t satisfies all rules specified in the Naming and Design Rules for NIEM-conformant
element information items.

Because each NIEM-conformant element information item must be locally schema-valid, each
element must validate against the schema definition of the element, even if the element
information item is allowed within the document because of a wildcard with
processContents of "skip". Within a NIEM-conformant XML document, each element
that is from a NIEM namespace conforms to its schema specification.

NDR rules apply to element information items with respect to the reference schemas for the
relevant namespaces. For example, when applying a rule concerning the applicability of an

12

NIEM NIEM Naming and Design Rules

augmentation element to a type, the definitions as specified in the reference schema are
relevant, but definitions in other schemas, such as subset and constraint schemas, are not
considered. Such applicability is likely not indicated by subset and constraint schemas, but
extension schemas are required to contain sufficient definitions for proper validation of NIEM-
conformant instances.

The following rules apply to NIEM-conformant element information items:
e |nSection 7, [Rule 7-55]

e All rulesin Section 8

3 The NIEM Conceptual Model

The NIEM provides a concrete data model, in the form of a set of XML Schema documents.
These schemas may be used to build messages and information exchanges. The schemas spell
out what kinds of objects exist and how those objects may be related. XML data that follows
the rules of NIEM imply specific meaning. The varieties of XML Schema components used
within NIEM-conformant schemas are selected to clarify the meaning of XML data. That is,
schema components that do not have a clear meaning have been avoided. NIEM provides a
framework within which XML data has a specific meaning.

One limitation of XML and XML Schema is that they do not describe the meaning of an XML
document. The XML specification defines XML documents and defines their syntax but does not
address the meaning of those documents. The XML Schema specification defines the XML
Schema definition language, which describes the structure and constrains the contents of XML
documents (schemas).

In a schema, the meaning of a schema component (e.g., element, attribute, or type) may be
described using the xsd:documentation element. Or, additional information may be
included via the xsd:appinfo element. Although this may enable humans to understand
XML data, more information is needed to support the machine-understandable meaning of XML
data. In addition, inconsistency among the ways that schema components may be put together
may be a source of confusion.

The RDF Core Working Group of the World Wide Web consortium has developed a simple,
consistent conceptual model, the RDF model. The RDF model is described and specified
through a set of W3C Recommendations, the Resource Description Framework (RDF)
specifications, making it a very well-defined standard. The NIEM model and the rules contained
in this NDR are based on the RDF model. This provides numerous advantages:

e NIEM's conceptual model is defined by a recognized standard.
e NIEM's conceptual model is very well defined.

e NIEM's conceptual model provides a consistent basis for relating attributes, elements,
types, and other XML Schema components.

13

NIEM NIEM Naming and Design Rules

e NIEM's use of the RDF model defines what a set of NIEM data means. The RDF
specification provides a detailed description of what a statement means (see
[RDFSemantics]), and this is leveraged by NIEM.

e NIEM's use of the RDF model provides a basis for inferencing and reasoning about XML
data that uses NIEM. That is, using the rules defined for the RDF model, programs can
determine implications of relationships between NIEM-defined objects.

With the exception of Section 2, NIEM rules are explained in this document without reference
to RDF or RDF concepts. Understanding RDF is not required to understand NIEM-conformant
schemas or data based on NIEM. However, understanding RDF concepts may deepen
understanding of NIEM.

The goal of this section is to clarify the meaning of XML data that is NIEM-conformant and to
outline the implications of various modeling constructs in NIEM. The rules for NIEM-
conformant schemas and instances are in place to ensure that a specific meaning can be derived
from data. That is, the data makes specific assertions, which are well understood since they are
derived from the rules for NIEM.

The key concepts underpinning the NIEM conceptual model are discussed in the remainder of
this section:

e NIEM and the RDF Model

e NIEM Properties

e Unique ldentification of Data Objects

e NIEM Data Model Is Explicit, Not Implicit

e NIEM Data Model Implementation in XML Schema

3.1 NIEM and the RDF Model

NIEM has its foundation in the RDF model. This helps to ensure that NIEM-conformant data has
precise meaning. The RDF view of what data means is clarified by [RDFSemantics]:

... asserting a sentence makes a claim about the world . . . an assertion amounts to
stating a constraint on the possible ways the world might be.

The RDF view of the meaning of data carries into NIEM: NIEM elements form statements that
make claims about the world: that a person has a name, a residence location, a spouse, etc.
The assertion of one set of facts does not necessarily rule out other statements: A person could
have multiple names, could have moved, or could be divorced. Each statement is a claim
asserted to be true by the originator of the statement.

This NDR discusses NIEM data in terms of objects, a term more accessible than the word used
by RDF, resources. RDF defines the world in terms of resources. [RDFSemantics] describes
what may constitute a resource:

14

NIEM NIEM Naming and Design Rules

... ho assumptions are made here about the nature of resources; "resource" is treated
here as synonymous with "entity," i.e., as a generic term for anything in the universe of
discourse.

RDF resources coincide with NIEM objects and associations. That is, both objects and
associations in NIEM are RDF resources with the additional constraints:

e A NIEM object or association is an instance of a complex type defined by an XML Schema
document.

e The XML Schema document that defines a NIEM object is a NIEM-conformant schema.

NIEM associations are defined as n-ary properties as described in [N-ary], use case 3. NIEM
object types are defined in Section 7.4.1, Object Types. NIEM associations are defined in
Section 7.4.3, Association Types. Assertions are made via NIEM-conformant XML data,
described by Section 8, XML Instance Rules.

The XML Schema types that define NIEM objects and associations are related to each other via
elements and attributes. That is, a type contains elements and attributes, and an element or
attribute has a value that is an instance of an XML Schema type. In NIEM, these elements and
attributes are XML Schema representations of RDF properties, which are described by
[RDFPrimer], "2.1 Basic Concepts":

"RDF is based on the idea that the things being described have properties which have
values, and that resources can be described by making statements . . . that specify those
properties and values."

This describes how NIEM works: schemas describe things and their properties. NIEM-
conformant data specifies objects, the values of their properties, and the relationships between
them.

There are several kinds of assertions that may be made with NIEM-conformant data. Examples
include:

e An assertion that an object exists. An occurrence of an element commonly establishes
the existence of an object. Such an object may be tangible or intangible. For example,
the element nc: Person in an exchange implies that a person does or did exist. An
element may also express that an object does not exist (e.g., the license plate ABC123
was never issued), but this is an uncommon case.

Descriptions of objects may carry an implicit assumption that objects exist. Such an
assumption is dependent on the message in which such descriptions are made. If an
object that is described does not exist, it should be made explicit in the definition of an
element containing or referring to the object.

e An assertion that an object has a characteristic. A feature or quality of an object is
commonly represented by an element appearing within the element that establishes the
object. For example, the height of a person is described by the
nc:PersonHeightMeasure element. The nc:PersonHeightMeasure

15

NIEM NIEM Naming and Design Rules

element occurs as XML content of the nc: Person element. In some cases, a
characteristic may be represented by an attribute owned by an element.

e An assertion that an object participates in a relationship. A relationship between
objects may be established in any of several ways:

e Both objects may be referenced from an association that establishes the
relationship. Associations are also useful for expressing n-ary relationships, as well
as relationships supported by additional data.

* An element may occur within one object that indicates the relationship with the
other object. This element may be either a content element or a reference element.

The NIEM Core schema and some domain schemas have been normalized such that
a minimum number of reference or content elements establish relationships. In
these cases, use of an association is the more common method for establishing a
relationship. However, in an exchange, using a reference or content element to
express a relationship may be the simpler, preferred method for expressing a
relationship.

3.2 NIEM Properties

NIEM-conformant data describes characteristics of objects and relationships between objects.
In RDF, these characteristics and relationships are called properties of objects, which is also how
NIEM refers to them. NIEM represents properties with element declarations and attribute
declarations.

Within data, a property relates XML data much as a verb relates nouns in a sentence: a verb has
a subject and an object.

e The property itself: What relationship is being asserted? For example, the property may
say that a weapon has a user, or that someone has hair of a particular color.

e The subject: About what object is the property being asserted? This would be the
weapon that has the user, or the person whose hair is being described.

e The object: What is the value of the property, or with what other object does the
relationship exist? This would be the person who is the user of the weapon or the
person whose hair has the color brown.

A property relates two objects. Data will describe an object having a characteristic with a
specific value or will describe an object with a particular relationship to another object. All
properties are pair-wise: between two objects, or between an object and a value.

In theory, any relationship that involves more than two objects may be modeled as a set of
binary properties. In NIEM, such relationships may be expressed either as a set of properties
(i.e., as element and attribute declarations) or as a complex type defining an association.

16

NIEM NIEM Naming and Design Rules

3.3 Unique Identification of Data Objects

In NIEM, an exchange is generally ad hoc. That is, a message may be generated without any
persistence. It exists only to exchange data and may not have any universal meaning beyond
that specific exchange. As such, a message may or may not have a URI as an identifier. NIEM
was designed with the assumption that a given exchange need not have any unique identifier;
NIEM does not require a unique identifier. NIEM also does not require any object (data
instance) to be identified by a URI. This differs from RDF, in which all entities (other than literal
values) are identified by globally meaningful URIs.

A NIEM-conformant instance uses XML IDs to identify objects within an XML document; The
NIEM XML ID is an attribute structures:id of type xsd: ID. These IDs are not assumed by
NIEM to have any universal significance; they need only be unique within the XML document.
The use of an ID is required only when an object must be referenced within the document.
NIEM recognizes no correlation between these local IDs and any URI.

Any given implementation, message, or IEPD may be defined to apply a URI or other universally
meaningful identifier to an object or message. However, NIEM has no such requirement.

3.4 NIEM Data Model Is Explicit, Not Implicit

In NIEM data, that which is not stated is not implied. If data says a person's name is "John," it is
not implicitly saying that he does not have other names, or that “John” is his legal name, or that
he is different from a person known as “Bob.” The only assertion being made is that one of the

names by which this person is known is "John."

This is one reason that definitions of NIEM content are so important. The definitions must state
exactly what any given statement implies. The concept of "legal name" may be defined that
makes additional assertions about a name of a person. Such assertions must be made explicit in
the definition of the relationship.

3.5 NIEM Data Model Implementation in XML Schema

NIEM defines rules for XML Schema documents that enforce the NIEM conceptual model. The
schemas that follow these rules are referred to as NIEM-conformant schemas.

As discussed above, NIEM classes and properties are mapped onto XML Schema components.
The following is an example of how a NIEM class for “Person” is rendered as an XML Schema
complex type definition:

Figure 3-1: Conceptual class rendered as XML Schema
complex type

<xsd:complexType name="PersonType">

</xsd:complexType>

17

NIEM NIEM Naming and Design Rules

The following is an example of how a NIEM property for “ImageOperator” is rendered as an
element declaration:

Figure 3-2: Conceptual property rendered as element
declaration

<xsd:element name="ImageOperator" type="nc:PersonType" nillable="true">

</xsd:element>

NIEM also defines rules for XML documents that enforce the NIEM conceptual model. An XML
document is called a NIEM-conformant XML document if it follows the rules specified by the
NIEM-conformant schema, as well as additional rules that are NIEM-specific. For example, in a
NIEM-conformant XML document, a reference element must refer to a data element that is of
an appropriate XML Schema type. If this is not the case, the document may be valid according
to the schema, but it will not be NIEM-conformant.

Figure 3-3: Sample fragment of NIEM-conformant data

<nc:Person>
<nc:PersonHairColorCode>BRN</nc:PersonHairColorCode>
</nc:Person>

Based on an element declaration from NIEM Core, the following example illustrates a valid
XML instance that does not conform to NIEM. Per the appinfo:ReferenceTarget
element in the schema declaration, nc:ActivityReference may ONLY refer to an
nc:ActivityType. However, within the instance,
my:ActivityList/nc:ActivityReference refers to “Bill,” which is an
nc:PersonType.

Figure 3-4. Schema declaration for element
nc:ActivityReference

<xsd:element name="ActivityReference" type="structures:ReferenceType">
<xsd:annotation>
<xsd:documentation>
A single or set of related actions, events, or process steps.
</xsd:documentation>
<xsd:appinfo>
<appinfo:ReferenceTarget appinfo:name="ActivityType"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element

18

NIEM NIEM Naming and Design Rules

Figure 3-5: Valid instance for above schema that does
NOT conform to NIEM rules

<nc:Person structures:id="Bill”>
<nc:PersonFullName>William Tell</nc:PersonFullName>
<nc:PersonSexCode>M</nc:PersonSexCode>

</nc:Person>

<nc:Activity structures:id="Pie”>
<nc:ActivityDescriptionText>
County fair pie-eating contest
</nc:ActivityDescriptionText>
</nc:Activity>

<my:ActivityList>
<nc:ActivityReference structures:ref="Pie”/>
<nc:ActivityReference structures:ref="Bill”/>
</my:ActivityList>

4 Guiding Principles

Principles in this specification provide a foundation for the rules. These principles are generally
applicable in most cases. They should not be used as a replacement for common sense or
appropriate special cases.

The principles are not operationally enforceable; they do not specify constraints on XML
Schema documents and instances. The rules are the normative and enforceable manifestation
of the principles.

The principles discussed in this section are categorized as follows:
e Specification Guidelines
e XML Schema Design Guidelines
* Modeling Design Guidelines

e Implementation Guidelines

4.1 Specification Guidelines

The principles in this section address what material should be included in this NDR and how it
should be represented.

4.1.1 Keep Specification to a Minimum

This specification should state what is required for interoperability, not all that could be
specified. Certain decisions (such as normative XML comments) could create roadblocks for
interoperability, making heavy demands on systems for very little gain. The goal is not
standardization for standardization’s sake. The goal is to maximize interoperability and reuse.

19

NIEM NIEM Naming and Design Rules

[Principle 1]

This specification SHOULD specify what is necessary for semantic interoperability and no
more.

The term semantic interoperability is here defined as "the ability of two or more computer
systems to exchange information and have the meaning of that information automatically
interpreted by the receiving system accurately enough to produce useful results."

4.1.2 Focus on Rules for Schemas

This specification should try, as much as is possible, to specify schema-level content. This is a
specification for schemas, and so it should specify schemas. It should avoid specifying complex
data models or data dictionaries.

[Principle 2]

This specification SHOULD focus on providing rules for specifying schemas.

4.1.3 Use Specific, Concise Rules

A rule should be as precise and specific as possible to avoid broad, hard-to-modify rules.
Putting multiple clauses in a rule makes it harder to enforce. Using separate rules allows
specific conditions to be clearly stated.

[Principle 3]

This specification SHOULD feature rules that are as specific, precise, and concise as
possible.

4.2 XML Schema Design Guidelines

The principles in this section address how XML Schema technology should be used in designing
NIEM-conformant schemas and instances.

4.2.1 Disallow Content Modification With XML Processors

XML Schema has constructs that can make the data provided by XML processors different
before and after schema processing. An example of this is the use of XML Schema attribute
declarations with default values. Before schema validation, there may be no attribute value, but
after processing, the attribute value exists.

Within NIEM, the purpose of processing instances against schemas is solely validation: testing
that data instances match desired constraints and guidelines. It should not be used to change
the content of data instances.

[Principle 4]

The content of a NIEM-conformant data instance SHOULD NOT be modified by
processing against XML Schema documents.

20

NIEM NIEM Naming and Design Rules

4.2.2 Use XML Validating Parsers for Content Validation

NIEM is designed for XML Schema validation. A primary goal is to maximize the amount of
validation that may be performed by XML Schema-validating parsers.

XML Schema validates content using content models: descriptions of what elements and
attributes may be contained within an element, and what values are allowable. It is the XML
element hierarchy (elements with attributes and unstructured content, contained by other
elements) that the XML Schema definition language specifies and that XML Schema validating
parsers can validate.

Mechanisms involving linking using attribute and element values are useful, but they should
only be relied on when absolutely necessary, as XML Schema-validating parsers cannot readily
validate them. For example, if a link is established via attribute values, an XML Schema-
validating parser cannot determine that participants have appropriate type definitions.
Whenever possible, NIEM content should rely on XML syntax that can be validated with XML
Schema.

[Principle 5]

NIEM-conformant schemas and NIEM-conformant XML documents SHOULD use XML
Schema validating parsers for validation of XML content.

4.2.3 Validate for Conformance to Reference Schemas

Systems that operate on XML data have the opportunity to perform multiple layers of
processing. Middleware, XML libraries, schemas, and application software may process data.
The primary purpose of XML Schema validation is to restrict processed data to that data that
conforms to agreed-upon rules. This restriction is achieved by marking as invalid that data that
does not conform to the rules defined by the schema.

[Principle 6]
Systems that use NIEM-conformant data SHOULD mark as invalid data that does not
conform to the rules defined by applicable XML Schema documents.

4.2.4 Allow Multiple Schemas for XML Constraints

The NIEM does not attempt to create a one-size-fits-all schema to perform all validation.
Instead, it creates a set of reference schemas, on which additional constraints may be placed. It
also does not focus on language-binding XML Schema implementations, which convert XML
Schema definitions into working programs. It is, instead, focused on normalizing language and
preserving the meaning of data.

[Principle 7]

Constraints on XML instances MAY be validated by multiple schema validation passes,
using multiple schemas for a single namespace.

21

NIEM NIEM Naming and Design Rules

4.2.5 Define One Reference Schema Per Namespace

NIEM uses the concept of a reference schema, which defines the structure and content of a
namespace. For each NIEM-conformant namespace, there is exactly one NIEM reference
schema. A user may use a subset schema or constraint schema in place of a reference schema,
but all NIEM-conformant XML documents must validate against a single reference schema for
each namespace.

[Principle 8]

Each NIEM-conformant namespace SHOULD be defined by exactly one reference
schema.

426 Disallow Mixed Content

XML data that use mixed content are difficult to specify and complicate the task of data
processing. Much of the payload carried by mixed content is unchecked and does not facilitate
data standardization or validation.

[Principle 9]
NIEM-conformant schemas SHOULD NOT specify data that uses mixed content.

4.2.7 Specify Types for All Constructs

Schema components within NIEM all have names. This means that there are no anonymous
types, elements, or other components defined by NIEM. Once an application has determined
the name (i.e., namespace and local name) of an attribute or element used in NIEM-conformant
instances, it will also know the type of that attribute or element.

There are no local attributes or elements defined by NIEM, only global attributes and elements.
This maximizes the ability of application developers to extend, restrict, or otherwise derive
definitions of local components from NIEM-conformant components. Using named global
components in schemas maximizes the capacity for reuse.

[Principle 10]

NIEM-conformant schemas SHOULD NOT use or define local or anonymous components,
as they adversely affect reuse.

4.2.8 Avoid Wildcards in Reference Schemas

Wildcards in NIEM-conformant schemas work in opposition to standardization. The goal of
creating harmonized, standard schemas is to standardize definitions of data. The use of
wildcard mechanisms (such as xsd : any, which allows insertion of an arbitrary number of
elements from any namespace) allows nonstandard data to be passed via otherwise
standardized exchanges.

Avoidance of wildcards in the standard schemas encourages the separation of standardized and
nonstandardized data. It encourages users to incorporate their data into NIEM in a standardized
way. It also encourages users to extend in a way that may be readily incorporated into NIEM.

22

NIEM NIEM Naming and Design Rules

[Principle 11]

NIEM-conformant components SHOULD NOT incorporate wildcards unless absolutely
necessary, as they hinder standardization by encouraging use of nonstandardized data
rather than standardized data.

4.2.9 Provide Default Reference Schema Locations

[XMLSchemaStructures] provides three ways to specify the physical location of an XML Schema
document: schemaLocation, an attribute of the element xsd: import, along with
xsi:schemalocation and xsi:noNamespaceSchemalocation, attributes of an
XML Schema document element. In all of these uses, the specification explicitly maintains that
the schema location specified is a hint, which may be overridden by applications.

[Principle 12]

Schema locations specified within NIEM-conformant reference schemas SHOULD be
interpreted as hints and as default values by processing applications.

4.2.10 Use Open Standards

The cooperative efforts of many knowledgeable individuals have resulted in many important
published information standards. Where appropriate and applicable, NIEM ought to leverage
these standards.

[Principle 13]

NIEM standards and schemas SHOULD leverage and enable use of other open standards.

4.3 Modeling Design Guidelines

The principles in this section address the design philosophy used in designing the NIEM
conceptual model.

4.3.1 Namespaces Enhance Reuse

NIEM is designed to maximize reuse of namespaces and the schemas that define them. When
referring to a concept defined by NIEM, a user should ensure that instances and schemas refer
to the namespace defined by NIEM. User-defined namespaces should be used for
specializations and extension of NIEM constructs but should not be used when the NIEM
structures are sufficient.

[Principle 14]

NIEM-conformant instances and schemas SHOULD reuse components from NIEM
distribution schemas when possible.

NIEM relies heavily on XML namespaces to prevent naming conflicts and clashes. Reuse of any
component is always by reference to both its namespace and its local name. All NIEM
component names have global scope. Therefore, validation always occurs against the reference
schemas or subsets thereof.

23

NIEM NIEM Naming and Design Rules

Example:

Figure 4-1. Example of the use of a namespace

<xsd:element ref="nc:BinaryCaptureDate"
minOccurs="0"
maxOccurs="unbounded" />

In this example, nc:BinaryCaptureDate is reused by referencing its element declaration
through both its namespace (which is bound to the prefix nc:) and its local name
(BinaryCaptureDate). If an element named BinaryCaptureDate is declared in
another namespace, it is an entirely different element than nc:BinaryCaptureDate.
There is no implicit relationship to nc: BinaryCaptureDate.

From a business perspective, the two elements are likely to be related in the sense that they
may have very similar semantic meanings. They may have essentially the same meaning, but
slightly different properties. Such a relationship may commonly exist. However, any
relationship between the two elements must be made explicit using methods outlined in this
document.

[Principle 15]

A component SHOULD be identified by its local name together with its namespace. A
namespace SHOULD be a required part of the name of a component. A component's
local name SHOULD NOT imply a relationship to components with similar names from
other namespaces.

4.3.2 Design NIEM for Extensibility

NIEM is designed to be extended. Numerous methods are considered acceptable in creating
extended and specialized components.

[Principle 16]

NIEM-conformant schemas and standards SHOULD be designed to encourage and ease
extension and augmentation by users and developers outside the standardization
process.

4.4 Implementation Guidelines

The principles in this section address issues pertaining to the implementation of applications
that use NIEM.

4.4.1 Avoid Displaying Raw XML Data

XML data should be made human-understandable when possible, but it is not targeted at
human consumers. HTML is intended for browsers. Browsers and similar technology provide
human interfaces to XML and other structured content. As such, structured XML content does

24

NIEM NIEM Naming and Design Rules

not belong in places targeting humans. Human-targeted information should be of a form
suitable for presentation.

[Principle 17]

XML data SHOULD be designed for automatic processing. XML data SHOULD NOT be
designed for literal presentation to people. NIEM standards and schemas SHOULD NOT
use literal presentation to people as a design criterion.

4.4.2 Leave Implementation Decisions to Implementers

NIEM is intended to be an open specification supported by many diverse implementations. It
was designed from data requirements and not from or for any particular system or
implementation. Use of NIEM should not depend on specific software, other than XML
Schema-validating parsers.

[Principle 18]

NIEM SHOULD NOT depend on specific software packages, software frameworks, or
software systems for interpretation of XML instances.

[Principle 19]

NIEM schemas and standards SHOULD be designed such that software systems that use
NIEM may be built with a variety of off-the-shelf and free software products.

4.5 Modeling Guidelines

The NIEM Naming and Design Rules (NDR) specify NIEM-conformant components, schemas, and
instances. These guidelines influence and shape the more-specific principles and rules in this
document. They are derived from best practices and from discussions within the NIEM Business
Architecture Committee (NBAC) and the NIEM Technical Architecture Committee (NTAC). This
list may grow and evolve as NIEM matures.

The principles in this section address decisions that data modelers must face when creating
NIEM-conformant schema representations of domain data. These guidelines are not absolute
(the key word is SHOULD). It may not be possible to apply all guidelines in every case. However,
they should always be considered.

45.1 Documentation

As will be described in later sections of this document, all NIEM components are documented
through their definitions and names. Although it is often very difficult to apply, a data
component definition should be drafted before the data component name is finalized.

Drafting the definition for a data component first ensures that the author understands the exact
nature of the entity or concept that the data component represents. The component name
should subsequently be composed to summarize the definition. Reversing this sequence often
results in data definitions that very precisely describe the component name but do not
adequately describe the entity or concept that the component is designed to represent. This
can lead to the ambiguous use of such components.

25

NIEM NIEM Naming and Design Rules

[Principle 20]
A data component definition SHOULD be drafted before the associated data element
name is composed.

45.2 Consistent Naming

Components in NIEM should be given names that are consistent with names of other NIEM
components. Having consistent names for components has several advantages:

1. Itis easier to determine the nature of a component when it has a name that conveys the
meaning and use of the component.

2. Itis easier to find a component when it is named predictably.
3. ltis easier to create a name for a component when clear guidelines exist.
[Principle 21]
Components in NIEM SHOULD be given names that are consistent with names of other
NIEM components. Such names SHOULD be based on simple rules.
4.5.3 Reflect the Real World

NIEM provides a standard for data exchange. To help facilitate unambiguous understanding of
NIEM reusable components, the names and structures should represent and model the
informational aspects of objects and concepts that users are most familiar with. Types should
not simply model collections of data.

[Principle 22]
Component definitions in NIEM-conformant schemas SHOULD reflect real-world
concepts.

45.4 Be Consistent

There should be no conflicts of meaning among types. This holds for types within a namespace,
as well as types in different namespaces. A type should be used consistently in similar
situations for similar purposes. Types should be defined for clear understanding and ease of
intended use.

[Principle 23]
Component definitions in NIEM-conformant schemas SHOULD have semantic
consistency.

4.5.5 Reserve Inheritance for Specialization

Specialization should not be applied simply for the sake of achieving property inheritance.
Specialization should be applied only where it is meaningful and appropriate to model
permanent sibling subclasses of a base class that are mutually exclusive of one another.

26

NIEM NIEM Naming and Design Rules

[Principle 24]

Complex type definitions in NIEM-conformant schemas SHOULD use type inheritance
only for specialization.

Note that application of type augmentations is a well-defined exception to this guideline.

4.5.6 Do Not Duplicate Definitions

A real-world entity should be modeled in only one way. The definition of a type or element
should appear once and only once. Multiple components of identical or closely similar
semantics hinder interoperability because too many valid methods exist for representing the
same data. For each data concept that must be represented, there should be only one
component (and associated type) to represent it.

Components with very similar semantics may exist in different contexts. For example, a
complex type created for a particular exchange may appear to have identical or closely similar
semantics to a complex type defined in the NIEM Core schema. However, the type defined at
the exchange level will have much more precise business requirements and syntax, compared
with the broad definitions that are heavily reused. Specific contextual definitions should be
considered semantic changes. This includes the application of augmentations to create a
specialized type for a specific use.

Two components may have the same definition while having different representations. For
example, a string may hold the complete name of a person, or the name may be represented by
a structure that separates the components of the name into first, last, etc. The definition of
alternative representations should not be considered duplication.

[Principle 25]

Multiple components with identical or undifferentiated semantics SHOULD NOT be
defined. Component definitions SHOULD have clear, explicit distinctions.

45.7 Keep It Simple

All NIEM content and structure is fundamentally based on business requirements for
information exchange. To encourage adoption and use in practice, NIEM must implement
business requirements in simple, consistent, practical ways.

[Principle 26]

NIEM-conformant schemas SHOULD have the simplest possible structure, content, and
architecture consistent with real business requirements.

45.8 Be Aware of Scope

The scope of components defined in NIEM-conformant schemas should be carefully considered.
Some components represent simple data values, while others represent complex objects with
many parts and relationships. Components should exist in layers. Components should exist as
small, narrowly scoped, atomic entities that are used to consistently construct more broadly
scoped, complex components (and so on).

27

NIEM NIEM Naming and Design Rules

[Principle 27]
Components defined by NIEM-conformant schemas SHOULD be defined appropriate for
their scope.

45.9 Be Mindful of Namespace Cohesion

Namespaces should maximize cohesion. The namespace methodology helps prevent name
clashes among communities or domains that have different business perspectives and may
choose identical data names to represent different data concepts. A namespace should be
designed so that its components are consistent, may be used together, and may be updated at
the same time.

[Principle 28]

XML namespaces defined by NIEM-conformant schemas SHOULD encapsulate data
components that are coherent, consistent, and internally related as a set. A namespace
SHOULD encapsulate components that tend to change together.

5 Relation to Standards

This section specifies the standards and specifications to which NIEM conforms. Where NIEM
differs from public standards, the rationale for those differences is discussed in this section. The
complete list of standards and specifications referenced in this section appears in Appendix D:
References.

51 XML 1.0
[Rule 5-1] (REF, SUB, EXT, CON)

The schema MUST conform to XML as specified by [XML].
Rationale

XML is a well-known, commonly used W3C Recommendation. It is supported by a large
number of commercial and open-source software tools. It is a simple, well-defined,
semi-structured data format that is flexible enough to allow for easy extension. XML
works with many other powerful associated technologies such as XML Schema, XSLT, and
XPath. Artifacts of NIEM conform to the most recent recommendation for XML.

5.2 XML Namespaces
[Rule 5-2] (REF, SUB, EXT, CON)

The schema MUST conform to the specification for namespaces in XML, as defined by
[XMLNamespaces] and [XMLNamespacesErrata].

Rationale

NIEM is designed to facilitate cross-domain data exchanges and interoperability. The
ultimate scope of NIEM is anticipated to be quite large. The primary purpose of

28

NIEM NIEM Naming and Design Rules

namespaces is to avoid naming conflicts, which for NIEM could become quite common,
since NIEM stakeholders and IEPD developers define and name many of their own data
components independently. Therefore, in NIEM, XML namespaces are employed both

to avoid name clashes and to provide a level of independence to participating domains.

5.3 XML Schema
[Rule 5-3] (REF, SUB, EXT, CON)

The schema MUST conform to the W3C XML Schema Recommendations: XML Schema
Part 1: Structures and XML Schema Part 2: Datatypes, as specified by
[XMLSchemaStructures] and [XMLSchemaDatatypes].

Rationale

XML Schema has become the generally accepted schema language and is experiencing
the most widespread adoption. Although other schema languages exist that offer their
own advantages and disadvantages, the current approach is to base NIEM on XML
Schema.

5.4 1S0O 11179, Part 4

Good data definitions are fundamental to data interoperability. You cannot effectively exchange
what you cannot understand. NIEM employs the guidance of [ISO 11179 Part 4] as a baseline
for its data component definitions. All NIEM components are documented.

[Definition: documented component]

In a NIEM-conformant schema, a documented component is an XML Schema
component that has an associated data definition. These schema components have a
textual definition, so that the component may be well-understood. Schemas that do not
document their components accordingly are not NIEM-conformant.

[Definition: data definition]

The data definition of a documented component is the content of the first occurrence of
the element xsd: documentation, which is an immediate child of an occurrence of
the element xsd:annotation, which is an immediate child of the element that
defines the component.

29

NIEM NIEM Naming and Design Rules

Figure 5-1: Example of data definition of
MeasureMetadataType

<xsd:complexType name="MeasureMetadataType">
<xsd:annotation>
<xsd:documentation>
A data type for metadata about a measurement.
</xsd:documentation>
<xsd:appinfo>
<appinfo:Base
appinfo:namespace="http://niem.gov/niem/structures/2.0"
appinfo:name="MetadataType" />
<appinfo:AppliesTo appinfo:name="MeasureType"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:MetadataType">
<xsd:sequence>
<xsd:element ref="nc:MeasureDate"
minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="nc:Measurer"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

[Rule 5-4] (REF, EXT)

Within a NIEM-conformant schema, the data definition provided for each documented
component SHALL follow the requirements and recommendations for data definitions
given by [ISO 11179 Part 4].

Rationale

To advance the goal of creating semantically rich NIEM-conformant schemas, it is
necessary that data definitions be descriptive, meaningful, and precise. [ISO 11179 Part
4] provides standard structure and rules for defining data definitions. NIEM uses this
standard for component definitions.

Note that the metadata maintained for each NIEM component contains additional details,
including domain-specific usage examples and keywords. Such metadata is used to enhance
search and discovery of components in a registry, and therefore, is not included in schemas.

For convenience and reference, the summary requirements and recommendations in [ISO
11179 Part 4] are reproduced here:

ISO 11179 Requirements
A data definition SHALL.:

e Be stated in the singular.

e State what the concept is, not only what it is not.

e Be stated as a descriptive phrase or sentence(s).

e Contain only commonly understood abbreviations.

e Be expressed without embedding definitions of other data or underlying concepts.

30

http://niem.gov/niem/structures/2.0

NIEM NIEM Naming and Design Rules

1SO 11179 Recommendations
A data definition SHOULD:

o State the essential meaning of the concept.

« Be precise and unambiguous.

e Beconcise.

« Be able to stand alone.

o Be expressed without embedding rationale, functional usage, or procedural information.
« Avoid circular reasoning.

o Use the same terminology and consistent logical structure for related definitions.

o Be appropriate for the type of metadata item being defined.

In addition to the requirements and recommendations of [ISO 11179 Part 4], NIEM applies
additional rules to data definitions. These rules are detailed in Section 7.2.1, Human-Readable
Documentation.

5.5 [ISO 11179, Part 5

Names are a simple but incomplete means of providing semantics to data components. Data
definitions, structure, and context help to fill the gap left by the limitations of naming. The
goals for data component names should be syntactic consistency, semantic precision, and
simplicity. In many cases, these goals conflict and it is sometimes necessary to compromise or
to allow exceptions to ensure clarity and understanding. To the extent possible, NIEM applies
[ISO 11179 Part 5] to construct NIEM data component names.

The set of NIEM data components is a collection of data representations for real-world objects
and concepts, along with their associated properties and relationships. Thus, names for these
components would consist of the terms (words) for object classes or that describe object
classes, their characteristic properties, subparts, and relationships.

[Rule 5-5] (REF, SUB, EXT)

A NIEM component name SHALL be formed by applying the informative guidelines and
examples detailed in Annex A of [ISO 11179 Part 5], with exceptions as specified in this
document, most notably those specified in Section 9, Naming Rules.

Rationale

The guidelines and examples of [ISO 11179 Part 5] provide a simple, consistent syntax
for data names that captures context and thereby imparts a reasonable degree of
semantic precision.

NIEM uses the guidelines and examples of [ISO 11179 Part 5] as a baseline for normative
naming rules. However, some NIEM components require bending of these rules. Special
naming rules for these classes of components are presented and discussed in Section 9. In spite
of these exceptions, most NIEM component names can be disassembled into their [ISO 11179
Part 5] constituent words or terms.

31

NIEM NIEM Naming and Design Rules

Example:

The NIEM component name AircraftFuselageColorCode disassembles as follows:

e Objectclass term = “Aircraft”
e Qualifier term = “Fuselage”

e Property term =“Color”

e Representation term = “Code”

Section 9, Naming Rules, details the specific rules for each kind of term and how to construct
NIEM component names from it. Exceptions for special components are also described in
Section 9.

6 XML Schema Design Rules

The W3C XML Schema Language provides many features that allow a developer to represent a
logical data model many different ways. This section establishes rules for the use of XML
Schema constructs within NIEM-conformant schemas. Because the XML Schema specifications
are flexible, comprehensive rules are needed to achieve a balance between establishing uniform
schema design and providing developers flexibility to solve novel data modeling problems.

Note that external schemas (non-NIEM-conformant schemas) do not need to obey the rules set
forth in this section. So long as schema components from external schemas are adapted for use
with NIEM, according to the modeling rules in Section 7.7, they may be used as they appear in
the external standard, even if the schema components violate the rules for NIEM-conformant
schemas.

The XML Schema design rules in this section fall into the following categories:
e Restrictions on XML Schema Constructs
e xsd:schema Document Element
¢ Namespace Imports
e Annotations
e Type Definitions

e Additional Definitions and Declarations

6.1 Restrictions on XML Schema Constructs

A number of XML Schema constructs are not used within NIEM-conformant schemas. Many of
these constructs provide capability that is not currently needed within NIEM. Some of these
constructs create problems for interoperability, with tool support, or with clarity or precision of
data model definition.

32

http://niem.gtri.gatech.edu/iepd-ssgt/SSGT-GetProperty.do?propertyKey=no-33

NIEM NIEM Naming and Design Rules

6.1.1 No Mixed Content
[Rule 6-1] (REF, SUB, EXT)

Within the schema, an element xsd: complexType SHALL NOT own the attribute
mixed with the value true.

[Rule 6-2] (REF, SUB, EXT)

Within the schema, an element declaration that is of complex content SHALL NOT own
the attribute mixed with the value true.

Rationale

Mixed content allows the mixing of data tags with text. Languages such as XHTML use
this syntax for markup of text. NIEM-conformant schemas define XML that is for data
exchange, not text markup. Mixed content creates complexity in processing, defining,
and constraining content.

Well-defined markup languages exist outside NIEM and may be used with NIEM data.
External schemas may include mixed content and may be used with NIEM. However,
mixed content must not be defined by NIEM-conformant schemas in keeping with
[Principle 9].

6.1.2 No Notations

[Rule 6-3] (REF, SUB, EXT)

The schema SHALL NOT contain a reference to the type definition xsd : NOTATION or
to a type derived from that type.

[Rule 6-4] (REF, SUB, EXT)
The schema SHALL NOT contain the element xsd:notation.
Rationale

XML Schema notations allow the attachment of system and public identifiers on fields of
data. The notation mechanism does not play a part in validation of instances and is not
supported by NIEM.

6.1.3 No Schema Inclusion

[Rule 6-5] (REF, SUB, EXT)
The schema SHALL NOT contain the element xsd: include.

Rationale

Element xsd: include brings schemas defined in separate files into the current
namespace. It breaks a namespace up into arbitrary partial schemas, which needlessly
complicates the schema structure, making it harder to reuse and process, and also
increases the likelihood of conflicting definitions.

33

NIEM NIEM Naming and Design Rules

Inclusion of schemas that do not have namespaces also complicates schema
understanding. This inclusion makes it difficult to find the realization of a specific
schema artifact and create aliases for schema components that should be reused.
Inclusion of schemas also violates [Principle 8], as it uses multiple schemas to construct
a namespace.

6.1.4 No Schema Redefinition

[Rule 6-6] (REF, SUB, EXT)
The schema SHALL NOT contain the element xsd: redefine.

Rationale

The xsd: redefine element allows an XML Schema document to restrict and extend
components from a namespace, in that very namespace. Such redefinition introduces
duplication of definitions, allowing multiple definitions to exist for components from a
single namespace. This violates [Principle 8] that a single reference schema defines a
NIEM-conformant namespace.

6.1.5 Wildcard Restrictions

There are many constructs within XML Schema that act as wildcards. That is, they introduce
buckets that may carry arbitrary or otherwise nonvalidated content. Such constructs violate
[Principle 11], and as such provide implicit workarounds for the difficult task of agreeing on the
content of data models. Such workarounds should be made explicitly, outside the core data
model.
6.1.5.1 No Unconstrained Type Substitution
[Rule 6-7] (REF, SUB, EXT)

The schema SHALL NOT reference the type xsd:anyType.

Rationale

XML Schema has the concept of the "ur-type," a type that is the root of all other types.
This type is realized in schemas as xsd:anyType.

NIEM-conformant schemas must not use xsd:anyType, because this feature permits
the introduction of arbitrary content (i.e., untyped and unconstrained data) into an XML
instance. NIEM intends that the schemas describing that instance describe all constructs
within the instance.

6.1.5.2 No Unconstrained Text Substitution

[Rule 6-8] (REF, SUB, EXT)

The schema SHALL NOT reference the type xsd:anySimpleType.

34

NIEM NIEM Naming and Design Rules

Rationale

XML Schema provides a restriction of the “ur-type,” which contains only simple content.
This provides a wildcard for arbitrary text. It is realized in XML Schema as
xsd:anySimpleType.

NIEM-conformant schemas must not use xsd:anySimpleType because this feature
is insufficiently constrained to provide a meaningful starting point for content
definitions. Instead, content should be based on one of the more specifically defined
simple types defined by XML Schema.

6.1.5.3 Untyped Elements Must Be Abstract

[Rule 6-9] (REF, SUB, EXT)

Within the schema, an element declaration with the attribute name and without the
attribute t ype MUST carry the attribute abstract with the value true.

Rationale

Untyped element declarations act as wildcards that may carry arbitrary data. By
declaring such types abstract, NIEM allows the creation of type independent semantics
without allowing arbitrary content to appear in XML instances.

6.1.5.4 No Untyped Attributes
[Rule 6-10] (REF, SUB, EXT)

Within the schema, an attribute declaration with attribute name MUST carry the
attribute type.

Rationale
Untyped XML Schema attributes allow arbitrary content, with no semantics. Attributes
must have a type so that specific syntax and semantics will be provided.

6.1.5.5 No Unconstrained Element Substitution

[Rule 6-11] (REF, SUB)
The schema SHALL NOT contain the element xsd: any.

Rationale

The xsd: any particle (see Model Group Restrictions for an informative definition of
particle) provides a wildcard that may carry arbitrary content. The particle xsd:any
may appear within constraint schemas, extension schemas, and exchange schemas.

6.1.5.6 No Unconstrained Attribute Substitution
[Rule 6-12] (REF, SUB, EXT)

The schema SHALL NOT contain the element xsd:anyAttribute.

35

NIEM NIEM Naming and Design Rules

Rationale

The xsd:anyAttribute element provides a wildcard, where arbitrary attributes may
appear. The element xsd:anyAttribute may appear within constraint schemas or
within other schemas that are not NIEM-conformant, but it is prohibited in NIEM-
conformant schemas.

6.1.6 Component Naming Restrictions

All NIEM components must be named. That is, type definitions, and element and attribute
declarations must be given explicit names — local and anonymous component definition is not
allowed. Note that XML Schema enforces the placement of attribute group and model group
definitions as top-level components, which forces the components to be named.

6.1.6.1 No Anonymous Type Definitions
[Rule 6-13] (REF, SUB, EXT)

Within the schema, any occurrence of the element xsd: complexType or
xsd:simpleType MUST appear as an immediate child of the element
xsd:schema.

Rationale

NIEM does not support anonymous types in NIEM-conformant schemas. All XML
Schema "top-level" types (children of the document element) are required by XML
Schema to be named. By requiring NIEM type definitions to be top level, they are forced
to be named and are therefore globally reusable.

6.1.6.2 No Local Element Declarations
[Rule 6-14] (REF, SUB, EXT)

Within the schema, any element declaration carrying the attribute name MUST appear
as an immediate child of the document element xsd: schema.

Rationale

All schema components defined by NIEM-conformant schemas must be named,
accessible from outside the defining schema, and reusable across schemas. Local
element definitions provide named elements that are not reusable outside the context
in which they are defined. Requiring named NIEM elements to be top level ensures that
they are globally reusable.

6.1.6.3 No Local Attribute Definitions
[Rule 6-15] (REF, SUB, EXT)

Within the schema, any attribute declaration owning the attribute name MUST appear
as an immediate child of the document element xsd: schema.

36

NIEM NIEM Naming and Design Rules

Rationale

All schema components defined by NIEM-conformant schemas are named, accessible
from outside the defining schema, and reusable across schemas. Local attribute
definitions provide named attributes that are not reusable outside the context in which
they are defined. Requiring named NIEM attributes to be top level ensures that they are
globally reusable.

6.1.7 No Uniqueness Constraints
[Rule 6-16] (REF, EXT)

The schema SHALL NOT contain any of the elements xsd:unique, xsd: key,
xsd: keyref, xsd:selector,orxsd: field.

Rationale

XML Schema provides NIEM with the ability to apply uniqueness constraints to schema-
validated content. These mechanisms, however, establish relationships in a way that is
very difficult to understand, extend, and keep consisent through schema reuse. These
elements may be used in subset schemas and constraint schemas.

6.1.8 Model Group Restrictions

Complex content definitions in XML Schema use model group schema components. These
schema components, xsd:all, xsd:choice and xsd: sequence, also called
compositors, provide for ordering and selection of particles within a model group.

XML Schema defines a particle as an occurrence of xsd:element, xsd: sequence,
xsd:choice, xsd:any (wildcard) and xsd: group (model group) within a content model.
For example, an xsd: sequence within an XML Schema complex type is a particle. An
xsd:element occurring within an xsd: sequence is also a particle.
6.1.8.1 Restrictions on Particle Ordering
[Rule 6-17] (REF, SUB, EXT)

The schema SHALL NOT contain the element xsd:all.

Rationale

The element xsd:all provides a set of particles (e.g., elements) that may be included
in an instance, in no particular order. This can greatly complicate processing and may be
difficult to comprehend and satisfy.

[Rule 6-18] (REF)

The schema SHALL NOT contain the element xsd: choice.

37

NIEM NIEM Naming and Design Rules

Rationale

The element xsd: choice provides an exclusive set of particles, one of which may
appear in aninstance. This can greatly complicate processing and may be difficult to
comprehend, satisfy, and reuse.

The element xsd : choice may be used in extension and exchange schemas, as it
presents a simple way for a schema writer to represent a set of optional content. It may
also be used in subset schemas and constraint schemas to represent syntactic
alternatives.

6.1.8.2 No Recursively Defined Model Groups
[Rule 6-19] (REF, SUB)

Within the schema, any immediate child of a model group xsd: sequence element
MUST be one of xsd:annotationor xsd:element

[Rule 6-20] (EXT)

Within the schema, any immediate child of a model group xsd: sequence element
MUST be one of xsd:annotation, xsd:element, xsd:choice, or xsd:any.

[Rule 6-21] (EXT)

Within the schema, any immediate child of a model group xsd: choice element MUST
be one of xsd:annotationor xsd:element.

[Rule 6-22] (EXT)

The use of xsd: choice SHALL define syntax, structure, grouping, and cardinality of
instances, but SHALL NOT define semantics. The semantics of a property within an
xsd:choice SHALL be identical to the semantics of the property within an
xsd:sequence.

Rationale

XML Schema provides the capability for model groups to be recursively defined. This
means that a sequence may contain a sequence, and a choice may contain a choice.
These rules are designed to keep content models simple, comprehensive, and reusable:
The content of an element should boil down to a simple list of elements, defined in as
straightforward a manner as is possible to meet requirements.

6.1.8.3 Restrictions on Named Groups

[Rule 6-23] (REF, SUB, EXT)
The schema SHALL NOT contain the element xsd: group.

Rationale

NIEM does not allow groups of elements to be named other than as named complex
types. A group in XML Schema creates a named entity that may be included in multiple

38

NIEM NIEM Naming and Design Rules

types, and which consists of a sequence of or choice between element particles. The
NIEM has not developed a semantic model for these components, and they are not
integrated into NIEM's design.

6.1.8.4 Particle Cardinality Restrictions

[Rule 6-24] (REF, SUB, EXT)

Within the schema, if the element xsd: sequence carries the attribute minOccurs,
it MUST set the value for the attribute to 1.

[Rule 6-25] (REF, SUB, EXT)

Within the schema, if the element xsd: sequence carries the attribute maxOccurs,
it MUST set the value of the attribute to 1.

Rationale

XML Schema allows each particle to specify cardinality (how many times the particle
may appear in an instance). NIEM restricts the cardinality of xsd: sequence particles
to exactly one, to ensure that content model definitions are defined in as
straightforward a manner as possible.

Discussion

Note that the particle xsd: any is not allowed in reference schemas or subset schemas
by [Rule 6-11]

Note also that element declarations acting as a particle (particles formed by
xsd:element) may have any cardinality; they are not restricted by this rule. Should a
user desire the behavior that would be obtained from the use of special cardinalities on
these particles, he or she should define them within explicitly named elements.

6.1.9 Block Substitution Restrictions

XML Schema provides a mechanism that will prevent substitution for an element declaration or
type definition. That is, an element declaration may declare one or more of the following:

1. Aninstance of this element declaration may not substitute an extended type.
2. Aninstance of this element declaration may not substitute a restricted type.
3. Aninstance of this element declaration may not substitute another element.

These restriction mechanisms are very useful in instances; they allow restriction of content
models down to exact types and elements. However, in shared data models, they limit reuse
and customization options, in opposition to [Principle 14].

[Rule 6-26] (REF, EXT)

Within the schema, if an element declaration carries the attribute block, it MUST set
the value for the attribute to the empty string.

39

NIEM NIEM Naming and Design Rules

[Rule 6-27] (REF, EXT)

Within the schema, if a complex type definition carries the attribute block, it MUST
set the value for the attribute to the empty string.

[Rule 6-28] (REF, SUB, EXT)

Within the schema, if the document element xsd: schema carries the attribute
blockDefault, it MUST set the value for the attribute to the empty string.

Rationale

Restriction of substitution options reduces capacity for reuse; thus, it is forbidden within
NIEM-conformant schemas In particular, setting the b1l ock value at the schema level
complicates understanding of component definitions.

6.1.10 Final Value Restrictions

XML Schema provides the capability for type definitions and elements to declare a final value.
This value prevents the creation of derived components. In shared data models, this capability
limits reuse and customization options, in opposition to [Principle 14].

[Rule 6-29] (REF, SUB)

Within the schema, if a simple type definition carries the attribute final, it MUST set
the value for the attribute to the empty string.

[Rule 6-30] (REF, SUB)

Within the schema, if a complex type definition carries the attribute final, it MUST set
the value for the attribute to the empty string.

[Rule 6-31] (REF, SUB)

Within the schema, if an element declaration carries the attribute final, it MUST set
the value for the attribute to the empty string.

[Rule 6-32] (REF, SUB, EXT)

Within the schema, if the document element xsd: schema carries the attribute
finalDefault, it MUST set the value for that attribute to the empty string.

Rationale

Restriction of derivation options reduces capacity for reuse and so is forbidden within
reference and subset schemas. As well, the use of finalDefault complicates
understanding of schemas, so it is only allowed in constraint schemas.

6.1.11 Default Value Restrictions

XML Schema provides the capability for element and attribute declarations to provide default
values when XML instances using those components do not provide values.

40

NIEM NIEM Naming and Design Rules

[Rule 6-33] (REF, SUB, EXT, CON)

Within the schema, any element xsd:element SHALL NOT carry the attribute
default.

[Rule 6-34] (REF, SUB, EXT, CON)

Within the schema, any element xsd:attribute SHALL NOT carry the attribute
default.

Rationale

The use of default values means that the act of validating a schema will insert a value
into an XML instance where none existed prior to schema validation. Schema validation
is for rejection of invalid instances, not for modifying instance content, as specified in
[Principle 4].

6.2 xsd:schema Document Element

The features of XML Schema allow for flexibility of use for many different and varied types of
implementation. NIEM requires consistent use of these features.

[Rule 6-35] (REF, SUB, EXT, CON)

Within the schema, the document element xsd: schema MUST carry the attribute
targetNamespace.

[Rule 6-36] (REF, SUB, EXT, CON)

Within the schema, the value of the required attribute targetNamespace on the
document element xsd: schema MUST match the production <absolute-URI> as
defined by [RFC3986].

Rationale

Schemas without defined namespaces provide definitions that are ambiguous, in that
they are not universally identifiable.

Absolute URIs are the only universally meaningful URIs. URIs include both URLs and
URNs. Finding the target namespace using standard XML Base technology is
complicated and not specified by XML Schema. Relative URIs are not universally
identifiable, as they are context-specific.

Discussion

The document element xsd: schema may contain optional attributes
attributeFormDefault and elementFormDefault. The values of these
attributes are immaterial to a NIEM-conformant schema, as each attribute defined by a
NIEM-conformant schema must be defined at the top level and so must be qualified
with the target namespace of its declaration.

41

NIEM NIEM Naming and Design Rules

[Rule 6-37] (REF, SUB, EXT, CON)

Within the schema, the document element xsd: schema MUST carry the attribute
version.

[Rule 6-38] (REF, SUB, EXT, CON)

Within the schema, the value of the required attribute version on the document
element xsd: schema MUST NOT be an empty string.

Rationale

It is very useful to be able to tell one version of a schema from another. Apart from the
use of namespaces for versioning, it is sometimes necessary to release multiple versions
of schema documents. Such use might include:

e Subset schemas and constraint schemas
e Error corrections or bug fixes

e Documentation changes

e Contact information updates

In such cases, a different value for the version attribute implies a different version of
the schema. No specific meaning is assigned to specific version identifiers.

Note that some of the above uses for the version attribute are not employed in
management of NIEM Core and domain schemas. An author of an application schema
or exchange may use the version attribute for these purposes within their schemas.

6.3 Namespace Imports

XML Schema requires that namespaces used in external references be imported using the
xsd:import element. The xsd: import element appears as an immediate child of the
xsd:schema element. A schema must import any namespace which

1. Is not the local namespace, and
2. lIsreferenced from the schema.

The behavior of import statements is not necessarily intuitive. In short, the import introduces
namespace into the schema in which the import appears; it has no transitive effect. If the
namespaces of an import statement are not referenced from the schema, then the import
statement has no effect. The import statement cannot be used to direct schema locations for
schemas not referenced from the schema performing the import. The schema location directed
by the import element may be overridden by user directive at the parser, or by being overridden
by import elements from other schemas.

Imports of namespaces should be made as uniform as possible; all schemas in a schema set
should agree on what schema location goes with a particular namespace. Otherwise, behavior
may be dependent on the behavior of the parser and the order of components in instance
documents.

42

NIEM NIEM Naming and Design Rules

6.3.1 xsd:import Element Restrictions
[Rule 6-39] (REF, SUB, EXT)

Within the schema, the element xsd: import MUST carry the attribute namespace.
[Rule 6-40] (REF, SUB, EXT)

Within the schema, the value of the required attribute namespace owned by the
element xsd: import MUST match the production <absolute-URI> as defined by
[RFC3986].

Rationale

An import that does not specify a namespace is enabling reference to non-namespaced
components. NIEM requires that all components have a defined namespace. It is
important that the namespace declared by a schema be universally defined and
unambiguous. Use of the standard XML Base for processing is not specified by XML
Schema; thus it is not supported here.

[Rule 6-41] (REF, SUB, EXT)

Within the schema, the element xsd: import MUST carry the attribute
schemaLocation.

Rationale

An import that does not specify a schema location gives no clue to processing
applications as to where to find an implementation of the namespace. Even though
such a provided schema location may be overridden, it is important that an initial
default be provided for processing.

[Rule 6-42] (REF, SUB, EXT)
Within the schema, the value of the required attribute schemaLocation carried by

the element xsd: import MUST match either the production <absolute-URI> or
the definition of "relative-path reference," as defined by [RFC3986].

Rationale

The default value may be specified either as absolute or relative URIs. Since URNs are
not resolvable, they are inappropriate for use in schemalLocation. The requirement
for conformance to "relative-path reference" is required to avoid the more obscure
syntax of "network-path reference" and the system-specific "absolute-path reference."

[Rule 6-43] (REF, SUB, EXT)

Within the schema, the value of the required attribute schemalLocation carried by
the element xsd: import MUST be resolvable to a XML schema document file that is
valid according to [XMLSchemaStructures] and [XMLSchemaDatatypes].

43

NIEM NIEM Naming and Design Rules

Rationale

The XML Schema specification requires that the object imported via xsd: import must
be a schema document. This rule reinforces that requirement.

Discussion

Note that relative URI references are dereferenced from the location of the schema
document performing the import, not from the location of an instance or other schema.
Although NIEM distribution schemas use only relative URI references, that need not be
the case for other NIEM-conformant schemas.

6.3.2 Including XML Content From Other Namespaces

Within an XML Schema document, there are several mechanisms to include XML content that is
not from the XML or XML Schema namespaces. Those mechanisms are:

1. Carrying attributes from other than the XML or XML Schema namespaces on an element
in the XML Schema namespace.

By the rules of XML Schema, any element may have attributes that are from other
namespaces. These attributes do not participate in validation but may carry information
useful to tools that process schemas.

2. Adding content to the elements xsd:appinfo and xsd:documentation.

XML Schema allows arbitrary XML content to be included within annotations. Such XML
does not participate in validation but may communicate useful information to schema
readers or processors.

NIEM requires all such XML content to be “schema-valid.” That is, it must have a schema, and it
must validate against that schema. The schemas must be introduced via xsd: import
elements within the schema in which the content is used. This is for two reasons:

1. Some tools require imports of namespaces used within schemas and validate against
those schemas.

2. The definition and the validity of content within schemas should be clear.
[Rule 6-44] (REF, SUB, EXT)

Within the schema, when a namespace other than the XML namespace or the XML
Schema namespace is used, it MUST be imported into the schema using the
xsd:import element.

Rationale

This rule ensures that used namespaces have recognizable defining sources and that
they will cooperate with existing tools.

44

NIEM NIEM Naming and Design Rules

[Rule 6-45] (REF, SUB, EXT)

Within the schema, when a namespace other than the XML namespace or the XML
Schema namespace is used, its content MUST be valid with respect to the schema
imported for that namespace.

Rationale

XML Schema does not address the schema-validity of content used for annotations or
attributes on schema components. This rule ensures that content used in such a
manner is schema-valid. This encourages interoperable data definitions and schema
documents.

6.4 Annotations

Annotations in XML Schema "provide for human- and machine-targeted annotations of schema
components." [XMLSchemaStructures] The two types: human-targeted and machine-targeted,
are kept separate by the use of two separate container elements defined by XML Schema:
xsd:documentationand xsd:appinfo.

[Rule 6-46] (REF, EXT)

Within the schema, an element SHALL have at most one instance of an element
xsd:annotation as an immediate child.

Rationale

XML Schema allows annotations to be added to components in a fairly loose manner:
there may be multiple annotations, each of which may have multiple documentation
or appinfo elements. This flexibility in the syntax provides no additional expressivity
but does complicate processing, so it is forbidden in NIEM.

6.4.1 Human-Readable Documentation

XML Schema describes the content of xsd:documentation elements as "user information."
This information is targeted for reading by humans. The XML Schema specification does not say
what form human-targeted information should take. Within NIEM, user information is plain
text with no formatting or XML structure.

[Rule 6-47] (REF, EXT)

Within the schema, the content of the xsd:documentation element that
constitutes the data definition of a component MUST be character information items as
specified by [XMLInfoSet].

Rationale

According to the XML Schema specification, the content of xsd:documentation
elements is intended for human consumption, whereas other structured XML content is
intended for machine consumption. Therefore, the xsd:documentation element
MUST NOT contain structured XML data. As such, any XML content appearing within a

45

NIEM NIEM Naming and Design Rules

documentation element is in the context of human-targeted examples and should be
escaped using &1t ; and > ;. This rule also prohibits comments within
documentation elements.

See [SchemaForXMLSchemal, the schema for XML Schema, as an example of
documentation elements containing properly escaped XML elements.

XML comments are not XML Schema constructs and are not specifically associated with any
schema-based components. As such, comments are not considered semantically meaningful by
NIEM and may not be retained through processing of NIEM schemas.

[Rule 6-48] (REF, SUB, EXT)

XML comments SHALL not be used for persistent information about constructs within
the schema.

Rationale

Since XML comments are not associated with any specific XML Schema construct, there
is no standard way to interpret comments. As such, comments should be reserved for
internal use, and XML Schema annotations should be preferred for meaningful
information about components. NIEM specifically defines how information should be
encapsulated in NIEM-conformant schemas via xsd:annotation elements.

6.4.2 Machine-Readable Annotations

XML Schema provides special annotations for support of automatic processing. The XML
Schema specification provides the element xsd: appinfo to carry such content and does not
specify what style of content they should carry. In NIEM, xsd: appinfo elements carry
structured XML content.

[Rule 6-49] (REF, EXT)

Within the schema, any immediate child of an xsd: appinfo element SHALL be an
element information item or a comment information item.

Rationale

Application information elements are intended for automatic processing; thus they
should contain machine-oriented data, XML.

[Rule 6-50] (REF, EXT)

Within the schema, any element that is an immediate child of an xsd:appinfo
element SHALL be in a namespace.

Rationale

Use of default namespace is allowed, but content has to have a real namespace, and
namespaces must be declared. The XML namespaces specification includes the concept
of content not in a namespace. Non-namespaced data runs counter to the principle of
distinctly identifiable data definitions.

46

NIEM NIEM Naming and Design Rules

[Rule 6-51] (REF, EXT)

Within the schema, an element in the XML Schema namespace MUST NOT occur as a
descendant of any element xsd:appinfo.

Rationale

NIEM-conformant schemas are designed to be very easily processed. Although uses of
XML Schema elements as content of xsd: appinfo elements could be contrived, it is
not current practice and could seriously complicate the authoring of schema validators
and processors, such as XSLT, which may evaluate XML elements by their namespaces
and names. Forbidding the use of XML Schema elements outside valid uses of schema
will simplify such processing.

6.5 Type Definitions

XML Schema provides a variety of ways to define new types. This section covers the NIEM
restrictions on defining complex types, with both simple and complex content.

6.5.1 Complex Type Definitions

XML Schema provides a large amount of flexibility in the creation of complex types. NIEM
narrows the schema capability to a smaller set of constructs.

Note that rules on prohibited constructs (Section 6.1.6.1: No Anonymous Type Definitions,
above) forbid defining complex types as local types. All complex type definitions must be top-
level, named components.

XML Schema makes a distinction between complex types with simple content versus complex
types with complex content. Complex types with simple content (CSCs) have content that is not
allowed to contain XML elements. Complex types with complex content (CCCs) have content
that does contain XML elements. Since mixed content is prohibited in NIEM by [Rule 6-1], all
NIEM-conformant complex types are either CSCs or CCCs.

[Rule 6-52] (REF, SUB, EXT)

Within the schema, the element xsd: complexType MUST have as an immediate
child either the element xsd: complexContent or the element
xsd:simpleContent.

Rationale

XML Schema provides shorthand to defining complex content of a complex type, which
is to define the complex type with immediate children that specify elements, or other
groups, and attributes. In the desire to normalize schema representation of types and to
be explicit, NIEM forbids the use of that shorthand.

6.5.2 Simple Content (CSC) Restrictions

Within a NIEM-conformant schema, a complex type with simple content (CSC) can be created in
one of two ways:

a7

NIEM NIEM Naming and Design Rules

1. By extension of an existing CSC.
2. By extension of an existing simple type.
Both of these methods use the element xsd:extension.

[Rule 6-53] (REF)

Within the schema, the element xsd: simpleContent MUST have as an immediate
child the element xsd:extension.

Rationale

This rule ensures that the definition of a CSC will use the XML Schema extension facility.
This allows for the above cases while disallowing much more complicated syntactic
options available in XML Schema.

Note that the applicability of the above rule allows for use of xsd: restriction

within xsd: simpleContent in subset schemas, extension schemas, and exchange
schemas.

Although the two above methods have similar syntax, there are subtle differences. NIEM's
conformance rules ensure that any complex type has the necessary attributes for representing
IDs, metadata, and link metadata. So case 1 does not require adding these attributes, as they
are guaranteed to occur in the base type.

However, in case 2, in which a new complex type is created from a simple type, the attributes
for complex types must be added. This is done by reference to the attribute group
structures:SimpleObjectAttributeGroup.

[Rule 6-54] (REF, SUB, EXT)

Within the schema, given an element xsd: simpleContent with a child
xsd:extension owning an attribute base, if the attribute base has a value that
resolves to the name of a simple type, then the element xsd:extension MUST have
an immediate child element xsd:attributeGroup.

[Rationale]

This rule ensures that a CSC that is created as an immediate extension of a simple type
adds the attributes required for specific NIEM linking mechanisms. The attribute group
is required to be structures:SimpleObjectAttributeGroup by [Rule 6-59].

This creates a pattern for CSC definition as follows:

48

NIEM NIEM Naming and Design Rules

Figure 6-1: Example of CSC derived from a simple type

<xsd:complexType name="PercentageType">

<xsd:simpleContent>
<xsd:extension base="nc:PercentageSimpleType">
<xsd:attributeGroup ref="structures:SimpleObjectAttributeGroup"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

6.5.3 Complex Content (CCC) Restrictions

Within a reference schema, a complex type with complex content (CCC) can be created in one of
two ways:

1. By extension of an existing complex type (CCC or CSC).
2. By extension of the type structure:ComplexObjectType.

Both of these methods use the element xsd:extension. Within extension schemas,
exchange schemas, and subset schemas, the use of xsd: restriction to create complex
types with complex content is also allowed.

[Rule 6-55] (REF)

Within the schema, the element xsd: complexContent MUST have as an immediate
child the element xsd:extension.

Rationale

NIEM does not support, as conformant, the use of complex type restriction. NIEM
defines a language, in which specific content is allowed. It does not specify messages
that forbid content. Such restrictions may be performed in nonconformant schemas or
within constraint schemas or other artifacts of constraint.

Note that XML Schema requires use of the attribute base on xsd:extension.

Note also that the applicability allows for the use of restriction in subset schemas,
extension schemas, exchange schemas, and constraint schemas.

The xsd:extension element says that the type under definition is an extension of another
type. That type must be limited to those used with NIEM.

[Rule 6-56] (REF, SUB, EXT)

Within the schema, given an element xsd: complexContent with a child
xsd:extension owning an attribute base, the attribute base MUST have a value
that resolves to the name of one of the following:

1. Thetype structures:ComplexObjectType.
2. Thetype structures:MetadataType.

3. Thetype structures:AugmentationType.

49

NIEM NIEM Naming and Design Rules

4. A complex type that is a NIEM-conformant component.
[Rationale]

This rule ensures that a CCC has well-defined ancestry. In turn, this ensures that every
CCC has well-defined semantics.

[Rule 6-57] (EXT)

Within the schema, given an element xsd: complexContent with a child
xsd:restriction owning an attribute base, the attribute base MUST have a
value that resolves to the name of a complex type that is a NIEM-conformant
component.

[Rationale]

This ensures that a CCC defined through restriction has well-defined semantics.

6.6 Additional Definitions and Declarations

XML Schema provides a variety of ways to declare and define elements and attributes.

6.6.1 Element Declarations

Within NIEM-conformant schemas, elements may be declared as abstract. Element
declarations must be at the top level, as rules in other sections prohibit the use of local
elements. Elements may be defined without a type, but any element declaration that has no
type must be declared abstract by [Rule 6-9], which forbids anonymous type definitions.

Within an element declaration, the attributes fixed, nillable, and
substitutionGroup may be used as per the XML Schema specification. The attribute
formisirrelevant to NIEM, as NIEM-conformant schemas may not contain local element
definitions by [Rule 6-14].

Element uses (element declarations acting as particles) must reference top-level named
elements. In an element use, NIEM allows any values for the XML Schema properties “max
occurs” and “min occurs.”

Based on a variety of user requirements, all elements in the NIEM 2.0 schemas are defined to
allow a nil value. For example, the following XML instances are permitted in NIEM-conformant
instances:

<nc:ActivityDate></nc:ActivityDate>
OR
<nc:ActivityDate/>

Nil value allowance or restriction is only significant to elements of nontextual types (e.g., dates
and numeric values) and elements of text types that have restricted value space (e.g., code).
This is because an unrestricted text typed element always contains the empty string (" ") in its
value space. However, for numeric values and restricted text type elements, NIEM allows users
to tighten constraints as required in IEPDs by resetting nillable="false".

50

NIEM NIEM Naming and Design Rules

6.6.2 Attribute Declarations

Attribute declarations must be declared with a type by [Rule 6-10], which forbids anonymous
type definitions for attributes.

Within an attribute declaration, the attribute £ixed may be used as per the XML Schema
specification. Within an attribute declaration, the attribute form is irrelevant to NIEM, as
NIEM-conformant schemas may not contain local attribute declarations.

Attribute uses (attribute declarations acting as particles) must be uses of top-level named
attributes. NIEM-conformant schemas may not define local named attributes within type
definitions. Within an attribute use, the attributes fixed and use may be used as per the
XML Schema specification.

6.6.3 Attribute Group Definitions

In NIEM-conformant schemas, use of attribute groups is restricted. The only attribute group that
plays a part in NIEM-conformant schemas is
structures:SimpleObjectAttributeGroup. This attribute group provides the
attributes necessary for IDs, metadata, and link metadata.

[Rule 6-58] (REF, SUB, EXT)

Within the schema, any occurrence of the element xsd:attributeGroup MUST
own an attribute ref.

[Rationale]

The only attribute group used in NIEM-conformant schemas is
structures:SimpleObjectAttributeGroup, as established by rules [Rule 6-
59] and [Rule 7-39]. Therefore, NIEM-conformant schemas do not define additional
attribute groups.

[Rule 6-59] (REF, SUB, EXT)

Within the schema, the attribute ref owned by any element xsd:attributeGroup
MUST have a value of a qualified name (possibly using the default namespace) that
SHALL resolve to the namespace for the NIEM structures namespace and the local
name SimpleObjectAttributeGroup.

[Rationale]

The only attribute group used within NIEM-conformant schemas is
structures:SimpleObjectAttributeGroup. Therefore, within a NIEM-
conformant schema, only this attribute group can be referenced.

7 Modeling Rules

NIEM provides a framework for modeling concepts and relationships as XML artifacts. The data
model is implemented via XML Schema. However, XML Schema does not provide sufficient
structure and constraint to enable translating from a conceptual model to a schema and then to

51

NIEM NIEM Naming and Design Rules

instances of the concepts. NIEM provides additional support for modeling concepts as schemas
and provides rules for creating and connecting data that realizes those concepts.

Underlying the NIEM data model are two namespaces: the st ructures namespace and the
appinfo namespace. These two namespaces provide schema components that serve two
functions:

1. They provide support for connecting structural definitions to concepts.
2. They provide base components from which to derive structural definitions.

These namespaces are distributed with the NIEM data model content but are not themselves
considered to be content of the data model. They are, instead, part of the structure on which
the data model is built.

7.1 xsd:schema Document Element Restrictions
[Rule 7-1] (REF, EXT)

Within the schema, the document element xsd: schema MUST have application
information appinfo:ConformantIndicator, with text content "t rue".

Rationale

The appinfo:ConformantIndicator elementis how NIEM-conformant schemas
indicate that they are, in fact, NIEM-conformant. Without such an indicator,
conformance would have to be "guessed" by readers and processors.

[Rule 7-2] (REF, SUB, EXT, CON)

Two XML Schema documents SHALL have the same value for attribute
targetNamespace carried by the element xsd: schema, if and only if they
represent the same set of components.

[Rule 7-3] (REF, SUB, EXT, CON)

Two XML Schema documents SHALL have the same value for attribute
targetNamespace carried by the element xsd: schema, and different values for
attribute version carried by the element xsd: schema if and only if they are
different views of the same set of components.

Rationale

These rules embody the basic philosophy behind NIEM's use of namespaced
components: A component is uniquely identified by its class (e.g. element, attribute,
type), its namespace (a URI), and its local name (an unqualified string). Any two
matching component identifiers refer to the same component, even if the versions of
the schemas containing each are different.

52

NIEM NIEM Naming and Design Rules

7.2 Annotations

NIEM-conformant schemas define data models for the purpose of information exchange. A
major part of defining data models is the proper definition of the contents of the model. What
does a component mean, and what might it contain? How should it be used? NIEM-
conformant schemas contain the invariant part of the definitions for the data model. The set of
definitions includes:

1. Atext definition of each component. This describes what the component means. The
term used in this specification for such a text definition is data definition.

2. The structural definition of each component. This is made up of XML Schema
component definitions, along with certain application information (appinfo).

When possible, meaning is expressed via XML Schema mechanisms: type derivation, element
substitution, specific types and structures, as well as names that are trivially parseable. Beyond
that, NIEM-specific syntax must be used, as discussed in this section.

7.2.1 Human-Readable Documentation

By other rules, a schema component must contain at most one element xsd:annotation.
An element xsd:annotation, in turn, contains at most elements xsd:documentation
and xsd:appinfo. The content of the first element xsd:documentationona
component is the data definition for the component.

[Rule 7-4] (REF, EXT)

Within the schema, any element xsd: complexType MUST be a documented
component.

[Rule 7-5] (REF, EXT)

Within the schema, any element xsd: simpleType MUST be a documented
component.

[Rule 7-6] (REF, EXT)

Within the schema, any element xsd:element that is an immediate child of an
element xsd: schema MUST be a documented component.

[Rule 7-7] (REF, EXT)

Within the schema, any element xsd:attribute thatis an immediate child of an
element xsd: schema MUST be a documented component.

[Rule 7-8] (REF, EXT)

Within the schema, any element xsd: enumeration MUST be a documented
component.

[Rule 7-9] (REF, EXT)

Within the schema, the document element xsd: schema MUST be a documented
component.

53

NIEM NIEM Naming and Design Rules

Note that [Rule 5-4] applies [ISO 11179 Part 4] definition rules to documented components.
[Rule 7-10] (REF, EXT)

Words or synonyms for the words within a data element definition SHALL NOT be reused
as terms in the corresponding component name if those words dilute the semantics and
understanding of, or impart ambiguity to, the entity or concept that the component
represents.

[Rule 7-11] (REF, EXT)

An object class SHALL have one and only one associated semantic meaning (i.e., a single
word sense) as described in the definition of the component that represents that object
class.

[Rule 7-12] (REF, EXT)

An object class SHALL NOT be redefined within the definitions of the components that
represent properties or subparts of that entity or class.

Rationale

Data definitions should be concise, precise, and unambiguous without embedding
additional definitions of data elements that have already been defined once elsewhere
(such as object classes). [ISO 11179 Part 4] says that definitions should not be nested
inside other definitions. Furthermore, a data dictionary is not a language dictionary. It
is acceptable to reuse terms (object class, property term, and qualifier terms) from a
component name within its corresponding definition to enhance clarity, as long as the
requirements and recommendations of [ISO 11179 Part 4] are not violated. This further
enhances brevity and precision.

[Rule 7-13] (REF, EXT)

A data definition SHALL NOT contain explicit representational or data typing information
such as number characters, type of characters, etc., unless the very nature of the
component can be described only by such information.

Rationale

A component definition is intended to describe semantic meaning only, not
representation or structure. How a component with simple content is represented is
indicated through the representation term and further refined through constraints.

54

NIEM NIEM Naming and Design Rules

Figure 7-1: A definition that describes mathematical
representation

<xsd:element name="AngularMinuteValue" type="nc:AngularMinuteType"
nillable="true">
<xsd:annotation>
<xsd:documentation>
A value that specifies a minute of a degree. The value comes
from a restricted range of 0 (inclusive) to 60 (exclusive).
</xsd:documentation>
</xsd:annotation>
</xsd:element>

In Figure 7-1, above, the component definition contains representational information because
the component is mathematical and therefore requires such. In Figure 7-2, below, the
definition is incorrect and states unnecessary representational information about the data
element. nc:PersonSSNIdentification is nota social security number (SSN); itis a
complex element (type nc: IdentificationType) that contains a SSN identifier as well as
other properties that describe a person’s SSN identifier (such as issue date, issue authority,
etc.). The phrase “9-digit” is incorrect and unnecessary because it applies only to the SSN
identifier and should be applied as a length or pattern constraint on the identifier only.

Figure 7-2: A definition that describes syntactic
representation

<xsd:element name="PersonSSNIdentification" type="nc:IdentificationType">
<xsd:annotation>
<xsd:documentation>
A social security number that references a person; a 9-digit
numeric identifier assigned to a living person by the United
States Social Security Administration.
</xsd:documentation>
</xsd:annotation>
</xsd:element>

[Rule 7-14] (REF, EXT)

A component definition SHALL begin with a standard opening phrase that depends on
the class of the component per Table 7-1: Standard Opening Phrases:

Table 7-1: Standard Opening Phrases

Component Class Definition opening phrase
Abstract element "A data concept fora..."
Association element "A relationship..."

55

NIEM

NIEM Naming and Design Rules

Component Class

Definition opening phrase

Association type "A data type for a
relationship..."

Augmentation element "Supplements..."

Augmentation type "A data type that

supplements..."”

Metadata element

Either "Metadata about..." or
"Information that further
qualifies..."

Metadata type

"A data type for metadata
about..." or "A data type for
information that further
qualifies..."

Element with a date representation term

"A date..."

Element with a quantity representation term

"A (optional adjective)
count/number of..."

Element with an image representation term

"A(n) (optional adjective)
image/picture/photograph
of..."

Element with an indicator representation term

"True if...; false
otherwise/if..."

Element with an identification representation term

"A(n) (optional adjective)
identification..."

Element with an ID representation term

"An identifier..."

Element with a status representation term

"A(n) (optional adjective)
status/state of..."

Element with a name representation term

"A name of..."

56

NIEM NIEM Naming and Design Rules

Component Class Definition opening phrase

Element with a category text representation term "A kind of..."

Element with a description text representation term | "A description of..."

Other element "A(n)..."
Other type "A data type for a(n)..."
Rationale

A standard opening phrase based on component class helps to ensure consistent
definitions that appropriate for the type of component item being defined. These
opening phrases also provide a cue that facilitates recognition of the particular kind of
component.

7.2.2 Machine-Readable Annotations

XML Schema provides application information schema components to provide for automatic
processing and machine-readable content for schemas. NIEM utilizes application information to
convey information that is outside schema definition and outside human-readable text
definitions. NIEM uses application information to convey high-level data model concepts and
additional syntax to support the NIEM conceptual model and validation of NIEM-conformant
XML instances.

NIEM defines a single namespace that holds components for use in NIEM-conformant schema
application information. This namespace is referred to as the appinfo namespace.

[Definition: appinfo namespace]

The appinfo namespace is the namespace represented by the URI
"http://niem.gov/niem/appinfo/2.0".

The appinfo namespace defines elements which provide additional semantics and syntactic
guidelines for components built by NIEM-conformant schemas.

[Rule 7-15] (REF, EXT)

The schema SHALL import the appinfo namespace.
Rationale

For uniformity, all NIEM-conformant schemas must import the appinfo namespace.
[Definition: application information]

A component is said to have application information of some element E when the root
element that defines the component has an immediate child element

57

NIEM NIEM Naming and Design Rules

xsd:annotation, which has an immediate child element xsd: appinfo, which has
as an immediate child the element E.

If a component is described as "having application information," this means that the application
information elements under consideration are children of the element which defines the
component.

The majority of uses of application information from the appinfo namespace are described in
the modeling rules for the specific component.
7.2.2.1 Deprecation

The appinfo schema provides a construct for indicating that a construct is deprecated. A
deprecated component is one whose use is not recommended. A deprecated component is
kept in a schema for support of older versions but should not be used in new efforts. A
deprecated component will be removed, replaced, or renamed in a later edition of a schema.

[Definition: deprecated component]

In a particular NIEM-conformant namespace, a deprecated component is one whose use
is not recommended, yet which is maintained in the schema for compatibility with
previous versions of the namespace.

[Rule 7-16] (REF, EXT)

A component that is deprecated SHALL be indicated as such by the component having
application information appinfo:Deprecated, with an attribute value with a
value of true.

Rationale

Deprecation can allow version management to be more consistent; versions of schema
may be incrementally improved without introducing validation problems and
incompatibility. As XML Schema lacks a deprecation mechanism, NIEM defines such a
mechanism.

7.2.2.2 Indicating Conformance

The element appinfo:ConformantIndicator is used for two purposes:

1. To indicate that a schema is conformant or that it represents a conformant namespace.

2. Toindicate that an imported schema is not conformant or represents a nonconformant
namespace.

The specific rules concerning this element appear in Section 7.1, xsd : schema Document
Element Restrictions, and Section 7.7, Using External Schemas.
7.2.2.3 Bases of Derived Components

The appinfo namespace provides an annotation for indicating the base of a derived
component. This is expressed via the appinfo:Base application information.

58

NIEM NIEM Naming and Design Rules

[Rule 7-17] (REF, EXT)

Within the schema, the element appinfo:Base MAY be used in one of the following
ways:

1. By atype definition, to indicate the base type, or structures:0Object or
structures:Association.

2. By an element declaration, to indicate the base element.
The element appinfo:Base SHALL NOT be used for any other purpose.
Rationale

The appinfo:Base element is required to clarify semantics of types as object or
association types, when such derivation is not otherwise derivable from the component
definitions.

[Rule 7-18] (REF, EXT)

Within the schema, the element appinfo:Base SHALL indicate, by namespace and
name, one of the following:

1. A NIEM-conformant schema component.
2. structures:0Object.
3. structures:Association.

[Rule 7-19] (REF, EXT)

Within the schema, an attribute appinfo:namespace owned by an element
appinfo:Base SHALL have a value of either of the following:

1. A namespace which is the target namespace of a NIEM-conformant schema.
2. The structures namespace.
[Rule 7-20] (REF, EXT)

Within the schema, an element appinfo:Base that does not own an attribute
appinfo:namespace SHALL refer to the target namespace of the schema in which it
is used.

[Rule 7-21] (REF, EXT)

Within the schema, an element appinfo:Base SHALL own an attribute
appinfo:name.

[Rule 7-22] (REF, EXT)

Within the schema, if an element appinfo:Base indicates a NIEM-conformant
namespace, then the value of the attribute appinfo: name owned by the element
appinfo:Base SHALL indicate a schema component in the indicated namespace.

59

NIEM NIEM Naming and Design Rules

[Rule 7-23] (REF, EXT)

Within the schema, if an element appinfo:Base indicates the structures
namespace, then the value of the attribute appinfo: name owned by the element
appinfo:Base SHALL have a value of one of the following:

1. structures:0Object.

2. structures:Association.

3. A schema component defined by the structures schema.
Rationale

Together, this set of rules establishes the element appinfo:Base as a reference to
either a NIEM-conformant schema component or to a special NIEM component, which
acts as the base for the containing schema component.

7.2.2.4 Application of Constructs

NIEM-conformant schemas provide capability for modeling beyond that provided by basic XML
Schema. Two methods made available by NIEM are augmentations and metadata. Both of
these methods create schema components that may be applied to types in specific ways. The
applicability of these components to types is expressed with the appinfo:AppliesTo
element.

[Rule 7-24] (REF, EXT)

Within the schema, the element appinfo:AppliesTo MAY be used in any of the
following ways:

1. To indicate a base type to which an augmentation may be applied.
2. Toindicate a base type to which a metadata type may be applied.
The element appinfo:AppliesTo SHALL NOT be used for any other purpose.
Rationale

The appinfo:AppliesTo elementis required to express constraints beyond those
available within XML Schema. Use of this element allows advanced processing of
instances and schemas for type safety.

[Rule 7-25] (REF, EXT)

Within the schema, the element appinfo:AppliesTo SHALL indicate a schema
component by namespace and name.

[Rule 7-26] (REF, EXT)

Within the schema, an attribute appinfo:namespace owned by an element
appinfo:AppliesTo SHALL indicate the namespace of the type to which
appinfo:AppliesTo refers. The indicated namespace SHALL be defined by a NIEM-
conformant schema.

60

NIEM NIEM Naming and Design Rules

[Rule 7-27] (REF, EXT)

Given that the element appinfo:AppliesTo refers to a type, the applicability
described by the element SHALL be understood to be the indicated type or a type
transitively derived from the indicated type.

[Rule 7-28] (REF, EXT)

Within the schema, an element appinfo:AppliesTo that does not carry an
attribute appinfo:namespace SHALL refer to the target namespace of the schema
in which it is used.

[Rule 7-29] (REF, EXT)

Within the schema, an element appinfo:AppliesTo SHALL carry an attribute
appinfo:name. The value of this attribute SHALL indicate the local name of a schema
component within the namespace specified by the element.

Rationale

Together, this set of rules establishes the element appinfo:AppliesToasa
reference to a NIEM-conformant schema component to which a NIEM construct may be
applied.

7.2.2.5 Targets of References

NIEM provides references to avoid problems occurring when only XML element containment is
available. The appinfo:ReferenceTarget element specifies the type to which a
reference element may be applied.

[Rule 7-30] (REF, EXT)

Within the schema, the element appinfo:ReferenceTarget SHALL identify the
XML Schema type definition of an element information item to which an instance of a
reference element may validly refer. The element appinfo:ReferenceTarget
SHALL NOT be used for any other purpose.

Rationale

This describes the meaning of a reference target. The term type definition is as used in
[XMLSchemaStructures], in the PSVI (post-schema-validation infoset) definition for an
element information item. The element appinfo:ReferenceTarget isrequired
to express the type of referenced content. XML Schema does not provide this level of

type safety.

[Rule 7-31] (REF, EXT)

Within the schema, a reference element MUST have at most one instance of the
element appinfo:ReferenceTarget.

61

NIEM NIEM Naming and Design Rules

Rationale

Content elements in XML Schema may have at most one type. This rule ensures that
reference elements follow the same pattern.

[Rule 7-32] (REF, EXT)

Within the schema, the element appinfo:ReferenceTarget SHALL indicate a
type definition schema component, by namespace and name.

[Rule 7-33] (REF, EXT)

Within the schema, an attribute appinfo:namespace carried by an element
appinfo:ReferenceTarget SHALL indicate the namespace of the referenced
schema component. The indicated namespace SHALL be defined by a reference or
extension schema.

[Rule 7-34] (REF, EXT)

Within the schema, an element appinfo:ReferenceTarget that does not carry
an attribute appinfo:namespace SHALL refer to the target namespace of the
schema in which it is used.

[Rule 7-35] (REF, EXT)
Within the schema, an element appinfo:ReferenceTarget SHALL carry an

attribute appinfo:name. The value of this attribute SHALL indicate the local name of
a type definition schema component within the namespace specified by the element.

Rationale

Together, this set of rules establishes the element appinfo:ReferenceTarget asa
reference to a NIEM-conformant type definition schema component that a reference
element instance may reference.

7.3 Simple Type Definitions

NIEM places very few restrictions on the definition of simple types in conformant schemas. The
use of lists should be reserved for cases where the data is fairly uniform.

[Rule 7-36] (REF, SUB, EXT)

Within the schema, a simple type definition that uses xsd: 1ist SHOULD NOT be
defined if any member of the list requires a property or metadata that is different than
other members of the list. All members of the list SHOULD have the same metadata,
and should be related via the same properties.

Rationale

The members of a list are not individually addressable by NIEM metadata techniques.
The members are also not individually addressable by properties; a property has a value
of all the members of the list. NIEM provides no method for individually addressing a
member of a list. If an individual member of a list needs to be marked up in a manner

62

NIEM NIEM Naming and Design Rules

different than other members of the list, the use of individual elements may be
preferred to the definition of a list simple type.

7.4 Complex Type Definitions

Under XML Schema rules, a CCC (complex type with complex content) may not be the base type
of a CSC (complex type with simple content), and a CSC may not be a base for a CCC. Therefore,
NIEM defines one pattern for defining a CCC and a different pattern for defining a CSC. These
patterns supply common base definitions that will be provided for CSCs and CCCs. These
patterns are established by the rules for use of xsd:extensionin xsd:complexContent
and xsd:simpleContent elements. The relevant rules may be found in Section 6.5.2,
Simple Content (CSC) Restrictions, and Section 6.5.3, Complex Content (CCC) Restrictions.

[Rule 7-37] (REF, SUB, EXT)

Within the schema, a complex type definition SHALL be one of the following classes of
types:

1. An object type.

A role type.

An association type.
A metadata type.

An augmentation type.

o v kr wWw N

An adapter type.
Rationale

This rule establishes the classes of NIEM complex types. Itis a limited set, each class
with distinct semantics.

The first five types are described in subsections below. The adapter type is described in Section
7.7, Using External Schemas.

[Rule 7-38] (REF, SUB, EXT)

Within the schema, an element MUST NOT be introduced more than once into the direct
content of a type definition. This applies to content acquired through extension of base
types. This does not apply to a base element or derived element to one previously
existing in the type definition.

Rationale

This rule ensures that sequences of elements are simple sequences. A type should not
define, for example, a sequence of elements A, B, then A again. Definitions should
define, instead, what elements may be included, and their cardinality. Specific orders
should be expressed in instances, when necessary, by the use of the attribute
structures:sequencelD.

63

NIEM NIEM Naming and Design Rules

7.4.1 Object Types
[Definition: object type]

In a NIEM-conformant schema, an object type is a complex type definition, an instance
of which asserts the existence of an object. An object type represents some kind of
object: a thing with its own lifespan that has some existence. The object may or may
not be a physical object. It may be a conceptual object.

[Rule 7-39] (REF, EXT)

Within the schema, an object type SHALL be a complex type definition that either
constitutes a NIEM-conformant component or for which there exists a NIEM-conformant
component of one of the following forms:

1. Has simple content, is based on a simple type, and contains the attribute group
structures:SimpleObjectAttributeGroup, and has application
information appinfo:Base of structures:0bject.

2. Has complex content, and is based on complex type
structures:ComplexObjectType, and has application information
appinfo:Base of structures:0bject.

3. Is acomplex type that is derived from an object type, which is defined according
to this rule.

Rationale

Object types are at the core of NIEM. They are built in a uniform way, from a simple

design pattern: they take one of the two "root" forms outlined above, or they are built

from other object types, depending on whether they are of simple or complex content.
7.4.2 Role Types

NIEM differentiates between an object and a role of the object. The term "role" is used here to
mean a function or part played by some object.

[Definition: role type]

Arole type is a type that represents a particular function, purpose, usage, or role of an
object.

The simplest way to represent a role of an object is to use an element. The following example
represents the role of a person who performs an assessment:

Figure 7-3: An element definition that constitutes a role
without the use of arole type

<xsd:element name="AssessmentPerson" type="nc:PersonType"/>

In many cases, there is a further need to represent characteristics and additional information
associated with a role of an object. In such cases, the above element is insufficient. For

64

NIEM NIEM Naming and Design Rules

example, when a person is a driver involved in an automotive crash, the person plays the role of
a j:CrashDriver. Inthe case of a crash, there is more information associated with the role
of the driver than just his identity for the role. One such example would be the traffic violation
code; j:CrashDriverViolationCode is frequently a characteristic property of a
j:CrashDriver. For thisreason, arole type, j:CrashDriverType is created.

A role type provides the location for information associated with an object playing a role. A role
type is used instead of the base type (in this case, nc: PersonType). The role type holds
information specific to the role but not specific to the context or the base object (the object
that plays the role). Developers of NIEM-conformant schemas should create and use role types
whenever they have nonpersistent information specific to a base object. Such information
generally expires when the base object is no longer playing the role. Information that is
persistent to the base object probably does not belong in a role type.

[Definition: RoleOf element]

In a NIEM-conformant schema, a RoleOf element is a reference element whose type is
the base type of the role.

Here is an example of a role type from the NIEM justice domain that uses a Rol1eOf element:

Figure 7-4: A definition of arole type

<xsd:complexType name="CrashPersonType">
<xsd:sequence>
<xsd:element ref="nc:RoleOfPersonReference" minOccurs="0"

maxOccurs="unbounded" />

<xsd:element ref="j:CrashPersonInjury" minOccurs="0"
maxOccurs="unbounded" />

<xsd:element ref="j:AlcoholTestResultCode" minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

nc:RoleOfPersonReference is defined as “An entity of whom the role object is a
function.” In this example, the role object is j : CrashPersonType and the base type of the
role objectisa nc:PersonType, the entity of whom j:CrashPersonType is a function
(per the definition above).

This role object represents a particular role of a person: a person involved in a vehicular crash.
It refers to the person of whom this object is a role through the
nc:RoleOfPersonReference element. It also includes additional information particular
to the person's role in the crash.

Here is an example of the CrashPerson role type used in an instance:

65

NIEM NIEM Naming and Design Rules

Figure 7-5: A role type used in an instance

<j:CrashPerson>
<nc:RoleOfPersonReference s:ref="pl">
<j:AlcoholTestResultCode>101</j:AlcoholTestResultCode>
<j:AlcoholTestResultQuantity>07</j:AlcoholTestResultCodeQuantity>
</j:CrashPerson>
<nc:Person s:id="pl">
<nc:PersonBirthDate>
<nc:Date>1966-06-06</nc:Date>
</nc:PersonBirthDate>
<nc:PersonName>
<nc:PersonFullName>John Doe</nc:PersonFullName>
</nc:PersonName>
</nc:Person>

[Rule 7-40] (REF, SUB, EXT)

Within the schema, any element with a name beginning with the string Ro1eOf SHALL
represent a base type, of which the containing type represents a role.

Rationale

A RoleOf element references its corresponding base element. The RoleOf label on
the reference element ensures that a role object is distinguishable from other objects
and its link to the associated base is also distinguishable from the additional properties
that are characteristic of this role or that add information.

NIEM does not require that there be only one Rol1eOf element within a single type. However,
the use of multiple Ro1eOf elements may not make sense; indeed, an example of a role that
references two or more base types is very difficult (if not impossible) to conceive.

An object should be a role of only a single object. However, there may be varied assertions of
what object that might be or time constraints on the role. Many exchanges may wish to restrict
RoleOf elements to a single occurrence within a type.

RoleOf elements are generally reference elements, targeting the base type. That s, a

RoleOf element is usually a reference element, not a content element.

7.4.3 Association Types

Within NIEM, an association is a specific relationship between objects. Associations are used
when a simple NIEM property is insufficient to model the relationship clearly and when
properties of the relationship exist that are not attributable to the objects being related.

Here is an example of an association in an XML instance:

66

NIEM NIEM Naming and Design Rules

Figure 7-6: An association in an instance

<nc:GuardianAssociation>
<nc:PersonGuardianReference s:ref="pl"/>
<nc:PersonDependentReference s:ref="p2"/>
</nc:GuardianAssociation>
<nc:Person s:id="pl">
<nc:PersonName>
<nc:PersonFullName>John Doe</nc:PersonFullName>
</nc:PersonName>
</nc:Person>
<nc:Person s:id="p2">
<nc:PersonName>
<nc:PersonFullName>Jane Doe</nc:PersonFullName>
</nc:PersonName>
</nc:Person>

This example shows an association between a guardian and a dependent. This relationship is
defined by the element nc: GuardianAssociation, whose structure is defined by the type
nc:GuardianAssociationType. The type defines what an association relates, but the
element defines the actual meaning of the association.

An example of an association type defined by an XML Schema document follows.

Note that the NIEM Core schema in NIEM 2.0 defines a type nc:AssociationType, which
acts as the base type for all other association types defined within NIEM Core. This is a
convention adopted by the NIEM Core namespace but is not a requirement of the NDR.
Implementers of NIEM-conformant schemas are not required to base association types on
nc:AssociationType.

67

NIEM NIEM Naming and Design Rules

Figure 7-7: A definition of an association type

<xsd:complexType name="AssociationType">

<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element ref="nc:AssociationBeginDate" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="nc:AssociationEndDate" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="GuardianAssociationType">

<xsd:complexContent>
<xsd:extension base="nc:AssociationType">
<xsd:sequence>
<xsd:element ref="nc:PersonGuardianReference" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="nc:PersonDependentReference" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:element name="GuardianAssociation" type="nc:GuardianAssociationType"
nillable="true">

</xsd:element>

This schema fragment shows the definition of a generic AssociationType, which contains a
begin and end date. It then defines a specific association type, which contains the structure
required to express guardianship. This is followed by the definition of an element that
expresses the semantics of the guardian relationship.

[Definition: association type]

In a NIEM-conformant schema, an association type is a type that establishes a
relationship between objects, along with the properties of that relationship. An
association type provides a structure that does not establish existence of an object but
instead specifies relationships between objects.

[Definition: association]

In a NIEM-conformant schema, an association is an element whose type is an
association type.

[Rule 7-41] (REF, EXT)

Within the schema, an association type SHALL be a complex type definition that either
constitutes a NIEM-conformant component or for which there exists a NIEM-conformant
component definition. The NIEM-conformant component definition SHALL have one of
the following forms:

68

NIEM NIEM Naming and Design Rules

1. Has complex content, is based on the complex type
structures:ComplexObjectType, and has application information
appinfo:Base of structures:Association.

2. Is a complex type that is derived from an association type, which is defined according
to this rule.

Rationale

Associations within reference schemas, extensions schemas, and exchange schemas are
easily identifiable as such and have a commonly defined base type. For subset schemas,
the NIEM-conformant definition may be located in a primary schema and then
identified.

[Rule 7-42] (REF, SUB, EXT)

Given that an association type defines a relationship between a set of participants,
within an association type definition, any element that represents a participant SHALL
be a reference element.

Rationale

Associations are intended to relate objects defined elsewhere. They are not intended to
carry content of participant objects.

7.4.4 Metadata Types

Within NIEM, metadata is defined as “data about data.” This may include information such as
the security of a piece of data or the source of the data. These pieces of metadata may be
composed into a metadata type. The types of data to which metadata may be applied may be
constrained.

[Definition: metadata type]

A metadata type describes data about data, that is, information that is not descriptive of
objects and their relationships, but is descriptive of the data itself. It is useful to provide
a general mechanism for data about data. This provides required flexibility to precisely
represent information.

[Definition: metadata element]

Within a NIEM-conformant schema, a metadata element is an element whose type is a
metadata type. There are specific limitations on the meaning of a metadata element in
an instance; it does not establish existence of an object, nor is it a property of its
containing object.

[Rule 7-43] (REF, SUB, EXT)

Within the schema, a metadata type SHALL contain elements appropriate for a specific
class of data about data.

69

NIEM NIEM Naming and Design Rules

[Rule 7-44] (REF, SUB, EXT)

Within the schema, a metadata type and only a metadata type SHALL be derived directly
from structures:MetadataType.

Rationale

A metadata type establishes a specific, named aggregation of data about data. Any type
derived from structures:MetadataType is a metadata type. Metadata types
should not be derived from other metadata types. Such metadata types should be used
as is and additional metadata types defined for additional content.

[Rule 7-45] (REF, EXT)

Within the schema, a metadata type MAY have application information
appinfo:AppliesTo, indicating the NIEM-conformant object, association, or
external adapter types to which the metadata applies.

[Rule 7-46] (REF, EXT)

Within the schema, a metadata type that does not have application information
appinfo:AppliesTo MAY be applied to any object type, association type, or
external adapter type.

Rationale

Metadata may be constrained to be applicable to only specific types, or it may be
defined to be applicable to any type. The source of a piece of data and the security
classification of a piece of data are examples of metadata that may be considered
globally applicable.

7.4.5 Augmentation Types

Builders of domains and extensions to NIEM distribution schemas need to be able to define
extensions to types. However, extension of types by multiple domain schemas and extension
schemas proves problematic, as it results in multiple extensions of a single type. XML Schema
does not provide for multiple types of an instance; consequently, such a method results in
duplication of base type content and a need to resolve "same-as" relationships between the
instances of the various derived types.

Instead, it is preferable for domains and extensions to provide augmentations. These are
reusable types and elements of those types, which may be added to an object class, in a single
extended type, by the author of a NIEM-conformant schema. This avoids the problem of
multiple extended types but allows domains and extensions to define reusable extensions.

Augmentation types such as dom: PersonAugmentationType (where dom: is a NIEM
domain namespace) exist to extend NIEM Core types such as nc: PersonType without
creating a new specialized object within the model. Augmentation types are never applied
within the model to the types they are designed to augment. Doing so would restrict reusing
and combining these augmentations.

70

NIEM NIEM Naming and Design Rules

Instead, augmentation should be applied within IEPDs. So in an IEPD (NOT within NIEM), base
nc:PersonType may be extended, for example, as my-iepd: PersonType by adding
elements a:PersonAugmentationandb:PersonAugmentation. Asa result, my-
iepd:PersonType will contain all the properties in nc: PersonType plus the properties in
both of the elements a: PersonAugmentation and b:PersonAugmentation, which,
in turn, each contain their respective sets of subelements.

All NIEM augmentation types extend the abstract type structures:AugmentationType.
Therefore, all augmentation types automatically contain the attributes structures:idand
structures:metadata for referencing and metadata, respectively. NIEM also provides the
abstract element structures:Augmentation (of type
structures:AugmentationType) as the common substitution group head for all
augmentation elements. An augmentation element placed into this substitution group can be
used in an instance wherever structures:Augmentation occurs in the corresponding
IEPD schema. The user must follow NIEM naming conventions for augmentation component
names and must place new augmentation elements into the structures:Augmentation
substitution group. Further, if an augmentation element cannot be applied to all types in the
model, then the user must document those types that the new augmentation element can be
applied to using the appinfo:AppliesTo element.

[Definition: augmentation type]

An augmentation type is a complex type that provides a reusable block of data that may
be added to object types or association types.

[Definition: augmentation]

An augmentation of a NIEM-conformant object type is a block of additional data added
to an object type to carry additional data beyond that of the original object definition.

[Rule 7-47] (REF, SUB, EXT)

An augmentation type:

1. SHALL be transitively derived from structures:AugmentationType.

2. SHALL contain elements that represent properties to be applied to a base type.
Rationale

A base type is the type to which an augmentation is to be applied. An augmentation
may be applied to any number of types. Base types are assigned by augmentation
elements.

[Rule 7-48] (REF, SUB, EXT)
Within the schema, an augmentation element definition:
1. SHALL have a type that is an augmentation type.

2. SHALL use the substitutionGroup attribute such that it is transitively
substitutable for the element structures:Augmentation.

71

NIEM NIEM Naming and Design Rules

An element that is not an augmentation element SHALL NOT meet either of the above
criteria.

Rationale

An augmentation is trivially identifiable as such. The use of the common
structures:Augmentation element allows message builders to optionally delay
specifying augmentations to be applied to a type until runtime.

[Rule 7-49] (REF, EXT)

Within the schema, an element definition for an augmentation element MAY contain
one or more instances of the element structures:AppliesTo as application
information to specify types to which the augmentation element applies.

[Rule 7-50] (REF, EXT)

Within the schema, an element definition for an augmentation element that does not
contain any instances of the element structures:AppliesTo MAY be applied to
any object or association type.

Rationale

These rules allow schema builders to establish applicability for augmentations. An
augmentation may be applicable to specific types.

Users who wish to apply an augmentation type to a given object type may do so by
creating a new augmentation element, applicable to the object type.

7.5 Component Usage
[Rule 7-51] (REF, SUB, EXT)

Any type definition referenced by a component within the schema MUST be from one of
the following:

1. The schema being defined.
2. A namespace imported as NIEM-conformant.
3. The XML Schema namespace.
4. The structures namespace.
Rationale

NIEM-conformant schemas are based on other NIEM-conformant schemas and the
supporting namespaces. This simplifies processing and understanding of data.

[Rule 7-52] (REF, SUB, EXT)

Any element declaration referenced by a component within the schema MUST be from
one of the following:

1. The schema being defined.

72

NIEM NIEM Naming and Design Rules

2. A namespace imported as NIEM-conformant.
3. The structures namespace.

4. An external namespace, in accordance with the rules for external schemas as
specified by this specification.

[Rule 7-53] (REF, SUB, EXT)

Any attribute declaration referenced by a component within the schema MUST be from
one of the following:

The schema being defined.
A namespace imported as NIEM-conformant.
The structures namespace.

The XML namespace.

LA S

An external namespace, in accordance with the rules for external schemas as
specified by this specification.

Rationale

NIEM-conformant schemas are based on other NIEM-conformant schemas. All
attributes and elements must be from NIEM-conformant schemas, the structures
namespace, the XML namespace, or an external namespace. This applies to elements
referenced for substitution groups as well. It does not apply to content of the schema
(e.g., within annotations) or to the XML Schema declarations themselves. It applies only
to attributes and elements referenced by the XML Schema components.

7.6 NIEM Structural Facilities

NIEM provides the structures schema that contains base types for types defined in NIEM-
conformant schemas. It provides base elements to act as heads for substitution groups. It also
provides attributes that provide facilities not otherwise provided by XML Schema. These
structures should be used to augment XML data. The structures provided are not meant to
replace fundamental XML organization methods; they are intended to assist them.

[Definition: structures namespace]

The structures namespace is the namespace represented by the URI
"http://niem.gov/niem/structures/2.0".

The structures namespace is a single namespace, separate from namespaces that define NIEM-
conformant data. This document refers to this content via the prefix structures.

[Rule 7-54] (REF, EXT)

The schema MUST import the NIEM structures namespace.

73

NIEM NIEM Naming and Design Rules

Rationale

For uniformity, all NIEM-conformant schemas must import the structures
namespace.

[Rule 7-55] (REF, SUB, EXT, INS)

The schema or instance MUST use content within the NIEM structures namespace
as specified in this document and ONLY as specified by this document.

Rationale

This rule further enforces uniformity and consistency by mandating use of the NIEM
structures namespace as is, without modification. Users are not allowed to insert
types, attributes, etc. that are not specified by this document (the NDR).

7.6.1 Sequence ID

NIEM provides the attribute structures: sequenceID for specification of sequential order
of instances, when a complex type's defined element sequence is insufficient. A limitation of
XML Schema is that control of cardinality (the number of times an element may occur in an
instance) requires the use of sequences of elements. This use of xsd: sequence defines the
elements occurring within a type in a specific order. This order may not match the desired
sequential order of the represented entities.

An example would be proper names, where the natural order of the names may not appear in
the same order as the sequence defined by a complex type. In this case, the structure defined
by nc:PersonNameType defines a sequence of name parts, including given name followed by
surname. This works well enough for Western names:

Figure 7-8: An instance of a name type

<nc:Person>
<nc:PersonName>
<nc:PersonGivenName>John</nc:PersonGivenName>
<nc:PersonSurName>Doe</nc:PersonSurName>
</nc:PersonName>
</nc:Person>

However, it does not work well for Chinese names, where the surname precedes the given
name. For example, the basketball player Yao Ming has a given name of Ming and a surname of
Yao. This cannot be expressed by the simple sequence used above because it lists the given
name before the surname. To express the proper sequence of the data, use the
structures:sequencelD attribute.

74

NIEM NIEM Naming and Design Rules

Figure 7-9: An instance of a name type that uses
structures:sequencelD

<nc:Person>
<nc:PersonName>
<nc:PersonGivenName s:sequencelID="2">Ming</nc:PersonGivenName>
<nc:PersonSurName s:sequenceID="1">Yao</nc:PersonSurName>
</nc:PersonName>
</nc:Person>

Without the structures:sequencelD attribute, this example would create a dilemma:
which name to represent correctly, and which to represent incorrectly? The
structures:sequencelID attribute allows the schema sequence to be separated from the
implied meaning.

As another example, when using a derived type, within an instance, the base type's elements
occur first, followed by any elements added by extension. If those elements need to be
interleaved into the existing structure for the proper meaning to be conveyed, the
structures:sequencelD attribute is called for.

The structures:sequencelD attribute allows instances to express the sequential order
of data relative to a parent. The order of data is as yielded by the xs1: sort element, which is
defined by XSLT, with data-type of xs1 : number, and order of ascending. Content with
identical structures:sequencelID values has undefined order.

[Rule 7-56] (REF, SUB, EXT)

Within the schema, a complex type definition SHALL include the attribute
structures:sequencelD if the order of an occurrence of the type, within its
parent, relative to its siblings, is meaningful and pertinent and if the schema does not
specify the desired sequential order.

Rationale

This rule indicates that, if order is meaningful and the schema will not always represent
the desired order, then data modelers need to include sequenceID to allow the
proper order to be represented in instances.

Rules on the use of sequenceID may be found in the rules on conformant instances in
Section 8.4, Component Ordering.
7.6.2 Reference Elements
In XML instances, relationships between data objects are expressed as XML elements:
1. Data objects are expressed as XML elements.
2. XML elements contain attributes and other elements.

In this way, there is generally some implicit relationship between the outer element (the
"containing" element, also known as the parent element) and the inner elements (the contained

75

NIEM NIEM Naming and Design Rules

elements, also known as the child elements). Such expression of relationships is said to be by
containment.

Expression of all relationships via element containment is not always possible. Situations that
cause problems include:

e Circular relationships. For example, suppose that object 1 has a relationship to object 2
and object 2 has a relationship to object 1. Expressed via containment, this relationship
would result in infinite recursive descent.

e Repeated relationships. For example, suppose object 1 has a relationship to object 2
and object 3 has a relationship to object 2. Expressed via containment, this would result
in a duplicate of object 2.

A method that solves this problem is the use of references. In a C or assembler, a pointer would
be used. In C++, a reference might be used. In Java, a reference value might be used. The
method defined by the XML standard is the use of ID and IDREF. An ID refers to an IDREF. NIEM
uses this method and assigns to it specific semantics.

[Definition: reference element]

A reference element is an element that refers to its value by a reference attribute
instead of carrying it as content.

[Rule 7-57] (REF, SUB, EXT)

Within the schema, a reference element and only a reference element SHALL be defined
to be of type structures:ReferenceType.

Rationale

Reference elements must be of the reference type, and elements of the reference type
must be reference elements. This rule ensures that users always create reference
elements using structures:ReferenceType and cannot use
structures:ReferenceType for any other purpose.

[Rule 7-58] (REF, SUB, EXT)

Within the schema, a complex type SHALL NOT be defined such that an instance of that
type owns the attribute structures: ref.

Rationale

The use of references is limited to reference elements. This constrains the semantics
and syntax of references within NIEM instances. Only
structures:ReferenceType may use structures:ref, which is the only
means for referencing within NIEM-conformant instances.

[Rule 7-59] (REF, SUB, EXT)
Within the schema, any two elements of the form

NCName

76

NIEM NIEM Naming and Design Rules

and
NCNameReference

where the string value of NCName is the same in both forms, SHALL be defined to have
identical semantics. NIEM recognizes no difference in meaning between a reference
element and an element that is not a reference element.

Rationale

NIEM-conformant data instances may use concrete data elements and reference
elements as needed, to represent the meaning of the fundamental data. There is no
difference in meaning between reference and concrete data representations. The two
different methods are available for ease of representation. No difference in meaning
should be implied by the use of one method or the other.

Assertions that indicate "included" data is intrinsic, while referenced data is extrinsic, are
not valid and are not applicable to NIEM-conformant data instances and data definitions.

[Rule 7-60] (REF, EXT)

Within the schema, if both elements NCName and NCNameRe ference exist, then the
appinfo:ReferenceTarget of any NCNameReference element MUST be the
type of the element NCName.

Rationale

By [Rule 7-59], any such pair of elements, NCName and NCNameRe ference, will have
identical semantics. This rule ensures that an NCNameReference element is
documented to refer to the appropriate type (the type of the corresponding NCName
element) and no other.

The NIEM structures schema defines structures:ReferenceType to require the use of
an attribute structures: ref, which is of type IDREF as specified by
[XMLSchemaStructures]. According to the rules of XML, such an attribute must contain a value
that is represented by an attribute of type ID. In NIEM-conformant instance, the targets of
IDREFs are expected to be values of the attribute structures:id.

The NIEM structures schema defines st ructures:ReferenceType such that it is
unavailable as a base for extension or restriction.

The NIEM structures schema defines structures:ReferenceType such that it has an
optional attribute structures:id. This may be used to describe additional metadata or
information about the relationship described by an element of type
structures:ReferenceType.

Within a NIEM-conformant instance, the element referenced by an attribute
structures:ref must be of a type valid for the object of the fundamental element of the
reference element. The attribute structures:ref is discussed in more detail in Section
8.3.

77

NIEM NIEM Naming and Design Rules

7.7 Using External Schemas

There are a variety of commonly used standards that are represented in XML Schema. Such
schemas are generally not NIEM-conformant. NIEM-conformant schemas may reference
components defined by these external schemas. NIEM-conformant components may be
constructed from schema components that are not NIEM-conformant.

[Definition: external schemal]

An external schema is any schema that is not a supporting schema and that is not NIEM-
conformant.

Note that the supporting schemas structures and appinfo are nonconformant because
they define the fundamental framework on which NIEM is built. However, they are not
considered external schemas because of their supporting nature and are thus excluded from
this definition.

NIEM-conformant schemas may work with external schemas by creating external adapter types.

A single method is used to integrate external components into NIEM-conformant schemas:
NIEM-conformant types are constructed from the external components.

Figure 7-10: Use of external components to create a
NIEM-conformant type

o= -~
NIEM- External namespace
conformant NG External _
element of-type adapter simple type

type

complex type

4
1
|
|
|
1
|
|

NIEM- |5ttype NIEM-
conformant m=p- conformant
element type

4

element

contains

attribute

——————————————_,

1
1
NIEM- /Of'type 1 | model group
conformant 1 -
element '\ attribute group ,
S -,

Components defined by external schemas are called external components. A NIEM-conformant
type may use external components in a specific way: to construct a NIEM-conformant type from
external components. The goal in this method is to preserve as a single unit a set of data that
embodies a single concept from an external standard.

For example, a NIEM-conformant type may be created to represent a bibliographic reference
from an external standard. Such an object may be composed of multiple elements and types
from the external standard. These pieces are put together to form a single NIEM-conformant
type. For example, an element representing an author, a book, and a publisher may be included
in a single bibliographic entry.

78

NIEM NIEM Naming and Design Rules

A NIEM-conformant type built from these components may be used as any other NIEM-
conformant type. That is, elements may be constructed from such a type, and those elements
are fully NIEM-conformant.

To construct such a component, a NIEM-conformant schema must first import an external
schema.

[Rule 7-61] (REF, EXT)

Within the schema, an element xsd: import that imports a namespace defined by an
external schema MUST have the application information
appinfo:ConformantIndicator, with avalue of false.

Rationale

Knowledge of the conformance of an imported schema allows processors to understand
the semantics of referenced components, without additional processing. Namespaces
imported into NIEM-conformant schemas are assumed to be conformant unless
otherwise indicated.

[Rule 7-62] (REF, EXT)

Within the schema, an element xsd: import that imports a namespace defined by an
external schema MUST be a documented component.

Rationale

A NIEM-conformant schema has well-known documentation points. Therefore, a
schema that imports a NIEM-conformant namespace need not provide additional
documentation. However, when an external schema is imported, appropriate
documentation must be provided at the point of import because documentation
associated with external schemas is undefined and variable. In this particular case,
documentation of external schemas is required at their point of use in NIEM.

[Definition: adapter type]

An adapter type is a NIEM-conformant type that adapts external components for use
within NIEM. An adapter type creates a new class of object that embodies a single
concept composed of external components. A NIEM-conformant schema defines an
adapter type.

[Rule 7-63] (REF, EXT)

Within the schema, an adapter type MUST have application information
appinfo:ExternalAdapterTypeIndicator with avalue of true. Atype
that is not an adapter type SHALL NOT contain that indicator.

Rationale

This rule flags as external adapters those types that may contain external content. This
allows for easier processing.

79

NIEM NIEM Naming and Design Rules

[Rule 7-64] (REF, SUB, EXT)

Within the schema, an adapter type MUST be an immediate extension of type
structures:ComplexObjectType.

Rationale

The adapter type must contain the content defined for any NIEM component. The type
structures:ComplexObjectType provides such content

[Rule 7-65] (REF, SUB, EXT)

Within the schema, an adapter type MUST be composed of only elements and attributes
from an external standard.

Rationale

An adapter type should contain the information from an external standard to express a
complete concept. This expression should be composed of content entirely from an
external schema. Most likely, the external schema will be based on an external standard
with its own legacy support.

In the case of an external expression that is in the form of model groups, attribute groups, or
types, additional elements and type components may be created in an external schema, and
the adapter type may use those components.

[Rule 7-66] (REF, EXT)

Within the schema, an element reference used in an adapter type definition MUST be a
documented component.

[Rule 7-67] (REF, EXT)

Within the schema, an attribute reference used in an adapter type definition MUST be a
documented component.

Rationale

In normal (conformant) type definition, a reference to an attribute or element is a
reference to a documented component. Within an adapter type, the references to the
attributes and elements being adapted are references to undocumented components.
These components must be documented to provide comprehensibility and
interoperability. Since documentation made available by nonconformant schemas is
undefined and variable, documentation of these components is required at their point
of use, within the conformant schema.

[Rule 7-68] (REF, SUB, EXT)
Within the schema, an adapter type MUST NOT be extended or restricted.
Rationale

Adapter types are meant to stand alone; each type expresses a single concept from an
external schema, and adapter types are maintained in separate schemas that only

80

NIEM NIEM Naming and Design Rules

contain adapter types. In this way, processors may easily switch modes, processing
NIEM-conformant content in one way, and external content in another.

7.8 NIEM Subset Schemas

Subset schemas are schemas that are based on other NIEM-conformant schemas but have been
modified for any of several reasons. A subset schema may be created that limits what is
considered valid data to a subset of what is valid against the base schema. The subset schema
may also remove constructs from the schema that do not affect XML Schema validation of
instances against the schema, which may include removing documentation, appinfo
annotations, and comments.

[Rule 7-69] (SUB)

The value of the targetNamespace attribute owned by the xsd: schema document
element of the subset schema must be the same as the value of the
targetNamespace attribute owned by the xsd: schema document element of the
reference schema.

[Rule 7-70] (SUB)

The schema must be constructed such that any instance that is XML Schema valid
against the schema must also be XML Schema valid against the base schema.

Rationale

A subset schema is a briefer, abridged form of its base schema. The subset schema is
intended to stand in the place of the base schema for the purpose of XML Schema
validation in many situations. As such, it is imperative that the subset schema sustain
the constraints expressed by the base schema. The NDR does not specify what
mechanisms a subset schema must use to support the constraints of the base schema.

7.9 Container Elements

All NIEM properties establish a relationship between the object holding the property and the
value of the property. For example, an activity object of type nc:ActivityType may have
anelement nc:ActivityDescriptionText. This element will be of type
nc:TextType and represents a NIEM property owned by that activity object. An occurrence
of this element within an activity object establishes a relationship between the activity object
and the text: the text is the description of the activity.

In a NIEM-conformant instance, an element establishes a relationship between the object that
contains it and the element’s value. This relationship between the object and the element may
be semantically strong, such as the text description of an activity in the previous example, or it
may be semantically weak, with its exact meaning left unstated. In NIEM, the contained
element involved in a weakly defined semantic relationship is commonly referred to as a
container element.

81

NIEM NIEM Naming and Design Rules

A container element establishes a weakly defined relationship with its containing element. For
example, an object of type nc: TtemDispositionType may have a container element
nc:Itemoftype nc:ItemType. The container element nc: Item does not establish what
relationship exists between the object of nc: ItemDispositionType and itself. There
could be any of a number of possible semantics between an object and the value of a container
element. It could be a contained object, a subpart, a characteristic, or some other relationship.
The appearance of this container element inside the nc: TtemDispositionType merely
establishes that the disposition has an item.

The name of the container element is usually based on the NIEM type that defines it:
nc:PersonType uses a container element nc: Person, whilenc:ActivityType usesa
container element nc: Activity. The concept of an element as a container element is a
notional one.

There are no formalized rules addressing what makes up a container element. A container
element is vaguely defined and carries very little semantics about its context and its contents.
Accordingly, there is no formal definition of container elements in NIEM: There are no specific
artifacts that define a container element; there are no appinfo or other labels for container
elements.

The appearance of a container element within a NIEM type carries no additional semantics
about the relationship between the property and the containing type. The use of container
elements indicates only that there is a relationship; it does not provide any semantics for
interpreting that relationship.

For example, a NIEM container element nc : Person would be associated with the NIEM type
nc:PersonType. The use of the NIEM container element nc: Person in a containing NIEM
type indicates that a person has some association with the instances of the containing NIEM
type. But because the nc: Person container element is used, there is no additional meaning
about the association of the person and the instance containing it. While there is a person
associated with the instance, nothing is known about the relationship except its existence.

The use of the Person container element is in contrast to a NIEM property named
nc:AssessmentPerson, also of NIEM type nc: PersonType. When the NIEM property
nc:AssessmentPerson is contained within an instance of a NIEM type, it is clear that the
person referenced by this property was responsible for an assessment of some type, relevant to
the exchange being modeled. The more descriptive name, nc: AssessmentPerson, gives
more information about the relationship of the person with the containing instance, as
compared with the semantic-free implications associated with the use of the nc: Person
container element.

When a NIEM-conformant schema requires a new container element, it may define a new
element with a concrete type and a general name, with general semantics. Any schema may
define a container element when it requires one. NIEM-conformant schemas may also create
reference elements with general semantics. For example, an element
nc:PersonReference will carry the same general, container-like meaning as an element
nc:Person.

82

NIEM NIEM Naming and Design Rules

8 XML Instance Rules

This specification attempts to restrict XML instance data as little as possible while still
maintaining interoperability. Section 2.6, NIEM-Conformant XML Documents and Elements,
defines terminology for NIEM-conformance and XML documents.

The NIEM does not require a specific encoding or specific requirements for the XML prologue,
except as specified by [XML].

8.1 Instance Validation
[Rule 8-1] (INS)

The XML document MUST be schema-valid, assessed with reference to the schema
composed of the reference schemas, extension schemas, exchange schemas, utility
schemas, and external schemas for the relevant namespaces.

Rationale

The schemas that define the exchange must be authoritative. Each is the reference
schema, extension schema, or exchange schema for the namespace it defines.
Application developers may use other schemas for various purposes, but for the
purposes of determining conformance, the authoritative schemas are relevant.

This rule should not be construed to mean that XML validation must be performed on all
XML instances as they are served or consumed; only that the XML instances validate if
XML validation is performed. The XML Schema component definitions specify XML
documents and element information items, and the instances should follow the rules
given by the schemas, even when validation is not performed.

NIEM embraces the use of XML Schema instance attributes, including xsi:type, xsi:nil,
and xsi:schemalLocation, as specified by [XMLSchemaStructures].

8.2 Instance Meaning
[Rule 8-2] (INS)

Within the instance, the meaning of an element with no content is that additional
properties are not asserted. There SHALL NOT be additional meaning interpreted for an
element with no content.

Rationale

Elements without content only show a lack of asserted information. That is, all that is
asserted is what is explicitly stated, through a combination of XML instance data and its
schema. Data that is not present makes no claims. It may be absent due to lack of
availability, lack of knowledge, or deliberate withholding of information. These cases
should be modeled explicitly, if they are required.

83

NIEM NIEM Naming and Design Rules

8.3 Component Representation

NIEM uses element containment for the majority of its data representation needs; that is, an
element containing another element. In general, one object (the content of the outer element)
has a relationship (defined by the name of the inner element) to another object (the content of
the inner element).

Figure 8-1: Example of element containment

<OuterElement>
<!-- objectl: the content of outer element -->
<InnerElement>
<!-- object2: the content of inner element -->
</InnerElement>
<!-- objectl, continued -->
</OuterElement>

This use of the element containment method has limitations. Specifically, recursive and
symmetric relationships (direct or transitive) create difficulties, such as repetition of data and
resolution of duplicates.

To avoid these problems, NIEM allows references between elements. In this way, one object
(the content of one element) has a relationship (defined by the name of the inner element) to
another object (the content of an element referenced by an attribute of the inner element).

Figure 8-2: Example of element reference

<OuterElement>
<!-- objectl: the content of outer element -->
<InnerElementReference structures:ref="object2"/>
<!-- objectl, continued -->

</OuterElement>

<OtherElement structures:id="object2">
<!-- object2: the content of other element -->
</OtherElement>

[Rule 8-3] (INS)

Within an element instance, there SHALL NOT be any difference in meaning between a
property asserted via element containment and a property asserted by element
reference, except as explicitly described by the semantics of the elements involved.

Rationale

There is no difference in meaning between relationships established by containment and
those established by reference. They are simply two mechanisms for expressing
connections between objects. Neither mechanism implies that properties are intrinsic
or extrinsic. Such characteristics must be explicitly stated in property definitions.

Being of type xsd: ID and xsd: IDREF, validating schema parsers will perform certain checks
on the values of structures:id and structures:ref. Specifically, no two IDs may

84

NIEM NIEM Naming and Design Rules

have the same value. This includes structures:id and other IDs that may be used in an
instance. Also, any value of structures: ref must also appear as the value of an ID.

[Rule 8-4] (INS)

Given that the IDREF that is the value of an attribute structures: ref matches the
value of an ID attribute on some element in the XML document, that ID attribute must
be an occurrence of the attribute structures:id.

Rationale

This states that in NIEM-conformant content, structures: ref attributes must refer
to structures:id attributes. By [XML], an IDREF is required to reference an ID. This
rule ensures that the target of a reference is a NIEM ID for easier processing of XML
documents.

Reference element definitions may include constraints on the type of object that may be
referenced by that element.

[Rule 8-5] (INS)

Within an element instance, given that a reference element is restricted to a target type
T, any attribute structures: ref MUST reference an element that has a type
definition of type T or that is derived from type T.

Rationale

This rule says that the type of the object pointed to by a structures:ref attribute
must be of a type specified by the reference element definition. The restriction of types
is defined in the application information of the reference element definition by the use
of the appinfo:ReferenceTarget attribute. The definition of reference is as
given in [XMLInfoSet], in the description of attribute information items.

8.4 Component Ordering

An instance may express the natural order of components by using the order of content within
an XML file. It may also use the structures:sequencelID to indicate the order of
components.

[Rule 8-6] (INS)

The order of elements that are children of an element SHALL be presented as if their
sequential order is as follows:

1. First, elements owning an attribute structures:sequencelID, in the order that
would be yielded with their sequence IDs sorted via sort element as defined by
[XSLT], with a data type of number and an order of ascending.

2. Following those elements, the remaining elements, in the order in which they occur
within the XML instance.

85

NIEM NIEM Naming and Design Rules

Rationale

Because of NIEM's use of structured, defined types and its use of xsd: sequence, as
well as various representation mechanisms, the order of data within an XML instance
may require more precise definition and may vary from instance to instance. The true
order of objects (such as parts of a name, lines in an address, or parts of a phone
number) may need an explicit method to define their order.

In this definition, the term "presented” may mean presentation to the user, reports, or
transfer to other data systems. It is meaningful only when the order of appearance of
items within a sequence is expressed. Such an order is only the default for the content
within an instance. Any meaningful sorting or other processing may overrule it.

[Rule 8-7] (REF, EXT, INS)

Within a schema or instance, the attribute structures: sequenceID SHALL NOT be
interpreted as meaningful beyond an indicator of sequential order of an object relative
to its siblings.

Rationale

Siblings of a data item are items that have the same parent. Note that, using the
reference and relationships mechanisms, data objects may have multiple parents. The
sequencelD is truly metadata, helping to express the structure of the data rather than its
content.

Note that reference elements have the same semantics as concrete data elements; thus they
follow the same rules for sequential order. By using reference elements, an entity may have one
order within one structure and another order within another structure.

Within NIEM-conformant instances, the order of objects is found to be given by sorting the
objects by numerical value of their respective attribute st ructures: sequencelID, from
smallest to highest. The relative order of objects with equal values for
structures:sequencelD is their order within the XML instance. Objects with no value for
structures:sequencelID occur after all objects that have values for
structures:sequencelD, in their relative order within the XML instance.

The use of instance-based sequencing, including the use of structures: sequencelD,is
preferred over efforts to sequence data definitions. For example, the use of "address line 1,"
"address line 2," "address line 3," etc., is not recommended. Instead, a single "address line"
would be preferred, with order expressed in the XML instance.

8.5 Instance Metadata

NIEM provides the metadata mechanism for giving information about object assertions. An
object may have an attribute that refers to one or more metadata objects. A
structures:metadata attribute indicates that a data item has the given metadata. A
structures:linkMetadata attribute asserts that the link (or relationship) established by
an element has the given metadata.

86

NIEM NIEM Naming and Design Rules

Figure 8-3: Example of metadata used in an instance

<nc:Person>
<nc:PersonName s:metadata="ml m2" s:linkMetadata="m3">
<nc:PersonFullName>John Doe</nc:PersonFullName>
</nc:PersonName>
<nc:PersonBirthDate s:metadata="m2">
<nc:Date>1945-12-01</nc:Date>
</nc:PersonBirthDate>
</nc:Person>
<nc:Metadata structures:id="ml">
<nc:SourceText>Adam Barber</nc:SourceText>
</nc:Metadata>
<nc:Metadata structures:id="m2">
<nc:ReportedDate>
<nc:Date>2005-04-26</nc:Date>
</nc:ReportedDate>
</nc:Metadata>
<nc:Metadata structures:id="m3">
<nc:ProbabilityNumeric>0.25</nc:ProbabilityNumeric>
</nc:Metadata>

This example shows a person named John Doe, born 12/1/1945. This data has several pieces of
metadata on it:

e Metadata m1 asserts Adam Barber gave the name.

e Metadata m2 asserts the name and the birth date were reported on 4/26/2005.

e Link metadata m3 asserts a 25% probability that the name goes with the person.
This shows several characteristics of metadata:

e Metadata objects may appear outside the data they describe.

e Metadata objects may be reused.

e Data may refer to more than one metadata object.

e Metadata pertains to an object or simple content, while link metadata pertains to the
relationship between objects.

An instance would not be valid XML if the structures:metadata or
structures:linkMetadata attributes contained references for which there were no
defined IDs. The instance would not be NIEM-conformant if the references were not to IDs
defined with the structures: id attribute.

The definition of a metadata type may contain an appinfo:AppliesTo element, which
indicates the type to which the metadata applies. For example:

87

NIEM NIEM Naming and Design Rules

Figure 8-4: A metadata type that describes applicability
using structures:AppliesTo

<xsd:complexType name="MeasureMetadataType">
<xsd:annotation>

<xsd:appinfo>

<i:AppliesTo i:name="MeasureType"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>

</xsd:complexContent>
</xsd:complexType>

Application of metadata to a type to which it is not applicable is not NIEM-conformant. A
metadata type may contain multiple structures:AppliesTo elements, in which case it
may apply to an instance of any of the listed types. If a metadata type contains no
structures:AppliesTo elements, then it may apply to any type. This is the case for
nc:MetadataType in NIEM 2.0.

[Rule 8-8] (INS)

Within an element instance, when an object O links to a metadata object via an attribute
structures:metadata, the information in the metadata object SHALL be applied
to the object O.

[Rule 8-9] (INS)

Within an element instance, when an object O1 contains an element E, with content
object 02 or with a reference to object 02, and 02 links to a metadata object via an
attribute structures:linkMetadata, the information in the metadata object
SHALL be applied to the relationship E between O1 and O2.

Rationale
These two rules define the meaning of metadata:
e structures:metadata applies metadata to an object.

e structures:linkMetadata applies metadata to a relationship between two
objects.

[Rule 8-10] (INS)

Given that each IDREF in the value of an attribute structures:metadata must
match the value of an ID attribute on some element in the XML document, that ID
attribute MUST be an occurrence of the attribute structures:id.

[Rule 8-11] (INS)

Each element that an attribute structures:metadata references MUST have a
type definition that is derived from structures:MetadataType.

88

NIEM NIEM Naming and Design Rules

[Rule 8-12] (INS)

Given that each IDREF in the value of an attribute structures:linkMetadata
must match the value of an ID attribute on some element in the XML document, that ID
attribute MUST be an occurrence of the attribute structures:id.

[Rule 8-13] (INS)

Each element that an attribute structures:1inkMetadata references MUST have
a type definition that is derived from structures:MetadataType.

Rationale

All structures:metadata and structures:linkMetadata attributes must
refer to metadata objects, and the reference to that object must be established using
the structures:id attribute, to facilitate processing of XML documents.

[Rule 8-14] (INS)

Given that an element information item E has a type definition of some type T, each
metadata type that is the type definition of an element information item referenced by
an attribute structures:metadata or structures:linkMetadata on
element E MUST be applicable to T.

Rationale

The applicability is determined by st ructures:AppliesTo application information
of the metadata type definition. The instances must correspond to the types specified
by the metadata type definition.

9 Naming Rules

This section outlines the rules used to create names for NIEM data components previously
discussed in this document. Data component names must be understood easily both by
humans and by machine processes. These rules improve name consistency by restricting
characters, terms, and syntax that could otherwise allow too much variety and potential
ambiguity. These rules also improve readability of names for humans, facilitate parsing of
individual terms that compose names, and support various automated tasks associated with
dictionary and controlled vocabulary maintenance.

9.1 Extension of XSD Namespace Simple Types
[Rule 9-1] (REF, SUB, EXT)

Within the schema, a complex type that is a direct extension of a simple type from the
XML Schema namespace simple type MAY use the same local name as the simple type if
and only if the extension adds no content other than the attribute group
structures:SimpleObjectAttributeGroup.

89

NIEM NIEM Naming and Design Rules

Rationale

It is useful to build complex type bases for further extension. The NIEM distribution
proxy schema xsd . xsd provides complex type bases for some of the simple types in
the XML Schema namespace. However, the complex types in this proxy schema reuse
the local names of the simple types they extend, even though the simple type names
may not be NIEM-conformant. Requiring name changes for those NIEM-provided
complex type bases would work against user understanding, for those already familiar
with the names of the XML Schema namespace simple types being extended.

9.2 Usage of English
[Rule 9-2] (REF, SUB, EXT)

The name of any XML Schema component defined by the schema SHALL be composed of
words from the English language, using the prevalent U.S. spelling, as provided by [OED].

Rationale

The English language has many spelling variations for the same word. For example,
American English “program” has a corresponding British spelling “programme.” This
variation has the potential to cause interoperability problems when XML components
are exchanged because of the different names used by the same elements. Providing
users with a dictionary standard for spelling will mitigate this potential interoperability
issue.

9.3 Characters in Names
[Rule 9-3] (REF, SUB, EXT)

The name of any XML Schema component defined by the schema SHALL contain only
the following characters:

e Upper-case letters ('A'-'Z").
e Lower-case letters (‘a'-'z").
e Digits ('0'-'9').

e Hyphen ('-").

Other characters, such as the underscore (' ') character and the period ('.") character
SHALL NOT appear in component names in NIEM-conformant schemas.
[Rule 9-4] (REF, SUB, EXT)

The hyphen character ('-') MAY appear in component names only when used as a
separator between parts of a single word, phrase, or value, which would otherwise be
incomprehensible without the use of a separator.

90

NIEM NIEM Naming and Design Rules

Rationale

Names of standards and specifications, in particular, tend to consist of series of discrete
numbers. Such names require some explicit separator to keep the values from running
together. The separator used within NIEM is the hyphen.

Names of NIEM components follow the rules of XML Schema, by [Rule 5-3]. NIEM components
also must follow the rules specified for each type of XML Schema component.

9.4 Character Case
[Rule 9-5] (REF, SUB, EXT)

Within the schema, any attribute declaration SHALL have a name that begins with a
lower-case letter (‘a'-'z').

[Rule 9-6] (REF, SUB, EXT)

Within the schema, any XML Schema component other than an attribute declaration
SHALL have a name that begins with an upper-case letter ('A'-'Z").

Camel case is the practice of writing compound words or phrases in which the words are joined
without spaces and are capitalized within the compound words. [Wikipedia]

[Rule 9-7] (REF, SUB, EXT)

The name of any XML Schema component defined by the schema SHALL use the camel
case formatting convention.

Rationale

The foregoing rules establish lowerCamelCase for all NIEM components that are XML
attributes and UpperCamelCase for all NIEM components that are types, elements, or
groups.

9.5 Use of Acronyms and Abbreviations

Acronyms and abbreviations have the ability to improve readability and comprehensibility of
large, complex, or frequently used terms. They also obscure meaning and impair understanding
when their definitions are not clear or when they are used injudiciously. They should be used
with great care. Acronyms and abbreviations that are used must be documented and used
consistently.

[Rule 9-8] (REF, SUB, EXT)

The schema MUST consistently use approved acronyms, abbreviations, and word
truncations within defined names. The approved shortened forms are defined in Table
9-1: Abbreviations Used in NIEM Core Names .

91

NIEM NIEM Naming and Design Rules

Table 9-1: Abbreviations Used in NIEM Core Names

Abbreviation | Full Meaning

ANSI American National Standards Institute
CMV Commercial Motor Vehicle

DEA Drug Enforcement Agency

DNA Deoxyribonucleic Acid

FGI Foreign Government Information

FIPS Federal Information Processing Standard
IC Intelligence Community

ID Identifier

IP Internet Protocol

ISO International Standards Organization
LIS NCIC code list for license state

LSTA NCIC code list for state/country index
MCO Manufacturer's Certificate of Origin
MGRS Military Grid Reference System

MSRP Manufacturer's Suggested Retail Price
NANP North American Numbering Plan

NCIC National Crime Information Center
NCTC National Counter Terrorist Center
NIBRS National Incident Based Reporting System

92

NIEM NIEM Naming and Design Rules

NLETS The International Justice & Public Safety
Information Sharing Network (formerly
known as the National Law Enforcement
Teletype System)

ORI Organization Identifier (Orion)

RES NC_IC che list for registration state for boat
registrations

RF Radio Frequency

SIM Subscriber Identity Module

SSN Social security number

TYP NCIC code list for gun type

TYPO NCIC code list for ORI type

URI Uniform Resource Identifier

us United States

UTM Universal Transverse Mercator

VIN Vehicle Identification Number

VINA Vehicle Identification Number Analysis

Rationale

Consistent, controlled, and documented abridged terms that are used frequently and/or
tend to be lengthy can support readability, clarity, and reduction of name length.

9.6 Word Forms
[Rule 9-9] (REF, SUB, EXT)

A noun used as a term in the name of an XML Schema component MUST be in singular
form unless the concept itself is plural.

93

NIEM NIEM Naming and Design Rules

[Rule 9-10] (REF, SUB, EXT)

A verb used as a term in the name of an XML Schema component MUST be used in the
present tense unless the concept itself is past tense.

[Rule 9-11] (REF, SUB, EXT)

Articles, conjunctions, and prepositions SHALL NOT be used in NIEM component names
except where they are required for clarity or by standard convention.

Rationale

Articles (e.g., a, an, the), conjunctions (e.g., and, or, but), and prepositions (e.g., at, by,
for, from, in, of, to) are all disallowed in NIEM component names, unless they are
required. For example, PowerOfAttorneyCode requires the preposition. These
rules constrain slight variations in word forms and types to improve consistency and
reduce potentially ambiguous or confusing component names.

9.7 Name Generation

Elements in NIEM-conformant schemas are given names that follow a specific pattern. This
pattern comes from [ISO 11179 Part 5].

[Rule 9-12] (REF, SUB, EXT)

Except as specified elsewhere in this document, any element or attribute defined within
the schema SHALL have a name that takes the form:

e Object-class qualifier terms (0 or more).
e An object class term (1).
e Property qualifier terms (0 or more).
e A property term (1).
* Representation qualifier terms (0 or more).
e Arepresentation term (1).
Rationale

Consistent naming rules are helpful for users who wish to understand components with
which they are unfamiliar, as well as for users to find components with known
semantics. This rule establishes the basic structure for an element or attribute name, in
line with the rules for names under [ISO 11179 Part 5]. Note that many elements with
complex type should not have a representation term.

9.8 Object-Class Term

The NIEM adopts an object-oriented approach to representation of data. Object classes
represent what [ISO 11179 Part 5] refers to as “things of interest in a universe of discourse that
may be found in a model of that universe.” An object class or object term is a word that

94

NIEM NIEM Naming and Design Rules

represents a class of real-world entities or concepts. An object-class term describes the
applicable context for a NIEM component.

[Rule 9-13] (REF, SUB, EXT)

The object-class term of a NIEM component SHALL consist of a term identifying a
category of concrete concepts or entities.

Rationale

The object-class term indicates the object category that this data component describes
or represents. This term provides valuable context and narrows the scope of the
component to an actual class of things or concepts.

Example
Concept term: Activity
Entity term: Vehicle

9.9 Property Term

Objects or concepts are usually described in terms of their characteristic properties, data
attributes, or constituent subparts. Most objects can be described by several characteristics.
Therefore, a property term in the name of a data component represents a characteristic or
subpart of an object class and generally describes the essence of that data component.

[Rule 9-14] (REF, SUB, EXT)

A property term SHALL describe or represent a characteristic or subpart of an entity or
concept.

Rationale

The property term describes the central meaning of the data component.

9.10 Qualifier Terms

Qualifier terms modify object, property, representation, or other qualifier terms to increase
semantic precision and reduce ambiguity. Qualifier terms may precede or succeed the terms
they modify. The goal for the placement of qualifier terms is to generally follow the rules of
ordinary English while maintaining clarity.

[Rule 9-15] (REF, SUB, EXT)

Multiple qualifier terms MAY be used within a component name as necessary to ensure
clarity and uniqueness within its namespace and usage context.

[Rule 9-16] (REF, SUB, EXT)

The number of qualifier terms SHOULD be limited to the absolute minimum required to
make the component name unique and understandable.

95

NIEM NIEM Naming and Design Rules

[Rule 9-17] (REF, SUB, EXT)
The order of qualifiers SHALL NOT be used to differentiate names.
Rationale

Very large vocabularies may have many similar and closely related properties and
concepts. The use of object, property, and representation terms alone is often not
sufficient to construct meaningful names that can uniquely distinguish such
components. Qualifier terms provide additional context to resolve these subtleties.
However, swapping the order of qualifiers rarely (if ever) changes meaning; qualifier
ordering is no substitute for meaningful terms.

9.11 Representation Term
The representation term for a component name serves several purposes in NIEM:

1. It canindicate the style of component. For example, types are clearly labeled with the
representation term Type.

2. It helps prevent name conflicts and confusion. For example, elements and types may
not be given the same name.

3. Itindicates the nature of the value carried by element. Labeling elements and attributes
with a notional indicator of the content eases discovery and comprehension.

[Rule 9-18] (REF, EXT)

If any word in the representation term is redundant with any word in the property term,
one occurrence SHOULD be deleted.

Rationale

This rule, carried over from 11179, is designed to prevent repeating terms unnecessarily
within component names. For example, this rule allows designers to avoid naming an
element "PersonFirstNameName."

The valid value set of a data element or value domain is described by the representation term.
NIEM uses a standard set of representation terms in the representation portion of a NIEM-
conformant component name. Table 9-2: Representation Terms lists the primary
representation terms and a definition for the concept associated with the use of that term. The
table also lists secondary representation terms that may represent more specific uses of the
concept associated with the primary representation term.

96

NIEM

NIEM Naming and Design Rules

Table 9-2: Representation Terms

Primary
Representation Term

Secondary
Representation Term

Definition

Amount

A number of monetary units
specified in a currency where
the unit of currency is explicit
or implied.

BinaryObject

A set of finite-length
sequences of binary octets.

Graphic

A diagram, graph,
mathematical curves, or
similar representation

Picture

A visual representation of a
person, object, or scene

Sound

A representation for audio

Video

A motion picture
representation; may include
audio encoded within

Code

A character string (i.e., letters,
figures, and symbols) that for
brevity, language
independence, or precision
represents a definitive value
of an attribute.

DateTime

A particular point in the
progression of time together
with relevant supplementary
information.

Date

A particular day, month, and
year in the Gregorian
calendar.

97

NIEM

NIEM Naming and Design Rules

Time

A particular point in the
progression of time within an
unspecified 24-hour day.

A character string to identify
and distinguish uniquely one
instance of an object in an
identification scheme from all
other objects in the same
scheme together with relevant
supplementary information.

URI

A string of characters used to
identify (or name) a resource.
The main purpose of this
identifier is to enable
interaction with
representations of the
resource over a network,
typically the World Wide
Web, using specific protocols.
A URI is either a Uniform
Resource Locator (URL) or a
Uniform Resource Name
(URN). The specific syntax
for each is defined by
[RFC3986].

Indicator

A list of two mutually
exclusive Boolean values that
express the only possible
states of a property.

Measure

A numeric value determined
by measuring an object along
with the specified unit of
measure.

98

NIEM

NIEM Naming and Design Rules

Numeric

Numeric information that is
assigned or is determined by
calculation, counting, or
sequencing. It does not
require a unit of quantity or
unit of measure.

Value

A result of a calculation.

Rate

A representation of a ratio
where the two units are not
included.

Percent

A representation of a ratio in
which the two units are the
same.

Quantity

A counted number of
nonmonetary units possibly
including fractions.

Text

A character string (i.e., a
finite sequence of characters)
generally in the form of words
of a language.

Name

A word or phrase that
constitutes the distinctive
designation of a person, place,
thing, or concept.

[Rule 9-19] (REF, SUB, EXT)

Within the schema, the name of an element declaration that is of simple content MUST

use a representation term found in Table 9-2: Representation Terms.

[Rule 9-20] (REF, SUB, EXT)

Within the schema, the name of an element declaration that is of complex content, and
that corresponds to a concept listed in Table 9-2: Representation Terms, MUST use a

representation term from that table.

99

NIEM NIEM Naming and Design Rules

[Rule 9-21] (REF, SUB, EXT)

Within the schema, the name of an element declaration that is of complex content and
that does not correspond to a concept listed in Table 9-2: Representation Terms MUST
NOT use a representation term.

[Rule 9-22] (REF, SUB, EXT)

Within the schema, the name of an attribute declaration MUST use a representation
term from Table 9-2: Representation Terms.

Rationale

An element that represents a value listed in the table should have a representation term.
It should do so even if its type is complex with multiple parts. For example, a type with
multiple fields may represent a sound binary, a date, or a name.

9.12 NIEM Type Names

This section contains naming rules specific to various kinds of NIEM types.

9.12.1 All Type Components

[Rule 9-23] (REF, SUB, EXT)
Within the schema, the name of any type definition MUST use the representation term
Type.

Rationale

Using the representation term Type immediately identifies XML types in a NIEM-
conformant schema and prevents naming collisions with corresponding XML elements
and attributes.

9.12.2 Simple Type Components
[Rule 9-24] (REF, SUB, EXT)

Within the schema, the name of any simple type definition SHALL use the
representation term qualifier Simple. This qualifier SHALL appear after any other
representation term qualifiers.

Rationale

Specific uses of type definitions have similar syntax but very different effects on data
definitions. Schemas that clearly identify complex and simple type definitions are easier
to understand without tool support. This rule ensures that names of simple types end in
SimpleType.

100

NIEM NIEM Naming and Design Rules

9.12.3 Code Type Components
[Definition: code type]

A code type is a simple type schema component definition that contains multiple
xsd:enumeration facets.

These types represent lists of values, each of which has a known meaning beyond the text
representation. These values may be meaningful text or may be a string of alphanumeric
identifiers that represent abbreviations for literals.

[Rule 9-25] (REF, SUB, EXT)

Within the schema, the name of any code type SHALL use the representation term
qualifier Code.

Rationale

Using the qualifier Code (e.g. CodeType, CodeSimpleType)immediately
identifies a type as representing a fixed list of codes. These types may be handled in
specific ways, as lists of codes are expected to have their own lifecycles, including
versions and periodic updates. Codes may also have responsible authorities behind
them who provide concrete semantic bindings for the code values.

[Rule 9-26] (REF, SUB, EXT)

Within the schema, any type definition which has a base type definition of a code type
or which is transitively based on a code type SHALL have a name that uses the
representation term qualifier Code.

Rationale
This expands the use of the representation term qualifier Code to any type based on a
code list.

9.12.4 Association Type Components

[Rule 9-27] (REF, SUB, EXT)

Within the schema, any association type SHALL have a name that uses the
representation term qualifier Association. Types other than association types
SHALL NOT use the representation term qualifier Association.

Rationale

Using the qualifier Association immediately identifies a type as representing an
association.

101

NIEM NIEM Naming and Design Rules

9.12.5 Augmentation Type Components
[Rule 9-28] (REF, SUB, EXT)

Within the schema, any augmentation type SHALL have a name that uses the
representation term qualifier Augmentation. Types other than augmentation types
SHALL NOT use the representation term qualifier Augmentation.

Rationale
Using the qualifier Augmentation immediately identifies a type as representing an
augmentation.

9.12.6 Metadata Type Components

[Rule 9-29] (REF, SUB, EXT)

Within the schema, any metadata type SHALL have a name that uses the representation
term qualifier Metadata. Types other than metadata types SHALL NOT use the
representation term qualifier Metadata.

Rationale

Using the qualifier Metadata immediately identifies a type as representing metadata.

9.13 NIEM Property Names

This section contains naming rules specific to different kinds of NIEM properties.

9.13.1 Attribute Group Names
[Rule 9-30] (REF, SUB, EXT)

Within the schema, the name of any attribute group definition schema component
SHALL use the representation term AttributeGroup.

Rationale
This clearly identifies attribute groups and partitions their names from the names of
other types of schema components.

9.13.2 Reference Names

[Rule 9-31] (REF, SUB, EXT)

Within the schema, the name of any reference element SHALL use the representation
term suffix Reference.

Rationale

Reference elements are identical in semantics to elements that are not by reference.
However, they refer to their values by a reference attribute instead of carrying it as
content of the XML element. The use of a suffix helps indicate that the elements refer

102

NIEM NIEM Naming and Design Rules

to, instead of contain, their values, yet allows the basic semantics (e.g., property,
representation term) to persist.

Note that the use of the representation term suffix is one of the situations in which
there is a slight divergence from the general rule for name generation as discussed in
[Rule 9-12].

9.13.3 Association Names

[Rule 9-32] (REF, SUB, EXT)

Within the schema, the name of an association element SHALL use the representation
term qualifier Association.

Rationale

Using the qualifier Association immediately identifies an element as representing
an association.

9.13.4 Augmentation Names

[Rule 9-33] (REF, SUB, EXT)

Within the schema, the name of an augmentation element SHALL use the
representation term Augmentation.

Rationale

Using the qualifier Augmentation immediately identifies an element as representing
an augmentation.

9.13.5 Metadata Names
[Rule 9-34] (REF, SUB, EXT)

Within the schema, the name of a metadata element SHALL use the representation term
Metadata.

Rationale

Using the qualifier Metadata immediately identifies an element as representing
metadata.

9.13.6 Role Names
[Rule 9-35] (REF, SUB, EXT)

Within the schema, the name of a role SHALL use the property term Ro1eOf.
Rationale

Using the property term RoleOf immediately identifies an element as representing a
role.

103

NIEM NIEM Naming and Design Rules

Appendix A: NIEM Overview

NIEM is a reference model of unconstrained components rendered in XML Schema. Associated
with the NIEM-conformant schemas is an XML reference architecture that organizes and guides
the employment of the various kinds of schemas that compose a NIEM information exchange.
The XML reference architecture describes the relationships between XML Schema documents
for NIEM Information Exchange Package Documentation (IEPD).

Figure A-1: The NIEM XML Reference Architecture
______________ \

: WAL dialidinifts XML Schema |1

_____________ Ed

_______ ——— e —

-

Conformance Constraint
Validation Path Validation Path

| [*Extension schema Extension schema
-N ————— - : may also have its
I Namespace | | own target
————— I | *Exchange schema | | namespgce
. \
* Optional ~————a _ ___
f Namespace import Exchange schema
may also import
f Namespace reference l XML instance document] extension and
subset in parallel

An Exchange Package is defined by the Federal Enterprise Architecture (FEA) Data Reference
Model [DRM] as a description of a specific recurring data exchange between a supplier and a
consumer. A NIEM IEPD is a set of artifacts that implements an FEA DRM Exchange Package.
The NIEM IEPD Specification [IEPD] contains a more detailed explanation of IEPDs and their
contents.

The following kinds of schemas are associated with the NIEM reference architecture:

e NIEM reference schemas: Schemas containing content created or approved by the NIEM
steering committees are periodically released in schema distributions. The structure and
content of such distributions are not specified in this document. This document
specifies rules that apply to the NIEM-conformant schemas that are released as part of
such distributions.

e NIEM support schemas: NIEM includes two special schemas, the appinfo and the
structures schemas, for annotating and structuring NIEM-conformant schemas.

A-1

NIEM NIEM Naming and Design Rules

e Extension Schema: a NIEM-conformant schema that adds domain- or application-
specific content to the base NIEM model.

e Exchange Schema: a NIEM-conformant schema that specifies a document in a
particular exchange.

e Subset Schema: a profile of a NIEM-conformant schema, derived from a reference
schema, but which specifies instances that require only a portion of the reference
schema.

e Constraint Schema: a schema which adds additional constraints to NIEM-conformant
instances, but which is assumed to validate in concert with existing NIEM-conformant or
subset schemas. A constraint schema need not validate constraints that are applied by
other schemas.

The only mandatory schemas for validation are the NIEM reference schemas or correct subsets.
NIEM schemas may import additional schemas, such as code table schemas, as needed. The
optional exchange schema imports, reuses, and organizes the components from the NIEM for
the particular exchange. An optional extension schema may be used to add extended types and
properties for components not contained in NIEM but which are needed for the exchange.

Note that only the reference schemas, or subsets thereof, are required for validation of a NIEM-
conformant instance. The IEPD specification requires that an IEPD include an exchange schema
along with the reference schemas (or subsets) to be considered a complete IEPD.

The exchange and extension schemas can be combined into a single schema and namespace or
can be broken out into separate schemas and corresponding namespaces. The user may decide
the best way to organize components. If the extension components will be reused elsewhere, it
may be more efficient to maintain them in a separate namespace, rather than including them in
a document namespace.

The NIEM reference schemas are overinclusive and underconstrained. The reason for this
approach is that predetermining all user needs and constraints is rarely possible. The only way
to reach consensus on components is to include all obvious requirements and maintain
relatively relaxed constraints.

To ensure interoperability, specific component requirements and constraints are determined on
a per-exchange basis (in IEPDs). By creating a subset of NIEM Core, reference, and code table
schemas, the user can limit the components to only those he or she needs. In the future, a
business component layer between IEPDs and NIEM will allow domains to apply consistent
requirements and constraints for their exchanges.

The basic principle for a subset is that an instance that validates against a correct subset schema
will always validate against the full reference NIEM-conformant schema set. The user may also
adjust cardinality constraints, as desired, within the subset schemas.

Additional constraints may be handled in a constraint schema. A constraint schema is derived
from a subset schema. However, it may contain other constraints (for example, additional types
for specific constraints). The constraint schema provides an alternative constraint validation
path that allows the user to reduce the possible set of allowable XML instances, independent of

A-2

NIEM NIEM Naming and Design Rules

the reference schema or subset conformance validation path. This is done through multipass
validation. A correctly constructed XML instance will validate through both the conformance

and the constraint path.

A-3

NIEM NIEM Naming and Design Rules

Appendix B: Name Syntax for Special Components

The following table summarizes NIEM general naming syntax for special components and their
associated types. Refer to Sections 9.12 and 9.13 for the specific rules associated with this
table.

Note that this table does not mention the general syntax for standard types and properties
introduced in Sections 9.12 and 9.13.

Table B-1: Name Syntax for Special Components

Name Syntax * Notes
Association
[Property]Association Preferred: [Property] describes relationship

[Object1][Object2]Association | Alternate 1: related objects

[Object]Association Alternate 2: related objects are same class

Role Reference

RoleOf[Object]Reference Element in the role that references base type

Type Augmentation

[Object][Property]Augmentation | [Object][Property] is from type augmented

Metadata

[Property]Metadata

Adapter

[Object][Property]Adapter

Abstract

[Object][Property] Preferred

B-1

NIEM

NIEM Naming and Design Rules

Name Syntax *

Notes

[Object][Property]Abstract

Alternate: when required to prevent name
clash

* Object and Property refer to [ISO 11179 Part 5] terms in a component name.

B-2

NIEM NIEM Naming and Design Rules

Appendix C: Supporting Schemas

NIEM provides a set of schemas that underlie the data model schemas. These schemas do not
define data model content; they do not define people, vehicles, or relationships between them.
Instead, these schemas define the fundamental framework on which the data model is built.

There are two supporting schemas. The first, called appinfo, is the namespace for application
information that supports data model definitions. The second is called structures andis
the namespace for basic types that augment the mechanisms of XML Schema for more
sophisticated data modeling and information exchanges.

This appendix defines and discusses each of the framework components in the two supporting
schemas. At the conclusion of the discussion of each schema, the full schema is provided as a
reference.

This appendix also includes a directory listing of all the reference schemas that are part of NIEM
2.0.

The appinfo namespace

The appinfo schema provides support for high-level data model concepts and additional
syntax to support the NIEM conceptual model and validation of NIEM-conformant instances.
This schema is available at [NIEMAppinfoXSD].

Figure C-1: Schema document element

<xsd:schema
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlns:i="http://niem.gov/niem/appinfo/2.0"”
xmlns:s="http://niem.gov/niem/structures/2.0”
targetNamespace="http://niem.gov/niem/appinfo/2.0”
attributeFormDefault="qualified" version="1">

Discussion

The namespace for the appinfo namespace is
http://niem.gov/niem/appinfo/2.0.

Figure C-2: Element appinfo:Resource

<xsd:element name="Resource">
<xsd:complexType>
<xsd:attribute name="name" type="xsd:NCName" use="required"/>
</xsd:complexType>
</xsd:element>

Discussion

The Resource element provides a method for application information to define a
name within a schema, without the name being bound to a schema component. This is

C-1

http://www.w3.org/2001/XMLSchema
http://niem.gov/niem/appinfo/2.0
http://niem.gov/niem/structures/2.0
http://niem.gov/niem/appinfo/2.0

NIEM

NIEM Naming and Design Rules

used by the structures schema to define names for structures:0bject and
structures:Association.

Figure C-3: Element appinfo:Deprecated

<xsd:element name="Deprecated">
<xsd:complexType>
<xsd:attribute name="value" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
<xsd:pattern value="true"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

Discussion

The Deprecated element provides a method for identifying components as being

deprecated. A deprecated component is one which is provided but whose use is not
recommended.

Figure C-4: Element appinfo:Base

<xsd:element name="Base">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:NCName" use="required"/>

<xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

</xsd:element>

Discussion

The Base element provides a mechanism for indicating base types and base elements in
schema for the cases in which XML Schema mechanisms are insufficient. For example, it
is used to indicate Object or Association bases.

Figure C-5: Element appinfo:ReferenceTarget

<xsd:element name="ReferenceTarget">

</xsd:element>

<xsd:complexType>
<xsd:attribute name="name" type="xsd:NCName" use="required"/>
<xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

Discussion

The ReferenceTarget element indicates a NIEM type which may be a target (that is,

a destination) of a NIEM reference element. It may be used in combinations to indicate
a set of valid types.

C-2

NIEM NIEM Naming and Design Rules

Figure C-6: Element appinfo:AppliesTo

<xsd:element name="AppliesTo">
<xsd:complexType>
<xsd:attribute name="name" type="xsd:NCName" use="required"/>

<xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/>
</xsd:complexType>
</xsd:element>

Discussion

The AppliesTo element is used in two ways. First, it indicates the set of types to

which a metadata type may be applied. Second, it indicates the set of types to which an
augmentation element may be applied.

Figure C-7: Element appinfo:ConformantIndicator

<xsd:element name="ConformantIndicator" type="boolean"/>

Discussion

The ConformantIndicator element may be used in two ways. First, it is included
as application information for a schema document element to indicate that the schema

is NIEM-conformant. Second, it is used as application information of a namespace
import to indicate that the schema is not NIEM-conformant.

Figure C-8: Element
appinfo:ExternalAdapterTypeIndicator

<xsd:element name="ExternalAdapterTypeIndicator" type="boolean"/>

Discussion

The ExternalAdapterTypeIndicator elementindicates that a complex type is
an external adapter type. Such a type is one composed of elements and attributes from
non-NIEM-conformant schemas. The indicator allows schema processors to switch to

alternative processing modes when processing NIEM-conformant versus non-NIEM-
conformant content.

NIEM

NIEM Naming and Design Rules

Figure C-9: Full XML Schema for Appinfo Namespace

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:i="http://niem.gov/niem/appinfo/2.0" xmlns:s="http://niem.gov/niem/structures/2.0"
targetNamespace="http://niem.gov/niem/appinfo/2.0" attributeFormDefault="qualified"
version="1">

<xsd:element name="Resource">
<xsd:complexType>
<xsd:attribute name="name" type="xsd:NCName" use="required"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="Deprecated">
<xsd:complexType>
<xsd:attribute name="value" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
<xsd:pattern value="true"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

<xsd:element name="Base">
<xsd:complexType>
<xsd:attribute name="name" type="xsd:NCName" use="required"/>
<xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="ReferenceTarget">
<xsd:complexType>
<xsd:attribute name="name" type="xsd:NCName" use="required"/>
<xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="AppliesTo">
<xsd:complexType>
<xsd:attribute name="name" type="xsd:NCName" use="required"/>
<xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="ConformantIndicator" type="xsd:boolean"/>
<xsd:element name="ExternalAdapterTypelndicator" type="xsd:boolean"/>

</xsd:schema>

NIEM NIEM Naming and Design Rules

The structures schema

The structures schema provides support for fundamental NIEM linking mechanisms, as well
as providing base types for definition of NIEM-conformant types. This schema is available at
[NIEMStructuresXSD].

Figure C-10: Schema document element

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema
targetNamespace="http://niem.gov/niem/structures/2.0"
version="1"
xmlns:appinfo="http://niem.gov/niem/appinfo/2.0"
xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns="http://www.w3.0rg/2001/XMLSchema">

Discussion

The target namespace for the structures schema is
http://niem.gov/niem/structures/2.0.

Figure C-11: Import of appinfo

<xsd:import
schemalocation="../../appinfo/2.0/appinfo.xsd"
namespace="http://niem.gov/niem/appinfo/2.0"/>

Discussion
The structures schema uses components from the appinfo namespace.

Figure C-12: Resource structures:Object

<xsd:annotation>
<xsd:appinfo>
<i:Resource i:name="Object"/>
</xsd:appinfo>
</xsd:annotation>

Discussion

The Object resource defines an identifier that acts as a conceptual base for objects in
NIEM-conformant schemas.

Figure C-13: Resource structures:Association

<xsd:annotation>
<xsd:appinfo>
<i:Resource 1i:name="Association"/>
</xsd:appinfo>
</xsd:annotation>

C-5

NIEM NIEM Naming and Design Rules

Discussion

The Association resource defines an identifier that acts as a conceptual base for
association in NIEM-conformant schemas.

Figure C-14: Attribute structures:id

<xsd:attribute name="id" type="ID"/>

Discussion

The id attribute is used to define XML IDs for NIEM objects. These IDs may be targets
of reference elements, metadata attributes, and link metadata attributes.

Figure C-15: Attribute structures:linkMetadata

<xsd:attribute name="linkMetadata" type="IDREFS"/>

Discussion

The 1inkMetadata attribute allows an element to point to metadata that affects the
relationship between the context and the value of the object.

Figure C-16: Attribute structures:metadata

<xsd:attribute name="metadata" type="IDREFS"/>

Discussion
The attribute metadata allows an object to point to metadata that affects itself.

Figure C-17: Attribute structures:ref

<xsd:attribute name="ref" type="IDREF"/>

Discussion

The ref attribute is used by reference elements in NIEM to refer to an object via an ID
reference, rather than including the object itself as element content.

Figure C-18: Attribute structures:sequencelD

<xsd:attribute name="sequenceID" type="integer"/>

C-6

NIEM

NIEM Naming and Design Rules

Discussion

The sequenceID attribute allows a series of elements to define a sequence for
content that does not correspond to the order of element declarations within a type.
This attribute may override the sequence of elements appearing within an instance.

Figure C-19: Attribute group
structures:SimpleObjectAttributeGroup

<xsd:attributeGroup name="SimpleObjectAttributeGroup">
<xsd:attribute ref="s:id"/>
<xsd:attribute ref="s:metadata"/>
<xsd:attribute ref="s:linkMetadata"/>
</xsd:attributeGroup>

Discussion

The SimpleObjectAttributeGroup attribute group provides a collection of
attributes that are appropriate for definition of object types.

Figure C-20: Element structures:Augmentation

<xsd:element name="Augmentation" type="s:AugmentationType”
abstract="true"/>

Discussion

The Augmentation element provides a substitution group head for augmentations.
The designer of a message or object may use this element within an object definition.
This will allow the selection of augmentations dynamically, at run time (or at least
schema selection time) rather than at schema authoring time.

Figure C-21: Element structures:Metadata

<xsd:element name="Metadata" type="s:MetadataType" abstract="true"/>

Discussion

The Metadata element provides a substitution group head for metadata. Like the
substitution group head for augmentations, this allows selection of metadata to be
decided late in message creation, rather than at schema authoring time. This element

may also be used to provide a single point in a container where all metadata for a
message may be deposited.

NIEM NIEM Naming and Design Rules

Figure C-22: Complex type
structures:AugmentationType

<xsd:complexType name="AugmentationType" abstract="true">
<xsd:attribute ref="s:id"/>
<xsd:attribute ref="s:metadata"/>

</xsd:complexType>

Discussion

The AugmentationType type is a base type for all augmentations. An augmentation
may have metadata and an ID but may not have link metadata, as it does not establish a
relationship between its value and its context. The individual element contents of an
augmentation, however, do establish a relationship between the context of the
augmentation and the values of the individual elements.

Figure C-23: Type structures:ComplexObjectType

<xsd:complexType name="ComplexObjectType" abstract="true">
<xsd:attribute ref="s:id"/>

<xsd:attribute ref="s:metadata"/>
<xsd:attribute ref="s:linkMetadata"/>
</xsd:complexType>

Discussion

The ComplexObjectType type provides a base class for object definition, association
definitions, and external adapter type definitions. An instance of one of these types may
have an ID. It may have metadata as it establishes the existence of an object (maybe a

conceptual object). It may also have link metadata, as an element of one of these types
establishes a relationship between its value and its context.

Figure C-24: Type structures:MetadataType

<xsd:complexType name="MetadataType" abstract="true">
<xsd:attribute ref="s:id"/>
</xsd:complexType>

Discussion

The MetadataType type is a base class for metadata type definition. This type
provides only an ID, as the metadata may be referenced. It does not itself have
metadata and does not have link metadata.

NIEM

NIEM Naming and Design Rules

Figure C-25: Type structures:ReferenceType

<xsd:complexType name="ReferenceType" final="#all">
<xsd:attribute ref="s:id"/>
<xsd:attribute ref="s:ref"/>
<xsd:attribute ref="s:linkMetadata"/>
</xsd:complexType>

Discussion

The ReferenceType type is the type of all reference elements within NIEM-
conformant schemas. This type provides a reference attribute to reference an object
defined elsewhere. It includes an ID, as the link established by a reference element may
need to be identified, and link metadata, as an element of this type establishes a
relationship between its context and the referenced object. It does not contain

metadata, as it does not itself establish the existence of an object; it relies on a
definition located elsewhere.

NIEM NIEM Naming and Design Rules

Figure C-26: Full XML Schema for Structures
Namespace

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlns:i="http://niem.gov/niem/appinfo/2.0”
xmlns:s="http://niem.gov/niem/structures/2.0"”
targetNamespace="http://niem.gov/niem/structures/2.0"
version="1">

<xsd:import
schemalocation="../../appinfo/2.0/appinfo.xsd"
namespace="http://niem.gov/niem/appinfo/2.0"/>

<xsd:annotation>
<xsd:appinfo>
<i:Resource 1i:name="Object"/>
</xsd:appinfo>
</xsd:annotation>

<xsd:annotation>
<xsd:appinfo>
<i:Resource 1i:name="Association"/>
</xsd:appinfo>
</xsd:annotation>

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="linkMetadata" type="xsd:IDREFS"/>
<xsd:attribute name="metadata" type="xsd:IDREFS"/>
<xsd:attribute name="ref" type="xsd:IDREF"/>
<xsd:attribute name="sequenceID" type="xsd:integer"/>

<xsd:attributeGroup name="SimpleObjectAttributeGroup">
<xsd:attribute ref="s:id"/>
<xsd:attribute ref="s:metadata"/>
<xsd:attribute ref="s:linkMetadata"/>
</xsd:attributeGroup>

<xsd:element name="Augmentation" type="s:AugmentationType"
abstract="true"/>
<xsd:element name="Metadata" type="s:MetadataType" abstract="true"/>

<xsd:complexType name="AugmentationType" abstract="true">
<xsd:attribute ref="s:id"/>
<xsd:attribute ref="s:metadata"/>

</xsd:complexType>

<xsd:complexType name="ComplexObjectType" abstract="true">
<xsd:attribute ref="s:id"/>
<xsd:attribute ref="s:metadata"/>
<xsd:attribute ref="s:linkMetadata"/>

</xsd:complexType>

<xsd:complexType name="MetadataType" abstract="true">
<xsd:attribute ref="s:id"/>
</xsd:complexType>

<xsd:complexType name="ReferenceType" final="#all">
<xsd:attribute ref="s:id"/>
<xsd:attribute ref="s:ref"/>
<xsd:attribute ref="s:linkMetadata"/>
</xsd:complexType>

</xsd:schema>

C-10

http://www.w3.org/2001/XMLSchema
http://niem.gov/niem/appinfo/2.0
http://niem.gov/niem/structures/2.0

NIEM NIEM Naming and Design Rules

NIEM 2.0 Reference Schemas — Directory Listing
niem/

ansi-nist/2.0/ansi-nist.xsd

ansi d20/2.0/ansi d20.xsd

apco/2.0/apco.xsd

appinfo/2.0/appinfo.xsd

atf/2.0/atf.xsd

census/2.0/census.xsd

dea/2.0/dea.xsd

dod jcs-pub2.0-misc/2.0/dod jcs-pub2.0-misc.xsd

domains/
emergencyManagement/2.0/emergencyManagement .xsd
immigration/2.0/immigration.xsd
infrastructureProtection/2.0/infrastructureProtection.xsd
intelligence/2.0/intelligence.xsd
internationalTrade/2.0/internationalTrade.xsd
jxdm/4.0/jxdm.xsd
screening/2.0/screening.xsd

edx1/2.0/edx1l.xsd

edxl-cap/2.0/edxl-cap.xsd

edxl-de/2.0/edxl-de.xsd

external/
cap/l.1/cap.xsd
de/1.0/de.xsd
dhs-gmo/AS/mobileObject/1.0.0/mobileObject.xsd
dhs-gmo/AS/multiModalRoute/1.0.0/multiModalRoute.xsd
iai-ifc/rc2/dhs-gmo/1.0.0/IFC2X2 FINAL.xsd
1s0-10303-step/2/dhs-gmo/1.0.0/configuration.xsd
1s0-10303-step/2/dhs-gmo/1.0.0/ex.xsd
is0-19139-gmd/

draft-0.

1/gco/dhs-gmo/1.

.0/basicTypes.xsd

draft-0.1/gco/dhs-gmo/1.0.0/gco.xsd
draft-0.1/gco/dhs-gmo/1.0.0/gcoBase.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/applicationSchema.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/citation.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/constraints.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/content.xsd

draft-0.

1/gmd/dhs-gmo/1.

.0/dataQuality.xsd

draft-0.1/gmd/dhs-gmo/1.0.0/distribution.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/extent.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/freeText.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/gmd.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/identification.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/maintenance.xsd

draft-0

.1/gmd/dhs-gmo/1.

.0/metadatalApplication.xsd

draft-0.1/gmd/dhs-gmo/1.0.0/metadataEntity.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/metadatakExtension.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/portrayalCatalogue.xsd
draft-0.1/gmd/dhs-gmo/1.0.0/referenceSystem. xsd
draft-0.1/gmd/dhs-gmo/1.0.0/spatialRepresentation.xsd
draft-0.1/gmx/dhs-gmo/1.0.0/catalogues.xsd

draft-0.
draft-0.
draft-0.
draft-0.

1/gmx/dhs-gmo/1.
1/gmx/dhs-gmo/1.
1/gmx/dhs-gmo/1.
1/gmx/dhs-gmo/1.

oheololoNeolNoNoNoNolololololNolNolNolNolololNeoleolNolNolNolNo)

.0/codelistItem.xsd
.0/crsItem.xsd
.0/extendedTypes.xsd
.0/gmx.xsd

C-11

NIEM NIEM Naming and Design Rules

draft-0.1/gmx/dhs-gmo/1.
draft-0.1/gmx/dhs-gmo/1.
draft-0.1/gsr/dhs-gmo/1.
draft-0.1/gsr/dhs-gmo/1.
draft-0.1/gss/dhs-gmo/1.
draft-0.1/gss/dhs-gmo/1.
draft-0.1/gts/dhs-gmo/1.
draft-0.1/gts/dhs-gmo/1.
landxml/1.1/LandXML-1.1.xsd
ogc-context/1.1.0/dhs-gmo/1.0.0/context.xsd
ogc-filter/1.1.0/dhs-gmo/1.0.0/filter.xsd
ogc-gml/3.1.1/dhs-gmo/1.0.0/gml.xsd
ogc-observation/
draft-0.14.5/

.0/gmxUsage.xsd
.0/uomItem.xsd
.0/gsr.xsd

.0/geometry.xsd
.0/gss.xsd
.0/gts.xsd

OO O OO o oo

om/dhs-gmo/1.0.0/commonObservation.xsd
om/dhs-gmo/1.0.0/event.xsd
om/dhs-gmo/1.0.0/observation.xsd
om/dhs-gmo/1.0.0/observationSpecializations.xsd
om/dhs-gmo/1.0.0/om.xsd
om/dhs-gmo/1.0.0/procedure.xsd
om/dhs-gmo/1.0.0/procedureSpecializations.xsd
st/dhs-gmo/1.0.0/simpleTypeDerivation.xsd
swe/dhs-gmo/1.0.0/discreteCoverage.xsd
swe/dhs-gmo/1.0.0/phenomenon.xsd
swe/dhs-gmo/1.0.0/record.xsd
swe/dhs-gmo/1.0.0/recordType.xsd
swe/dhs-gmo/1.0.0/swe.xsd
swe/dhs-gmo/1.0.0/SWE basicTypes.xsd

swe/dhs-gmo/1.0.0/temporalAggregates.xsd
ogc-openls/1.1.0/dhs-gmo/1.0.0/0ls.xsd
ogc-ows/1.0.0/dhs-gmo/1.0.0/ows.xsd
ogc-s1d/1.0.20/dhs-gmo/1.0.0/s1d.xsd
ogc-swe-common/1.0.0/dhs-gmo/1.0.0/data.xsd
ogc-swe-common/1.0.0/dhs-gmo/1.0.0/parameters.xsd

ogc-swe-common/1.0.0/dhs-gmo/1.0.0/positionData.xsd

ogc-swe-common/1.0.0/dhs-gmo/1.0.0/sweCommon.xsd
ogc-wfs/1.1.0/dhs-gmo/1.0.0/wfs.xsd
urisa-street-address/

draft-0.2.0/

dhs-gmo/1.0.0/StreetAddressDataStandard.xsd

w3c-x1ink/1.0/dhs-gmo/1.0.0/x1inks.xsd
w3c-xml/1998/xml.xsd
fbi/2.0/fbi.xsd
fips 10-4/2.0/fips 10-4.xsd
fips 5-2/2.0/fips 5-2.xsd
fips _6-4/2.0/fips_6-4.xsd
geospatial/2.0/geospatial.xsd
have/2.0/have.xsd
hazmat/2.0/hazmat.xsd
iso 3166/2.0/iso_3166.xsd
iso 4217/2.0/iso_4217.xsd
iso 639-3/2.0/is0_639-3.xsd
itis/2.0/itis.xsd
lasd/2.0/lasd.xsd
mmucc_2/2.0/mmucc_2.xsd
mn_offense/2.0/mn _offense.xsd
nga/2.0/nga.xsd

.0/spatialReferencing.xsd

.0/temporalObjects.xsd

C-12

NIEM NIEM Naming and Design Rules

niem-core/2.0/niem-core.xsd

nlets/2.0/nlets.xsd
nonauthoritative-code/2.0/nonauthoritative-code.xsd
post-canada/2.0/post-canada.xsd
proxy/xsd/2.0/xsd.xsd

sar/2.0/sar.xsd

structures/2.0/structures.xsd

twpdes/2.0/twpdes.xsd

ucr/2.0/ucr.xsd

unece rec20-misc/2.0/unece_rec20-misc.xsd
usps_states/2.0/usps_states.xsd
ut_offender-tracking-misc/2.0/ut_offender-tracking-misc.xsd

C-13

NIEM NIEM Naming and Design Rules

Appendix D: References
[ARCH]: The NIEM Reference Architecture. Not yet available.

[DRM]: The Federal Enterprise Architecture Data Reference Model, Version 2.0, November 17
2005. Available from
http://www.whitehouse.gov/omb/egov/documents/DRM 2 0 Final.pdf.

[IEPD]: Requirements for a National Information Exchange Model (NIEM) Information
Exchange Package Documentation (IEPD) Specification, Version 2.1, June 2006. Available
fromhttp://www.niem.gov/files/NIEM IEPD Requirements v2 1.txt.

[1ISO 11179 Part 4]: ISO/IEC 11179-4:2004, Information technology — Metadata registries
(MDR) — Part 4: Formulation of data definitions. Available from
http://standards.iso.org/ittf/PubliclyAvailableStandards/c0353
46 TSO TEC 11179-4 2004 (E) .zip.

[1ISO 11179 Part 5]: ISO/IEC 11179-5:2005, Information technology — Metadata registries
(MDR) — Part 5: Naming and identification principles. Available from
http://standards.iso.org/ittf/PubliclyAvailableStandards/c0353
47 ISO IEC 11179-5 2005(E).zip.

[N-ary]: Defining N-ary Relations on the Semantic Web, W3C Working Group Note 12 April
2006. Available from http://www.w3.0rg/TR/2006/NOTE-swbp-n-
aryRelations-20060412/.

Use case 3 is described at #useCase3.

[NIEMAppinfoXSD]: The appinfo schema from the NIEM 2.0 distribution. Available from
http://niem.gov/niem/structures/2.0/structures.xsd.

[NIEMStructuresXSD]: The structures schema from the NIEM 2.0 distribution. Available from
http://niem.gov/niem/structures/2.0/structures.xsd.

[OED]: Oxford English Dictionary, Second Edition, 1989. Available from
http://dictionary.oed.com/.

[OJP]: OJP Information Technology Website.Available from
http://www.it.ojp.gov/jxdm.

[RDFPrimer]: RDF Primer, W3C Recommendation 10 February 2004. Available from
http://www.w3.0rg/TR/2004/REC-rdf-primer-20040210/.

Basic concepts are covered at #basicconcepts.

[RDFConcepts]: Resource Description Framework (RDF): Concepts and Abstract Syntax, W3C
Recommendation 10 February 2004. Available from
http://www.w3.0rg/TR/2004/REC-rdf-concepts-20040210/.

RDF data model is described at #section-data-model.

D-1

NIEM NIEM Naming and Design Rules

[RDFSemantics]: RDF Semantics, W3C Recommendation 10 February 2004. Available from
http://www.w3.0rg/TR/rdf-mt/.

The meaning of RDF assertions is described at #interp.

[RFC2119]: Bradner, S. Key words for use in RFCs to Indicate Requirement Levels, IETF RFC 2119,
March 1997. Available from http://www.ietf.org/rfc/rfc2119.txt

[RFC3986]: Berners-Lee, T., et al.: Uniform Resource Identifier (URI): Generic Syntax, Request
for Comments 3986, January 2005. Available from
http://www.ietf.org/rfc/rfc3986. txt.

[SchemaForXMLSchema]: XML Schema schema for XML Schemas: Part 1: Structures. Available
fromhttp://www.w3.0rg/2001/XMLSchema . xsd.

[SchemaforXMLSchemalnstance]: XML Schema instance namespace. Available from
http://www.w3.0rg/2001/XMLSchema-instance.xsd

[Wikipedia]: Wikipedia, the free encyclopedia that anyone can edit. Available from
http://en.wikipedia.org/.

Camel Case is described at
http://en.wikipedia.org/w/index.php?title=CamelCase&0ldid=2300
35120.

[XML]: Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C Recommendation 16
August 2006. Available from http://www.w3.0rg/TR/2006/REC-xml~
20060816/.

EBNF notation is described at #sec-notation.
IDREF constraint is described at #idref.

[XML-ID]: xml:id Version 1.0, W3C Proposed Recommendation 12 July 2005. Available from
http://www.w3.0rg/TR/2005/PR-xml1-1d-20050712/.

[XMLInfoSet]: XML Information Set (Second Edition), W3C Recommendation 4 February 2004.
Available from http://www.w3.0rg/TR/2004/REC-xml-infoset-20040204/.

[XMLNamespaces]: Namespaces in XML, World Wide Web Consortium 16 August 2006.
Available from http://www.w3.0rg/TR/2006/REC-xml-names-20060816.

NCName is described at #NT-NCName.

[XMLNamespacesErrata]: Namespaces in XML Errata, 6 December 2002. Available from
http://www.w3.0rg/XML/xml-names-19990114-errata

[XMLSchemaDatatypes]: XML Schema Part 2: Datatypes Second Edition, W3C
Recommendation 28 October 2004. Available at
http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028/.

D-2

http://www.w3.org/2001/XMLSchema.xsd

NIEM NIEM Naming and Design Rules

[XMLSchemaStructures]: XML Schema Part 1: Structures Second Edition, W3C
Recommendation 28 October 2004. Available from
http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028/.

Annotations are described at #Annotation details.

[XSLT]: XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16 November 1999.
Available from http://www.w3.0rg/TR/1999/REC-xs1t-19991116.

The element xs1:sort is described at #element-sort.

D-3

NIEM NIEM Naming and Design Rules

Appendix E: List of Principles

L el o 1L P UPPRRS 20
L8 S Lo Tel o1 =07 PP UPURRS 20
L S Lo Tel o1 =TRGNP UPPRRS 20
L L Tel o1 LI U UPURRS 20
LS g Tel [o1 [T [P PP PPURRNS 21
[PIINCIPIE B] 1ottt ettt e ettt e e e e e e et e e e e e e e e e ee e e aastaeseeeaeeeeaanstsaaaeeaeeeesansstaaneaeaaeeannns 21
L S Lo Yol o1 =T PP PPURRNS 21
LS g Tol o1 L<IR= IPPPPPURRRNE 22
LS o Tel o1 LI PP PPURRE 22
[PIINCIPIE 0] o iiiiiiieee ettt e e ee sttt e e e e e e e e b e e e e e e eeese e e aassaeeeeaaassesnsssaaeasaeesesansssanseaeanesananes 22
g S La Lol o1 =0t e PP PPURRNE 23
[PTINCIPIE 2] ittt ettt e e e e e e et a e e e e e e e ee s e bbb aaeeeeeessesnsbsaaeaseeeeesassssraaseeeeessennes 23
[PIINCIPIE 13] ittt eerecre e e e e e e et b b e e e et eeese s e bbb aeeeeeeessessstsaaeaseeeeesasssraasaeeeessennes 23
[PIINCIPIE 14] .ottt et e e e e e e ettt e e et e e e ee s e bbb aeeeeeeessesassbsaaeaeeeeeesassssraasaeeeessennns 23
[PTINCIPIE 5] ciiiiirieiiee ettt e eerecr et e e e e e s et r e e e et eeese s s sassaaeeeeeessesnstsaaeaeeeeeesasssrsasaeeeessennes 24
[PIINCIPIE 18] e oeiiiirieiiee ettt e eerccre e e e e e e et bbr e e e e e eeeeesessasbaaeeeeeessesastsaaeeseeeeesassssrsnsaeeeessennnes 24
[PTINCIPIE 7] e ieiettieieee ettt ee et e e e e e e ettt r e e et eeeee s e sasbaaeeeeeessennstsaaeaseeeeesassssransaeeeessennes 25
[PIINCIPIE 18] . eiiirrieiiee e e ettt e e sttt e e e e e sesbbr e e e e eeeee s s aasbaaeeeseessesanstsaaeeseeeeesassssrsnsaeeeessennes 25
LT 1T o1 LT USSP 25
LT e TeIT o] L3070 USSP 26
LT 1T o1 L= USSP 26
LT TeT o1 L1072 USRS 26
LT TeT o] LI | USSP 26
LT TeT o] LT) S 27
LT TeT o1 LI TSP 27
LT TeT o1 LI Y USSP 27
L S Lo Lol o1 =T [P UPPRRS 28
[P INCIPIE 28] . iiiiiiiie ettt ettt e e e e e e et e e e e e e e e se s e abtaeseeaaaeeeanstbaeeeeaaeeeaanrrtannaaeaaeaaanns 28

E-1

NIEM

NIEM Naming and Design Rules

Appendix F: List of Definitions

[Definition: NIEM-conformant SChEMA]uvuiiiiiiiiiiiiiiiiiiiiriiiiirireieierererererererererarsrarerara———————————.. 6
[Definition: NIEM-conformant component]c..eeuiiiiiieii i e e e 7
[Definition: referenCe SCNEMA]uuuiiiiiiiiiiiiiiiiiiiiierere e er e ererererarararasararararsrsrararsrrrsrsrararares 7
[Definition: SUDSE SCREMA]uviiiiiiiiiiiiiiiiiiiiett et er e e rar e rarasarasararararsrsrararsrsssrsrarareres 8
[Definition: eXteNnsSioN SCNEMA]cii i e e e e e e e e e e e s araaereeeeeeeeanes 9
[Definition: eXchange SChEMA] ..o e e e e e rae e e e e e e e e eaaes 10
[Definition: constraint SChEMA]cco e e e e e e e rre e e e e e e e aaes 11
[Definition: NIEM-conformant XML dOCUMENT]uviiiiiiiiiiiiiieeee et e e 12
[Definition: NIEM-conformant element information item]........cceeeieiieiiiiiiiiie e, 12
[Definition: documented COMPONENT]......ceeiii i e e e e e e e e rae e e e e e e e eeanns 29
[Definition: data definitioN]eei e e e e et e e e e e e aaes 29
[Definition: apPPINTO NAMESPACE]ccocccirreeeiee et e e e e e e escbra e e e e e e eeseaanraeeeeeaeesennnes 57
[Definition: application iINfOrMatioN]........ueeeii i e e e e e e aaes 57
[Definition: deprecated COMPONENT]......uuiiiiiiiieiciiireeee et e e e eescrrrreeeeeeeesearrraeeeeeeesenanns 58
[DEfiNitioN: ODJECE TYPR] e icciiieiieie ettt e e ee e e e e e e ses bbb aeeeeeeeeesesssraeeeeeeessennnes 64
[DEfiNItioN: TOIE TYPE] coeieeieiiteeeee ettt e e e e e s b e e e e e essesasbsaeeeeeeeeesesssraaseeeeessennns 64
[Definition: ROLEOTE @IEMENT] ..uuuuiiiiiiiiiiiiiiiiiiiiiieeeeeeteeeeerereeereereareeeeeaeeersresesareserarerersrerararrrrrararares 65
[Definition: asSOCIATION tYPE]...uiiiiiiiiiie it e e s e e s s are e e e e nbaeee s 68
[Definition: @SSOCIATION] e e e e e et re e e e e e e e e s e aartaeeeeeaeeeenanes 68
[Definition: Metadata tYPE] ..ocuiii it e e e et e e e e araaee s 69
[Definition: metadata @lEMENT] ... e e e e e e 69
[Definition: augMENtatioN TYPE] ...c.viiii i e 71
[Definition: QUEMENTATION]uviiiiie e e e e e e et e e e e e e e e e aarraeeeeeaeesennnes 71
[Definition: StrUCTUIrES NAMESPACE]uvvrieeeieeeeeieiiiirreeeeeeeeeeerirrreeeeeeessesisrrareeeeeeeesessssraaseeeeessennnes 73
[Definition: refereNCe EIEMENT]......uuuuieeiiiiiiiiiiiiieieeeeireeirereeeeereeeeereeeerrererereeesarerererarerarerararssrrararares 76
[Definition: @XTerNal SCNEM@]uuiiiieiiiiiiiiieiiieteteet ettt eeeeeeereeeeeeereeereeeeeeereeesarererarsrersrsrararsssssrarares 78
[DefiNitioN: AdAPTEN TYPE] c.uuuriieiiiiee ettt e e e eseb e e e e e s sesasbraeeeeeeeeesesssraareeeseesennns 79
[DEfiNitioN: COUE TYPE] cciiiiiiriiiiee ettt e e e e e e e e e e e ee s s bbrbaeeeeeeeesesassrsaeeeeeessennes 101

F-1

NIEM NIEM Naming and Design Rules

Appendix G: List of Rules

[RUIE 5-1] (REF, SUB, EXT, CON) .veoereereeeeeeseeseese e seeseeseesseessesseseesesessssessessssssesessessssesssessesssssessens 28
[RUIE 5-2] (REF, SUB, EXT, CON) veovreeeeeeeeeseeseese e eeeseeseeeseessesseseesessssseesseesessssssessessesesssessessessessens 28
[RUIE 5-3] (REF, SUB, EXT, CON) .veovreeeeeeeeeseeseeseeseeseeseess s sesseseesessssseesseeseesssssessessesesssessesssseeesens 29
[RUIE 58] (REF, EXT).erveeveeereeeeeeeeseessesseeeeseeseesssseessessaessessessessesessssssesseessesssesessessssesssesseesessessens 30
[RUIE 5-5] (REF, SUB, EXT) cvvrvreeeeeeeeseeeeeeeeseeseesseeseeseesseesseseeseessessssssseesseessessseseseessesesssessesseseeseens 31
[RUIE 6-1] (REF, SUB, EXT) cvvrvreeeeeeeeseeeeeeeeseeseesseeseeseessees s sessessesssseseeesseessesssesessessesesssessessesenssens 33
[RUIE 6-2] (REF, SUB, EXT) cvvrereeeeeseeseeeeeeeeeseeseesseeseeseesseeseesseseessessssesseesseessessssseseesseesenssessesseeseessens 33
[RUIE 6-3] (REF, SUB, EXT) cvvrvreeeeeeeeseeseeeeeeseeseesseeseeseesseeseessessessesssseseeesseessesesssessessesesssessessesenseens 33
[RUIE 6-4] (REF, SUB, EXT) cvvrvreeeeeeseeseeeeeeeeeseeseesseeseeseesseeseessessessessssesseessesssesssssessessesesssessessesenseens 33
[RUIE 6-5] (REF, SUB, EXT) cvvrvreeeeeseeseeeeeeeeseeseesseeseessesseeseeseessessessssesseesseessesssssessesseesesssessessesenssens 33
[RUIE 6-6] (REF, SUB, EXT) cvvrereeeeeseeseeeeeeeeseeseesseeseeseesseessesseseessessssesseesseessesesssessesseesesssessessesenseens 34
[RUIE 6-7] (REF, SUB, EXT) cvvuvrvrerereereeeeeesessessesesssessesessesesessesssseseesessessssssessessessssesessessenesessssessens 34
[RUIE 6-8] (REF, SUB, EXT) cvvuvrveereeeeeeeeeeeseessesesssesseseseesesessessssessesessessssssssessessssesssessenessssssessens 34
[RUIE 6-9] (REF, SUB, EXT) cvvuvrveereeeeueeeeseseeseesesssesseseseesesessessssessesessessssssesessessssesssessenssessssessens 35
[RUIE 6-10] (REF, SUB, EXT) w.vrveveeereeeeeeeessessesesesesseseseesesessesessessesessesessesesessessesesssessesessssssessens 35
[RUIE B-11] (REF, SUB) cvveververeereeeereseeseeseeeseseeseesesssassesesessesessssesseseesessasssessesessesssseseesessesesessssessens 35
[RUIE 6-12] (REF, SUB, EXT) w.vrveveeereeeeeeeeseeseesesessessesesessesessesessessesessesessssesessessssesssessesesessssessens 35
[RUIE 6-13] (REF, SUB, EXT) w.vrveeveeereeeeeeeeseeseesesesessesessesesessesessessesessesessesesessessssesssessenesessssessens 36
[RUIE 6-14] (REF, SUB, EXT) w.vrveveeereeeeeeeeseeseesesseessesessssessessesseseseesessesesesseessssesssssssesessensssssssessens 36
[RUIE 6-15] (REF, SUB, EXT) w.vrveveeeeereeeeeeseeseesesseessesessssesessesseseseesessesssessessssessssessssssesessssssessens 36
[RUIE B-16] (REF, EXT) cvvververeereeeereseesseseeeeesseseesesssessesessssesesssssssessesassesssessessssessssssesessenessssssessens 37
[RUIE 6-17] (REF, SUB, EXT) w.vrveveeeeeeeeeeeseeseesseseessesssessessessessesessesessesssessssessesesssssssssesssssssseesens 37
[RUIE B-18] (REF) «.vreveeeeeeeeseeeeseeeseessaseeeeesseseess s ssaesess s s eseeseseesessesaesesssessesseseseess s esssseneessseseesens 37
[RUIE 6-19] (REF, SUB) cvv-vereeeeereeeeeeseeseeeeeeeeseessesseessessesssessssessessesesessesesssesssssesessesssessssessssssssensens 38
[RUIE 6-20] (EXT) weverevreeeeeeeeseeseeeeeeseeseesseesessessese s esassessses s esesseseesessessesesesessessesesessssessssesesssseseesens 38
[RUIE 8211 (EXT) wevereveeeeeeseeseeeeeeeeseeseeseeeseseeseese s esaeseseses s eseesesseseseesaeeesssessesseseseessssesessesesesssseesens 38
[RUIE 6-22] (EXT) «-veeeeeeeeeeeeeseeseeeeeseesseeseeeeeseeseesseesesssessess s seeseseese s seseeesseessssseseseese e seseeeseesseseeeeens 38
[RUIE 6-23] (REF, SUB, EXT) «.ereeveeeeeeeeeeeseeseesseeseeseesseeseessesseseesessseseesseessesssesessessesesssessessesenesens 38
[RUIE 6-24] (REF, SUB, EXT) «.vreeeeeeseeeeeeeeseeseesseeseessesseeseessessessesssssessesseessesssssessesseseessessessesenesens 39
[RUIE 6-25] (REF, SUB, EXT) «.vrveeeeeeeeeeeeeseeseesseeseeseessesseessessesseseseseseesseessesssssessessesesssessesseesenssens 39
[RUIE 6-26] (REF, EXT) cvrveeeeereeeeeeseeseesseeseeseeseesseesesseessessessessessessssesseasseessesssesessessssesssessesseseeesens 39
[RUIE 6-27] (REF, EXT) tvrveeeeeeeeeeeseeseesseeseeseeseesseesesseessess e ssessessesessesseesseessessseseseessssesssessesseseeneens 40
[RUIE 6-28] (REF, SUB, EXT) «.vrveeeeeseeeeeeeeseeseesseeseessesseeseeseesseseessssseseasseessesssssessessesesssessesseeseneeens 40
[RUIE 6-29] (REF, SUB) cvv-veveeeeeeeeeseee e e eeeseeseesseeseeseessees s seesessesesesesseasseeseesesssesseesesesssesseeseseeseens 40
[RUIE 6-30] (REF, SUB) cvvveveeeeeeeeeeseeeseeeeeeeeseeseesseeseeseessees s sessessesesessssessseeseessessessessesesssesseeseseeneens 40
[RUIE 6-31] (REF, SUB) cvr-veeeeer oo eeeeeeeeeseeseesseeseeseessees s seeseseesesesssseesseeseesssssessessesesesesseesesenneens 40
[RUIE 6-32] (REF, SUB, EXT) w.vreeeeeeeeeeeeeeeeeseeseesseeseeseesseeseessessessessssesseesseeseesssssessesseesesseesseeseeseeneens 40
[RUIE 6-33] (REF, SUB, EXT, CON).ereoeeeeeeeeeseeseeee s eeseeeseseeseeseeseeeseeseeeseeseesssssessessesenseessesseeseeseens 41
[RUIE 6-34] (REF, SUB, EXT, CON).erereeeeeeeeeseeseeeeeeseeseeseeeseseeseeseesseeseeseesseeseesesssessessesenssessesseeseessens 41
[RUIE 6-35] (REF, SUB, EXT, CON).erereeeeeeeeeseeseeeseeseeseeseeeseseeseeseeseseseeseesseeseessessessessesesseessesseseessens 41
[RUIE 6-36] (REF, SUB, EXT, CON)..uvreveeeeeeeeseereeeeeeseesesseseesesseseesesesaseesesesseesessessssessesessesesessssessens 41
[RUIE 6-37] (REF, SUB, EXT, CON)..ovreveeeeeereeseereeeeeeseeseseeeesesseseesesesessesesesseesessessesesesessenessssssessens 42

G-1

NIEM NIEM Naming and Design Rules

[RUIE 6-38] (REF, SUB, EXT, CON)..ovreveeeeeeeseereeeeeessesesseseesesseseesesesaseesesesseesessessssesesessesessssssessens 42
[RUIE 6-39] (REF, SUB, EXT) +.vrveveeeeeeeeeeeseeseesesesessesesessesessessesessesessesessesesessesessesesessenesssssseesens 43
[RUIE 6-40] (REF, SUB, EXT) +.vrveveeeeeeeeeeeseeseesesseessesessssesessessesessesessesesessesessessssesessssesessssssessens 43
[RUIE B-41] (REF, SUB, EXT) +.vrveveeeeeeeseeeseeseesesseessesesessesessessssessesessesesessesessessssesesessensssssssessens 43
[RUIE 6-42] (REF, SUB, EXT) w.vrveeeeeeeeeeeeeeseeseesseeseessessesseessesseseessssssssesseessesssssessessssesssessesssssessens 43
[RUIE 6-43] (REF, SUB, EXT) «.vrveeeeeseeeeeeeeseeseesseeseessesseeseessessessesesssessesseessesssesessesssssessessessessassens 43
[RUIE 6-44] (REF, SUB, EXT) w.vrveeeeeseeeeeeeeseeseesseeseessessesseesseseessessssssssesseessssssssessessssssssessesssssensens 44
[RUIE 6-45] (REF, SUB, EXT) +.vrveeeeeeeeeeeeeseeseeseeseessesseeseessessessesesssessesseesssssssessessssssssessesssseessens 45
[RUIE B-46] (REF, EXT) cvrveeeeereeeeeeseeseeeseseeseeseesseessessessasssesseseessesessssseesseessesssssessessssesssessessessessens 45
[RUIE B-87] (REF, EXT) cvvveeereereeeeeeseeseeeeeeeeeseeseess e ssessessasssessessessesessssssessseseesssssessessessssseseessessassens 45
[RUIE 6-48] (REF, SUB, EXT) w.vrveeveeeeeeeeeeeeseeseesseeseessessesssessessessesesessessesseesessssssessesssssessensesssssessens 46
[RUIE 6-49] (REF, EXT) +vrveeeeeeeeeeeseesseeseeseeseeseesseesesssesseessessessessesesesesseasseessesesssessessesesssessesseesenseens 46
[RUIE 6-50] (REF, EXT) +vrveeeeereeeeeeseessesseeseeseessesseesesssessasssessessessesssesssssesseessesssssessesseesssssessesseseessens 46
[RUIE 6511 (REF, EXT) cvrveeeeereeeeeeseesseeseeseeseeseesseesesssesseessssessessesesessassessesssessssseseessesesssessesseseeseens 47
[RUIE 6-52] (REF, SUB, EXT) w.vreeeeeeeseeeeeeeeeseeseesseeseeseessees s sessessesssesseseessesssessssseseesseesesssessesseeseeseens 47
[RUIE 6-53] (REF) «-vereeeeeeeeee e e e e seeeseeeeeseeseeseess e seeseeseees s seeseeeesesessaeeesseessessseseseeeseseassesseeseseeneens 48
[RUIE 6-54] (REF, SUB, EXT) w.vreeeveseeeeeeeeeeseeseesseeseeseesseeseessesseseesssseeseesseessesssesessessesesssessessesenseens 48
[RUIE 6551 (REF) «-veeeeeeeeeeeeeseeeeeeeeeseeeseeseeeeeseeseess e seassessees s seeseseesesssaeeasseessessseseseess e seassesseeseseeeeens 49
[RUIE 6-56] (REF, SUB, EXT) w.vrveeveeereeseeeeeeseeseesesesessesessesssessessssessesessesessssesessessssesssessesesessssessens 49
[RUIE B-57] (EXT) wevvreveeeeeeseeseereeeeseseeseesesesesseseesesessesseseses e sesseseeseseesessaseseesesessesesseseesessesesessssensens 50
[RUIE 6-58] (REF, SUB, EXT) w.vrveeveeereueeeeeeseessesesesesseseseesesessesessessesessessssssesessessssesssessesessssssessens 51
[RUIE 6-59] (REF, SUB, EXT) w.vrveeveeereeeeeeeeseeseesesesessesessesesessesesseseesessesessssesessessssesesessesessssssessens 51
[RUIE 7-1] (REF, EXT).vuveveeereereeeeseseesseseesesesseseesesssessesesessesessssseseseesessenesessesessessssesesessesesessssessens 52
[RUIE 7-2] (REF, SUB, EXT, CON)..voovriveeeeeeseeseeseeeeeseeseseeseesesseseeseseesessesesessesessesesseseesessenessesssessens 52
[RUIE 7-3] (REF, SUB, EXT, CON)..couvrieeeeeeeseeseeseeeeeseeseseeseeseseeseeseseseesesesesseesessesessesesessenessssssessens 52
[RUIE 7-4] (REF, EXT).vrveveeereereeeeeeseesseseeesesseseesssessassesssessesessessesessessesesssesssssssesesssssessssesessssssessens 53
[RUIE 7-5] (REF, EXT).vrveveeereereeeeeeseesseseeeeesseseess e ssessesssessesessessesessessesesssessessssessssssessssesssssseseesens 53
[RUIE 7-6] (REF, EXT).vuveveeereereeeeeeseesseseeeeessessessessassesssessesessessesessessesesssesssssssesesssssessssesesssssseesens 53
[RUIE 7-7] (REF, EXT).vrveveeereereeeeeeseeseesseeeesseseess e ssassesssessssesseseesesesaesesesesssssasesessssessssesesssssseesens 53
[RUIE 7-8] (REF, EXT).erveveeereereeeeeeseeseeseeeeesseseessessessesssesssesessessssessessesesssessessssseseessssessssesssssssseesens 53
[RUIE 7-9] (REF, EXT).vuveveeereereeseeeseeseeseeeeessessess s ssessesssessssessessssesessesesssesssssssesssssssessssesessssssessens 53
[RUIE 7-10] (REF, EXT) tvvveeeeereeseeeseeseeseeseeesseseessessessesssessssessessssessessesssssessessssessesssessssessssssssessens 54
[RUIE 7-11] (REF, EXT) torveeereereeeeeeseessesseeeeeseeseesseesesssessess e sseesessesessesseesseessessseseseessesesssessesseseaneens 54
[RUIE 7-12] (REF, EXT) cvrveeeeeeeeeeeseeseesseeseeseeseesseesesssessess e ssessessessssesseesseesessssssessessssesssessessesenesens 54
[RUIE 7-13] (REF, EXT) tvrveeeeereeeeeeseessesseeeeeseeseesseeseeseessess e sseeseseesesesesseesseessessseseseessesesssessessesenesens 54
[RUIE 7-14] (REF, EXT) cvrveeereeeeeeeeseeseesseeseeseeseesseesesseessess e ssessessesssesesseesseessesssesessessssesssessesseseaesens 55
[RUIE 7-15] (REF, EXT) +vrveeeeereeeeeeseessesseeseeseeseess e sesseessess s sessessessssesseesseessessseseseessesesssessesseseaesens 57
[RUIE 7-16] (REF, EXT) cvvveeeeereeeeeeseeseesseeseeseeseesseeseeseessess e sseeseseesessesseesseeseesssesessessesesssessesseseneeens 58
[RUIE 7-17] (REF, EXT) torveeeeeeeeeeeeseeseeseeeseeseeseesseesesseessess s sessessesessesseasseessssseseseess s sesssessesseseaesens 59
[RUIE 7-18] (REF, EXT) +vrveeeeereeeeeeseeseesseeseeseeseesseesesssessess e ssessessesessssseesseesssssesessessesesssessesseseeesens 59
[RUIE 7-19] (REF, EXT) torveeeeeeeeeeseesseeseeeeeseeseesseeseassessees s sessessesesesseseesseeseesssssessessesesssessesseseassens 59
[RUIE 7-20] (REF, EXT) +vrveeeeeeeeeeeseessesseeseeseeseesseeseeseessessessessessesssesssseassesseesssssessessesesssessesseseaseens 59
[RUIE 7-21] (REF, EXT) tvvveeeeereeeereseeseeseeesesseseesesessessesesessesessesesseseesessesesessesessessssesesessenesessssessens 59
[RUIE 7-22] (REF, EXT) cvvvereeeereeeereseeseeeeeesesseseesesessesseseseesesessesesseseesessaseseesesessessssesesessenesessssensens 59

G-2

NIEM NIEM Naming and Design Rules

[RUIE 7-23] (REF, EXT) cvvvereeeereeeeeeseeseeseeeseseeseesesessesseseses s esessessssessesassesesesseseesessssessessssenessssssessens 60
[RUIE 7-24] (REF, EXT) cvrveeereereeeeeeseeseeseeesesseseesesessasseseses s esessessesessessssesssessesessessssessesessessssssssessens 60
[RUIE 7-25] (REF, EXT) cvrvereeeereeseeeseeseeseeesessesessesssessesesssseesesssssssessesssseseseeseseesesssssssessssesessssssessens 60
[RUIE 7-26] (REF, EXT) cvvvereeeereeseeeseeseeseeesessesessesssassesesessessesssssesessesaseesssesseseesessssesessssensssssssessens 60
[RUIE 7-27] (REF, EXT) tvrveveeeeeeeeeeseeseeeseseeeseeseesseeseeseesssessssessessesesssassessaessesssesessess s sessseseesssseensens 61
[RUIE 7-28] (REF, EXT) tvrveeeeereeeeeeseesseeseeeeeseeseesseseessessssssssessessesesessseesseessesssssessessssessseseessessassens 61
[RUIE 7-29] (REF, EXT) cvvveeeeereeeeeeseeseeeseeeeseeseess e seeseesssessssesseseesessssseessesssesssssessessessssseseesssseansens 61
[RUIE 7-30] (REF, EXT) tvvveeeeereeeeeeseeseeeseeeeseeseesseessassessasssessesseseesessesseesseessesssssessessssssssessessessassens 61
[RUIE 7-31] (REF, EXT) tvvveeeeereeeeeeseeseeeeeeeeeseeseesseeseessessesssssesseseesesseaseesseessesssssessessesessseseesssseansens 61
[RUIE 7-32] (REF, EXT) tvrveeeeereeeeeeseeseeeseeeeeseeseesseeseaseessasssessessessesesseassessaesssssssessessesessseseesssssassens 62
[RUIE 7-33] (REF, EXT) tvrveeeeereeeeeeseeseeeeeeeeeseeseess e seassessess s ssessessesesseaseesseessessssseseessssesssensessessensens 62
[RUIE 7-34] (REF, EXT) torveeeeeeeeeeeseesseeseeseeseeseesseesesssessees s sessesseseseseaseesseessesssssessesseseessessesseesenseens 62
[RUIE 7-35] (REF, EXT) torveeeeeeeeeeeseesseeseeseeseeseesseesesssessees s seesessesssessaseesseessesssesessessesesssesseeseesenssens 62
[RUIE 7-36] (REF, SUB, EXT) «.vreeeeeeeeeeeeeeeseeseesseeseeseessees s eessessessssesseessesssessessessesseesesssessessesenseens 62
[RUIE 7-37] (REF, SUB, EXT) w.ereeeeeeeseeeeeeeeeseeseesseeseeseeseees s seseeseesssseeseesseessesssesessesseesesssessessessnseens 63
[RUIE 7-38] (REF, SUB, EXT) w.vreeeeeeeeeeeeeeeeseeseesseeseeseessees s eeseessesessseseesseessesesesessesseesesssessesseseeneens 63
[RUIE 7-39] (REF, EXT) +vvveeeeeeeeeeeseesseeseeeeeseeseesseesesseessees s sessessesesseaseesseessessseseseessesesssessessesenssens 64
[RUIE 7-80] (REF, SUB, EXT) w.vreeeeeeeeseeeeeeeeeseeseesseeseeseessees s sessessessssesseesseessesssssessesseesesssessesseseeseens 66
[RUIE 7-41] (REF, EXT) cvvveeereereeeeeeseeseesesesesseseesesssassesesessesessssessesesessasssessesessessssesessessenssessssessens 68
[RUIE 7-42] (REF, SUB, EXT) wevrvrveeeeeeeeeeeseeseesesssessesesssseesessesssseseesessesessssesessessssesesessesesessssessens 69
[RUIE 7-43] (REF, SUB, EXT) wevrveveeeeeeeeeeeseeseesesesesseseseesesessesesseseesessessssssesessessssesssessesesessssessens 69
[RUIE 7-44] (REF, SUB, EXT) c.vrveveeereeeeeeeesseseesesssesseseseesesesssssssessesessesssseseesessessssesssessesesessssessens 70
[RUIE 7-85] (REF, EXT) cvvverveeereeeereseeseesseesesseseesesssessesesessesessesssseseesessasssessesessessssesessessesesessssessens 70
[RUIE 7-46] (REF, EXT) tvrveeereereeeereseesseseeesesseseesesssassesesessesesssssssessesessesesessesessessssesesessenessssesessens 70
[RUIE 7-47] (REF, SUB, EXT) w.vrveveeeeeeeeeeeseeseesesseassesesessesesssseeseseesessesesessesessessssessesessesessssssessens 71
[RUIE 7-48] (REF, SUB, EXT) c.vrveeeeeeeeeeeeeseeseeseeeseessesssessessessesssseseesessesssesssssssessessssssssessssssssessens 71
[RUIE 7-49] (REF, EXT) tvrveeereereeeeeeseeseeseeeeesseseeseeessessesssessesessessssessessssesssesssssssessssssessssensssssssessens 72
[RUIE 7-50] (REF, EXT) cvvverveeereeseeeseeseeseeeeesseseesesssessessssssssesssssssessessesssssesssssssesssssssessssessssssesessens 72
[RUIE 7-51] (REF, SUB, EXT) w.vrveeeeeeeeeeeeeseesseseeseessesesessssessesseseseesessesesessesssssessesssessssessssssssessens 72
[RUIE 7-52] (REF, SUB, EXT) c.vrveveeeeeeeeeeeseesseseeseessesssessssessessesesoesessesssesssssssessessssssssessssssssessens 72
[RUIE 7-53] (REF, SUB, EXT) cevrveeeeeeeeeeeeeseeseeseeeseessessssssssessessssesesessesssessessssessessssssssensssssssessens 73
[RUIE 7-54] (REF, EXT) tvvveeereereeeeeeseeseeseeeeessessesssseessesssessesessessesessessssesssessesssssessesssessssesssssssseesens 73
[RUIE 7-55] (REF, SUB, EXT, INS) verereeeeeeeeeseeseeseeeseeseessesseeseesseseessssesseesseesessssssessesseseessessesseeseessens 74
[RUIE 7-56] (REF, SUB, EXT) «.vrveeeseeeeeeeeeeseeseesseeseeseesseeseeseesseseesssssessesseessesssesessessesesssessessesenesens 75
[RUIE 7-57] (REF, SUB, EXT) w.vreeeeeeeseeeeeeeeseeseesseeseesseseesseeseesseseessssseseesseessessseseseessesesssessesseseeesens 76
[RUIE 7-58] (REF, SUB, EXT) w.vrveeeseeseeseeeeeseeseesseeseeseessesseessessessesssssessesseesessssssessessesesssessesseseessens 76
[RUIE 7-59] (REF, SUB, EXT) w.vrveeeeeeeeseeeeeseeseesseeseeseessesseessesseseesssssseseessesssssssesessessesesssessesseseessens 76
[RUIE 7-60] (REF, EXT) cvvveveeereeeeeeseessesseeseeseessessesesssessessessessessesessesseasseesssssesessessssesssessesseseessens 77
[RUIE 7-61] (REF, EXT) cvvveeeeereeeeeeseessesseeseeseeseesseesesssessess e ssessessesessssseesseessesssesessessssesssessesseseeesens 79
[RUIE 7-62] (REF, EXT) cvvveeeeereeeeeeseeseeseeeeeeseessesseesesseessess e ssessessessssesseasseesesssesessessssesssessesseseeesens 79
[RUIE 7-63] (REF, EXT) +vrveeeeeeeeeeseesseeseeseeseeseesseeseeseesseesessessessesssesssseasseessessssseeseesesesssessesseseaneens 79
[RUIE 7-64] (REF, SUB, EXT) woereeeeeseeseeeeeeeeeseeseesseeseeseessees s sessessessssesseesseeseesssssessesseesesssesseeseseeseens 80
[RUIE 7-65] (REF, SUB, EXT) w.vrveveeeeereeeeeeseeseesesssesseseseesesessesesseseesessesessesesessesssseseesessenssessssessens 80
[RUIE 7-66] (REF, EXT) cvvververeereeeereseeseesseesesseseesesssessesessesesessssesseseesessaseseesesessessssesesessesessssssessens 80

G-3

NIEM NIEM Naming and Design Rules

[RUIE 7-67] (REF, EXT) evoveeeeeeeeeeeeeeeeeeseeseesesesessesesseesesessessssesseseseesesessesessesseseseeseseesessesessesesensesens 80
[RUIE 7-68] (REF, SUB, EXT) ovoveeeeeeeeeeseeeeeeeseesessesessessesessessesessesesessesessesessessesessessessesessesessesssensesens 80
[RUIE 7-6B9] (SUB) ..ueteeiiiiieiiiiiiireiee e eecetreee e e e e e e sestbere e e e e e e seseaabbaereeseessesssbaaseseeeeeesassssranseeesessennnes 81
[RUIE 7-70] (SUB) ettt eeees e s eee e e s e e seseeseseesessesesseseeseeeeseesesessesseseseeseseeseseesessesesenseeens 81
[RUIE 8-1] (INS) et e e e eee e s e e eeeseeeeeees e e s eeseseeseeeeseeseseeseseeseseeseeeeseeeesesnesesensesens 83
[RUIE 8-2] (INS) 1.t e e e eee e s e e s e s e eeeees e e s eeseseeseeseseeseseeseseeseeseeseseeseeeeseeseseseneeeens 83
[RUIE 8-3] (INS) .ottt e e e eee e s e e s e s e eeeees e e e eeseseeseeeeseeseseesesseseeseeseseeseeeeseesesesennesens 84
[RUIE 8-4] (INS) .ot ee et e e e eee e e s e e e e s e eeeees s e s eeseseeseseeeeeseseeseeseseeseeseseeseseesessesesennesens 85
[RUIE 8-5] (INS) .ot e e s eee e e seeeeseseeeeeeeseseeseeseseeseeeeseesesesseseeseeseeseseeseseeseesesesennesens 85
[RUIE 8-6] (INS) .ot e e e eee e s e e seseeeeeees e e s eeseseeseeseseeseseeseseeseseeseseeseseeseesesesennesens 85
[RUIE 8-7] (REF, EXT, INS) «- oo eeeeeeseeseeeee e seeeeseeseeseeeeseesesesseseesessesesseseesesseseeseeseseeseseesessesesessesens 86
[RUIE 8-8] (INS) 1.ttt eeseeeeeees e eeeeeeseseeseseeseeeeeeeaeseeeseeseseeeeeeseseseseeneeseeeeseeseeseseeeseeeeseneeeeas 88
[RUIE 8-9] (INS) 1.ttt eeseeeeeee e eeeeeeseseeseeeeseeeeeeeaeeseeneeseseeeeeeseseseseeeeeeeeseseeeeeeeeeseseeeeeeneeeens 88
[RUIE 8-10] (INS) cevvreveeeeeeeeeeeeeeeeseeeeeeesseeeeseeeesesseseseseseeeseeesseeseesessesseeseseseseeeseseeseseeeesssseseseeeseeneeeens 88
[RUIE 811 (INS) cevvrteeeeeeeeeeeeeeeeeeseeeeeeseeeeeeeeseseeseseeeeeeeeseaeseeeseeseeeeeeeeseseseeeesseseeseseeseseseeseseeesseneeeens 88
[RUIE 8-12] (INS) cevveteeeeeeeeeeeeeeeeeeseeeeeeseeeeeeeeseseeseseeseeeeeeeaesseeseeseeeeeeeeseseseseeseeseeseseeseeeseeeesetesseneeeeas 89
[RUIE 8-13] (INS) cevveeeeeeeeeeeeeeeeeeeseeeeeesseeeeeeeseseseeseseseeeeeeeaseseeseeseeeeeeeseseseeeesseseeseseeeeseeeesesetesseneeeens 89
[RUIE 8141 (INS) .ttt eeseeeeeeeeeeeeeeeeseseeseseeseseeeesasseeeseeseseseeeeesesessesseeeeseseesesseseseseteeseneaeens 89
[RUIE 9-1] (REF, SUB, EXT) cvrvveereeeeeeeseeeeeseseeseseesessesseseesessesessesessessessssesessesseseseessesesessesessesesenseenns 89
[RUIE 9-2] (REF, SUB, EXT) cvrvveereeeeeeeseeeeeseseesessesessesseeessassssessesessessessssessssessasesesseesesessesessesesenssenns 90
[RUIE 9-3] (REF, SUB, EXT) cvrvveereeeeeeeseeeeeseseesesseseseesesessessssessesessesssssssessssesseseseeseesesessesessesssensesens 90
[RUIE 9-4] (REF, SUB, EXT) cvrvveereeeeeeeseeeeeeeseesessesessessesessassssessesesessassssessssesseseseeseesesessesessesssensesnns 90
[RUIE 9-5] (REF, SUB, EXT) cvrvveereeeeeeeseeeeeseseesessesessessesessessesessesessessessssesessessesessesssesesessesessesssensesens 91
[RUIE 9-6] (REF, SUB, EXT) cvreeeeeeeeeeeeseeeeeseseesessesessesseseesessesessesessessesessesessesseseseaseeeesessesessesesensesens 91
[RUIE 9-7] (REF, SUB, EXT) cvreeeeeeeeeeseeeeeseseesessesesesseseesessssessesessessasessesessessaseseaseesesessesessesesensesens 91
[RUIE 9-8] (REF, SUB, EXT) cvreeeeeeeeeeeeseeeeeeeeeesesseseeseeseeeesessesessesessessasessesessessaseesesseseesessesessesesensesens 91
[RUIE 9-9] (REF, SUB, EXT) cvreeeeeeeeeeeeseeeeeeeeeeseeeeseeseeseeessessesessesesesseseesesessesseseeseeseseesessesessesesensesens 93
[RUIE 9-10] (REF, SUB, EXT) evoveeeeeeeeeeeeeeeeeeseseseeseeseesesessessesessesesessesessesessessesessesseseesessesessesesensesens 94
[RUIE 9-11] (REF, SUB, EXT) ovrveereeeeeeeseeeeeeeseeseseeseeseeseeesseseesessesesessasessesesseseeseesesseseesessesessesesensesens 94
[RUIE 9-12] (REF, SUB, EXT) ovreeeeeeeeeeeeeeeeeeseeseeeeseeseseeseesessesessesesessasessesessesseseesesseseesessesessesesensesens 94
[RUIE 9-13] (REF, SUB, EXT) evoveereeeeeeeeeeeeeeeseeseseeseeseeeeseesessesessesesessesessesessessesessesseseesessesessesesensesens 95
[RUIE 9-14] (REF, SUB, EXT) evrveereeeeeeeeeeeeeeeseseseesessesseeessessesessesesessesessesessessesesseeseseesessesessesesensesens 95
[RUIE 9-15] (REF, SUB, EXT) ovrveereeeeeeeeeeeeeeeseeseeeeseeseeseeeesesseseeseseeseeseseesesessesseseeseeseseesessesessesesessesens 95
[RUIE 9-16] (REF, SUB, EXT) ovoveeeeeeeeeeeeeeeeeeeeseeseeeeseeseeeeseeseseeseseeseesesessesessesseseeseeseseesessesessesesessesens 95
[RUIE 9-17] (REF, SUB, EXT) rvoeeeeeeeeeeeeeeeeeeseeseeseeeeseeseeeesesseseeseseeseeseseesesessesseseeseeseseesessesessesesessesens 9%
[RUIE 9-18] (REF, EXT) ovoeeeeeeeeeeeeeeeeeeeeeseeeeeeeseseeseeseeeeseeseeseseesesesessesessessssesseseeseeseseesessesessesesessesens 9%
[RUIE 9-19] (REF, SUB, EXT) ovoeeeeeeeeeeeeeeeeeseseeseeseeeeseeseeeesesseseeseseesesseseesesessesseseeseeseseesessesessesesessesens 99
[RUIE 9-20] (REF, SUB, EXT) ovoeeeeeeeeeeeeeeeeseseeseeseseeseeseseesesseseeseseesessesessesessesseseeseeseseesessesessesesessesens 99
[RUIE 9-21] (REF, SUB, EXT) rvreeeeeeeeeeeeeeeeeeeeeseeseseeseeeeseeseseesesseseeseseeseeseseesessesessesssessesessessesessesenn. 100
[RUIE 9-22] (REF, SUB, EXT) ov-eeeeeeeeeeseeeeeeeseeseeeeseeses s seeseseesesseseeseseeseeseseesessesessesssessesessessesessesenns 100
[RUIE 9-23] (REF, SUB, EXT) ovoeeveeeeeeseeeeeeeseeeseesessessseeseesssesseseesessesessesesssesesesesessessesessessesssssssans 100
[RUIE 9-24] (REF, SUB, EXT) ovuvrveeeeeeseeeeeeeseeessesessessesessesssessesessessessesesesssssesesseessessessssessesssssesans 100
[RUIE 9-25] (REF, SUB, EXT) ettiiiuieeiiiieeeiiiee ettt e siteeeeteeesteeesteeeesaeesssseessnseeesnseesesseesnseesneeesnnenesnnns 101
[RUIE 9-26] (REF, SUB, EXT) ..ttiiiuieeiiiiieeiiieeeitteeeteeeeteeesteeesteeeesaeesssseeesnseeesaseesnnseesnseesneeesnneeesnnes 101

G-4

NIEM NIEM Naming and Design Rules

[RUIE 9-27] (REF, SUB, EXT) c.vrveeeeereeeeeeeeeseeseesessssessesesessssesssssssssssessesessssassessssssesessessenesssassenes 101
[RUIE 9-28] (REF, SUB, EXT) w.vvrvevereereeeeeeeeeseeseesessssesseseseessssesessssessssessesessssassessssssesessessesesssassenes 102
[RUIE 9-29] (REF, SUB, EXT) w.vvrveeeeereeeeeeeeseesesessesessessseessesessssssessssessesessssassessssssesessessenesessassees 102
[RUIE 9-30] (REF, SUB, EXT) w.vrveeereereeeeeeeeeseeseesessseessesesessssessssssessesessesessssassessssssesessessenesssassenes 102
[RUIE 9-31] (REF, SUB, EXT) wevrveeeeeeeeeeeeeseeseesseeseeseesseesessseseessessesesessessessseesessessesseesessenseessaseenes 102
[RUIE 9-32] (REF, SUB, EXT) w.vrveeeeeeeeeeeeeseeseessseseeseesseesessseseessessesesessessesssessessessesssessesseneeessassenes 103
[RUIE 9-33] (REF, SUB, EXT) w.vreeeeeeeeeeeeeeseeseeseeeseeseesseessssseseessessesesessessesssessessessesssessessenesessaseenes 103
[RUIE 9-34] (REF, SUB, EXT) w.vrveeeeeeeeeeeeeseeseesseeseessesseesessseseessessesesessessesssessessessesssessessesesessaseenes 103
[RUIE 9-35] (REF, SUB, EXT) ..rvrveveeeeeeeeeeeseeseessesseeseesseesessseseessessesesessessssssessessesseesessesseneeessassenes 103

G-5

NIEM NIEM Naming and Design Rules

Appendix H: Index

This index points to important uses and definitions of key terms. It is not intended as a
complete index of all uses of these terms.

ancestor, 5

appinfo, 4

assertion, 15
association, 15
characteristic, 15
child, 4

component, 5

CON, 7

conformance, 6
constraint schema, 11
conventions, 2
definition, 2
descendant, 5

DHS, 1

document, 12
document element, 5
DOJ, 1

EBNF, 3

element, 12
exchange schema, 10
EXT, 7

extension schema, 9
formatting, 3
GIXDM, 1
identification, 17
InfoSet, 3, 4

INS, 7

namespace, 5
NBAC, i

NDR, 1

NIEM, 1

NTAC, i

own, 5

parent, 4

PMO, i

principle, 3

property, 16
RDF, 13

REF, 7

reference schema, 7
relationship, 16
RFC 2119, 4

root element, 5
rule, 3
structures, 4
SUB, 7

subset schema, 8
terminology, 3
XML, 1

XML Schema, 5
xsd, 4

xsi, 4

H-1

NIEM NIEM Naming and Design Rules

Appendix |: Notices

This document and the information contained herein is provided on an “AS IS” basis and the
authors DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS
OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

(NIEM)

	Webb Roberts, Georgia Tech Research Institute
	Susan Liebeskind, Georgia Tech Research Institute
	Mark Kindl, Georgia Tech Research Institute
	This document specifies the data model, XML components, and XML data for use with the National Information Exchange Model (NIEM) version 2.0.
	This document is a specification for NIEM-conformant XML Schema documents, components, and instances. It represents the design that has evolved from the collaborative work of the NIEM Business Architecture Committee (NBAC) and the NIEM Technical Arc...
	This specification is a product of the NIEM Program Management Office (PMO).
	Send comments on this specification via email to nisshelp@ijis.org.
	Introduction
	Scope

	• The underlying NIEM data model
	• Guiding principles behind the design of NIEM
	• Rules for using XML Schema constructs in NIEM
	• Rules for modeling and structuring NIEM-conformant schemas
	• Rules for creating NIEM-conformant instances
	• Rules for naming NIEM components
	• Rules for extending NIEM-conformant components
	• A formal definition of the NIEM data model.
	Such a definition would focus on the Resource Definition Framework (RDF) and concepts not strictly required for interoperability. This document instead focuses on definition of schemas that work with the data model, to ensure translatability and int...
	• A detailed discussion of NIEM architecture and schema versioning.
	Such rules will be addressed in [ARCH].
	• The artifacts of the NIEM information exchange process.
	The artifacts of the NIEM information exchange process are discussed in [IEPD].
	Audience
	Document Conventions
	Document References
	Normative and Informative Content
	Formatting

	• xsd: identifies keywords from the W3C XML Schema Definition Language specification.
	• xsi: identifies keywords from the W3C XML Schema's XML Schema Instance specification.
	• structures: identifies keywords from the NIEM structures namespace.
	• appinfo: identifies keywords from the NIEM appinfo namespace.
	Terminology
	RFC 2119 Terminology
	XML Information Set Terminology

	• parent of an element (Element[parent])
	child of an element (Element[children])
	Note that the InfoSet properties “Element[parent]” and “Element[children]” correspond to a direct, immediate relationship with an element. Children of an element and their children, and so on, are collectively referred to as descendants of that elem...
	• element owning an attribute (Attribute[owner element])
	The owner of an attribute is the element that possesses or contains the attribute.
	XML Schema Terminology

	• XML Schema Part 1: Structures [XMLSchemaStructures]
	• XML Schema Part 2: Datatypes [XMLSchemaDatatypes]
	XML Namespace Terminology
	Document Organization

	• NIEM Conformance describes terminology, requirements, and artifacts related to NIEM conformance.
	• The NIEM Conceptual Model discusses the underlying semantic model for NIEM.
	• Guiding Principles discusses the principles that serve as the foundation of and guidelines for the rules.
	• Relation to Standards discusses the use of the key standards used in the development of NIEM.
	• XML Schema Design Rules discusses the rules for using XML Schema constructs in NIEM-conformant schemas.
	• Modeling Rules discusses the rules for the additional structures and constraints needed to build NIEM-conformant schemas.
	• XML Instance Rules discusses the rules for NIEM-conformant XML instance documents.
	• Naming Rules discusses the rules used in naming NIEM-conformant data components.
	• A brief, non-normative overview of NIEM.
	• Indexes of principles, rules, and definitions.
	• Discussion and full listings of the NIEM 2.0 supporting schemas (structures and appinfo).
	• An itemized listing of the NIEM 2.0 reference schemas.
	• References to external standard documents.
	NIEM Conformance
	Conformance Targets Overview
	Reference Schemas

	• It is explicitly designated as a reference schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It is intended to serve as the basis for components in IEPD schemas, including subset schemas, constraint schemas, extension schemas, and exchange schemas.
	• It satisfies all rules specified in the Naming and Design Rules for reference schemas.
	• All rules in Section 5
	• All rules in Section 6, except [Rule 6-20] through [Rule 6-22] and [Rule 6-57]
	• All rules in Section 7, except [Rule 7-69] and [Rule 7-70]
	• [Rule 8-7]
	• All rules in Section 9
	IEPD Subset Schemas

	• It is explicitly designated as a subset schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It has a target namespace previously defined by a reference schema. That is, it does not provide original definitions for schema components, but instead provides an alternate schema representation of components that are defined by a reference schema.
	• It does not alter the business semantics of components in its namespace. The reference schema defines these business semantics.
	• It is intended to express the limited vocabulary necessary for an IEPD and to support XML Schema validation for an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for subset schemas.
	• All rules in Section 5, except [Rule 5-4]
	• All rules in Section 6, except [Rule 6-16], [Rule 6-20] through [Rule 6-22], [Rule 6-26], [Rule 6-27], [Rule 6-46], [Rule 6-47], [Rule 6-49] through [Rule 6-51], [Rule 6-53], [Rule 6-55], and [Rule 6-57]
	• In Section 7, [Rule 7-2], [Rule 7-3], [Rule 7-37], [Rule 7-38], [Rule 7-40], [Rule 7-42] through [Rule 7-44], [Rule 7-47], [Rule 7-48], [Rule 7-51] through [Rule 7-53], [Rule 7-55]
	• All rules in Section 9
	IEPD Extension Schemas and Exchange Schemas

	• It is explicitly designated as an extension schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It contains components that, when appropriate, use or are derived from the components in reference schemas or exchange schemas. When a reference schema contains relevant components, it is preferred to an exchange schema.
	• It is intended to express the additional vocabulary required for an IEPD, above and beyond the vocabulary available from reference schemas, and to support XML Schema validation for an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for extension schemas.
	• It is explicitly designated as an exchange schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It provides the broadest, most fundamental definitions of components in its namespace.
	• It provides the authoritative definition of business semantics for components in its namespace.
	• It contains components that use or are derived from the components in reference schemas or exchange schemas.
	• It is intended to identify and define the document element information item for a particular information exchange that is described by an IEPD.
	• It satisfies all rules specified in the Naming and Design Rules for exchange schemas.
	• All rules in Section 5
	• All rules in Section 6, except [Rule 6-11], [Rule 6-18], [Rule 6-19], [Rule 6-29] through [Rule 6-31], [Rule 6-53], and [Rule 6-55]
	• All rules in Section 7, except [Rule 7-69] and [Rule 7-70]
	• [Rule 8-7]
	• All rules in Section 9
	IEPD Constraint Schemas

	• It is explicitly designated as a constraint schema. This may be declared by an IEPD catalog or by a tool-specific mechanism outside the schema.
	• It contains XML Schema components that exist for the purpose of (1) determining schema-validity of XML documents according to some criteria not easily expressed in other classes of schema documents, and (2) expressing those criteria in the XML Schem...
	• It has a target namespace previously defined by a reference schema, extension schema, or exchange schema, or it is intended to support a constraint schema that does have such a target namespace.
	• It is intended to express business rules for a class of XML documents, not the semantics of those XML documents.
	• It satisfies all rules specified in the Naming and Design Rules for constraint schemas.
	• In Section 5, [Rule 5-1] through [Rule 5-3]
	• In Section 6, [Rule 6-33], [Rule 6-34], and [Rule 6-35] through [Rule 6-38]
	• In Section 7, [Rule 7-2] and [Rule 7-3]
	NIEM-Conformant XML Documents and Elements

	• The document element is locally schema-valid.
	• Each element information item within the XML document that has a namespace name matching the target namespace of a reference schema, extension schema, or exchange schema is a NIEM-conformant element information item.
	• Its namespace name and local name matches an element declared by a reference schema, extension schema, or exchange schema.
	• It occurs within a NIEM-conformant XML document.
	• It is locally schema-valid.
	• It satisfies all rules specified in the Naming and Design Rules for NIEM-conformant element information items.
	• In Section 7, [Rule 7-55]
	• All rules in Section 8
	The NIEM Conceptual Model
	• NIEM's conceptual model is defined by a recognized standard.
	• NIEM's conceptual model is very well defined.
	• NIEM's conceptual model provides a consistent basis for relating attributes, elements, types, and other XML Schema components.
	• NIEM's use of the RDF model defines what a set of NIEM data means. The RDF specification provides a detailed description of what a statement means (see [RDFSemantics]), and this is leveraged by NIEM.
	• NIEM's use of the RDF model provides a basis for inferencing and reasoning about XML data that uses NIEM. That is, using the rules defined for the RDF model, programs can determine implications of relationships between NIEM-defined objects.
	• NIEM and the RDF Model
	• NIEM Properties
	• Unique Identification of Data Objects
	• NIEM Data Model Is Explicit, Not Implicit
	• NIEM Data Model Implementation in XML Schema
	NIEM and the RDF Model

	• A NIEM object or association is an instance of a complex type defined by an XML Schema document.
	• The XML Schema document that defines a NIEM object is a NIEM-conformant schema.
	• An assertion that an object exists. An occurrence of an element commonly establishes the existence of an object. Such an object may be tangible or intangible. For example, the element nc:Person in an exchange implies that a person does or did e...
	Descriptions of objects may carry an implicit assumption that objects exist. Such an assumption is dependent on the message in which such descriptions are made. If an object that is described does not exist, it should be made explicit in the defini...
	• An assertion that an object has a characteristic. A feature or quality of an object is commonly represented by an element appearing within the element that establishes the object. For example, the height of a person is described by the nc:PersonHe...
	• An assertion that an object participates in a relationship. A relationship between objects may be established in any of several ways:
	• Both objects may be referenced from an association that establishes the relationship. Associations are also useful for expressing n-ary relationships, as well as relationships supported by additional data.
	• An element may occur within one object that indicates the relationship with the other object. This element may be either a content element or a reference element.
	The NIEM Core schema and some domain schemas have been normalized such that a minimum number of reference or content elements establish relationships. In these cases, use of an association is the more common method for establishing a relationship. ...
	NIEM Properties

	• The property itself: What relationship is being asserted? For example, the property may say that a weapon has a user, or that someone has hair of a particular color.
	• The subject: About what object is the property being asserted? This would be the weapon that has the user, or the person whose hair is being described.
	• The object: What is the value of the property, or with what other object does the relationship exist? This would be the person who is the user of the weapon or the person whose hair has the color brown.
	Unique Identification of Data Objects
	NIEM Data Model Is Explicit, Not Implicit
	NIEM Data Model Implementation in XML Schema

	Guiding Principles
	• Specification Guidelines
	• XML Schema Design Guidelines
	• Modeling Design Guidelines
	• Implementation Guidelines
	Specification Guidelines
	Keep Specification to a Minimum

	This specification SHOULD specify what is necessary for semantic interoperability and no more.
	Focus on Rules for Schemas

	This specification SHOULD focus on providing rules for specifying schemas.
	Use Specific, Concise Rules

	This specification SHOULD feature rules that are as specific, precise, and concise as possible.
	XML Schema Design Guidelines
	Disallow Content Modification With XML Processors

	The content of a NIEM-conformant data instance SHOULD NOT be modified by processing against XML Schema documents.
	Use XML Validating Parsers for Content Validation

	NIEM-conformant schemas and NIEM-conformant XML documents SHOULD use XML Schema validating parsers for validation of XML content.
	Validate for Conformance to Reference Schemas

	Systems that use NIEM-conformant data SHOULD mark as invalid data that does not conform to the rules defined by applicable XML Schema documents.
	Allow Multiple Schemas for XML Constraints

	Constraints on XML instances MAY be validated by multiple schema validation passes, using multiple schemas for a single namespace.
	Define One Reference Schema Per Namespace

	Each NIEM-conformant namespace SHOULD be defined by exactly one reference schema.
	Disallow Mixed Content

	NIEM-conformant schemas SHOULD NOT specify data that uses mixed content.
	Specify Types for All Constructs

	NIEM-conformant schemas SHOULD NOT use or define local or anonymous components, as they adversely affect reuse.
	Avoid Wildcards in Reference Schemas

	NIEM-conformant components SHOULD NOT incorporate wildcards unless absolutely necessary, as they hinder standardization by encouraging use of nonstandardized data rather than standardized data.
	Provide Default Reference Schema Locations

	Schema locations specified within NIEM-conformant reference schemas SHOULD be interpreted as hints and as default values by processing applications.
	Use Open Standards

	NIEM standards and schemas SHOULD leverage and enable use of other open standards.
	Modeling Design Guidelines
	Namespaces Enhance Reuse

	NIEM-conformant instances and schemas SHOULD reuse components from NIEM distribution schemas when possible.
	Example:
	A component SHOULD be identified by its local name together with its namespace. A namespace SHOULD be a required part of the name of a component. A component's local name SHOULD NOT imply a relationship to components with similar names from other n...
	Design NIEM for Extensibility

	NIEM-conformant schemas and standards SHOULD be designed to encourage and ease extension and augmentation by users and developers outside the standardization process.
	Implementation Guidelines
	Avoid Displaying Raw XML Data

	XML data SHOULD be designed for automatic processing. XML data SHOULD NOT be designed for literal presentation to people. NIEM standards and schemas SHOULD NOT use literal presentation to people as a design criterion.
	Leave Implementation Decisions to Implementers

	NIEM SHOULD NOT depend on specific software packages, software frameworks, or software systems for interpretation of XML instances.
	NIEM schemas and standards SHOULD be designed such that software systems that use NIEM may be built with a variety of off-the-shelf and free software products.
	Modeling Guidelines
	Documentation

	A data component definition SHOULD be drafted before the associated data element name is composed.
	Consistent Naming

	1. It is easier to determine the nature of a component when it has a name that conveys the meaning and use of the component.
	2. It is easier to find a component when it is named predictably.
	3. It is easier to create a name for a component when clear guidelines exist.
	Components in NIEM SHOULD be given names that are consistent with names of other NIEM components. Such names SHOULD be based on simple rules.
	Reflect the Real World

	Component definitions in NIEM-conformant schemas SHOULD reflect real-world concepts.
	Be Consistent

	Component definitions in NIEM-conformant schemas SHOULD have semantic consistency.
	Reserve Inheritance for Specialization

	Complex type definitions in NIEM-conformant schemas SHOULD use type inheritance only for specialization.
	Do Not Duplicate Definitions

	Multiple components with identical or undifferentiated semantics SHOULD NOT be defined. Component definitions SHOULD have clear, explicit distinctions.
	Keep It Simple

	NIEM-conformant schemas SHOULD have the simplest possible structure, content, and architecture consistent with real business requirements.
	Be Aware of Scope

	Components defined by NIEM-conformant schemas SHOULD be defined appropriate for their scope.
	Be Mindful of Namespace Cohesion

	XML namespaces defined by NIEM-conformant schemas SHOULD encapsulate data components that are coherent, consistent, and internally related as a set. A namespace SHOULD encapsulate components that tend to change together.
	Relation to Standards
	XML 1.0
	[Rule 5-1] (REF, SUB, EXT, CON)

	The schema MUST conform to XML as specified by [XML].
	Rationale
	XML is a well-known, commonly used W3C Recommendation. It is supported by a large number of commercial and open-source software tools. It is a simple, well-defined, semi-structured data format that is flexible enough to allow for easy extension. X...
	XML Namespaces
	[Rule 5-2] (REF, SUB, EXT, CON)

	The schema MUST conform to the specification for namespaces in XML, as defined by [XMLNamespaces] and [XMLNamespacesErrata].
	Rationale
	NIEM is designed to facilitate cross-domain data exchanges and interoperability. The ultimate scope of NIEM is anticipated to be quite large. The primary purpose of namespaces is to avoid naming conflicts, which for NIEM could become quite common, ...
	XML Schema
	[Rule 5-3] (REF, SUB, EXT, CON)

	The schema MUST conform to the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes, as specified by [XMLSchemaStructures] and [XMLSchemaDatatypes].
	Rationale
	XML Schema has become the generally accepted schema language and is experiencing the most widespread adoption. Although other schema languages exist that offer their own advantages and disadvantages, the current approach is to base NIEM on XML Schema.
	ISO 11179, Part 4

	In a NIEM-conformant schema, a documented component is an XML Schema component that has an associated data definition. These schema components have a textual definition, so that the component may be well-understood. Schemas that do not document th...
	The data definition of a documented component is the content of the first occurrence of the element xsd:documentation, which is an immediate child of an occurrence of the element xsd:annotation, which is an immediate child of the element that defines...
	[Rule 5-4] (REF, EXT)

	Within a NIEM-conformant schema, the data definition provided for each documented component SHALL follow the requirements and recommendations for data definitions given by [ISO 11179 Part 4].
	Rationale
	To advance the goal of creating semantically rich NIEM-conformant schemas, it is necessary that data definitions be descriptive, meaningful, and precise. [ISO 11179 Part 4] provides standard structure and rules for defining data definitions. NIEM ...
	ISO 11179 Requirements
	ISO 11179 Recommendations
	ISO 11179, Part 5
	[Rule 5-5] (REF, SUB, EXT)

	A NIEM component name SHALL be formed by applying the informative guidelines and examples detailed in Annex A of [ISO 11179 Part 5], with exceptions as specified in this document, most notably those specified in Section 9, Naming Rules.
	Rationale
	The guidelines and examples of [ISO 11179 Part 5] provide a simple, consistent syntax for data names that captures context and thereby imparts a reasonable degree of semantic precision.
	Example:
	XML Schema Design Rules
	• Restrictions on XML Schema Constructs
	• xsd:schema Document Element
	• Namespace Imports
	• Annotations
	• Type Definitions
	• Additional Definitions and Declarations
	Restrictions on XML Schema Constructs
	No Mixed Content
	[Rule 6-1] (REF, SUB, EXT)

	Within the schema, an element xsd:complexType SHALL NOT own the attribute mixed with the value true.
	[Rule 6-2] (REF, SUB, EXT)

	Within the schema, an element declaration that is of complex content SHALL NOT own the attribute mixed with the value true.
	Rationale
	Mixed content allows the mixing of data tags with text. Languages such as XHTML use this syntax for markup of text. NIEM-conformant schemas define XML that is for data exchange, not text markup. Mixed content creates complexity in processing, defi...
	Well-defined markup languages exist outside NIEM and may be used with NIEM data. External schemas may include mixed content and may be used with NIEM. However, mixed content must not be defined by NIEM-conformant schemas in keeping with [Principle 9].
	No Notations
	[Rule 6-3] (REF, SUB, EXT)

	The schema SHALL NOT contain a reference to the type definition xsd:NOTATION or to a type derived from that type.
	[Rule 6-4] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:notation.
	Rationale
	XML Schema notations allow the attachment of system and public identifiers on fields of data. The notation mechanism does not play a part in validation of instances and is not supported by NIEM.
	No Schema Inclusion
	[Rule 6-5] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:include.
	Rationale
	Element xsd:include brings schemas defined in separate files into the current namespace. It breaks a namespace up into arbitrary partial schemas, which needlessly complicates the schema structure, making it harder to reuse and process, and also incr...
	Inclusion of schemas that do not have namespaces also complicates schema understanding. This inclusion makes it difficult to find the realization of a specific schema artifact and create aliases for schema components that should be reused. Inclusion...
	No Schema Redefinition
	[Rule 6-6] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:redefine.
	Rationale
	The xsd:redefine element allows an XML Schema document to restrict and extend components from a namespace, in that very namespace. Such redefinition introduces duplication of definitions, allowing multiple definitions to exist for components from a ...
	Wildcard Restrictions
	No Unconstrained Type Substitution
	[Rule 6-7] (REF, SUB, EXT)

	The schema SHALL NOT reference the type xsd:anyType.
	Rationale
	XML Schema has the concept of the "ur-type," a type that is the root of all other types. This type is realized in schemas as xsd:anyType.
	NIEM-conformant schemas must not use xsd:anyType, because this feature permits the introduction of arbitrary content (i.e., untyped and unconstrained data) into an XML instance. NIEM intends that the schemas describing that instance describe all cons...
	No Unconstrained Text Substitution
	[Rule 6-8] (REF, SUB, EXT)

	The schema SHALL NOT reference the type xsd:anySimpleType.
	Rationale
	XML Schema provides a restriction of the “ur-type,” which contains only simple content. This provides a wildcard for arbitrary text. It is realized in XML Schema as xsd:anySimpleType.
	NIEM-conformant schemas must not use xsd:anySimpleType because this feature is insufficiently constrained to provide a meaningful starting point for content definitions. Instead, content should be based on one of the more specifically defined simple ...
	Untyped Elements Must Be Abstract
	[Rule 6-9] (REF, SUB, EXT)

	Within the schema, an element declaration with the attribute name and without the attribute type MUST carry the attribute abstract with the value true.
	Rationale
	Untyped element declarations act as wildcards that may carry arbitrary data. By declaring such types abstract, NIEM allows the creation of type independent semantics without allowing arbitrary content to appear in XML instances.
	No Untyped Attributes
	[Rule 6-10] (REF, SUB, EXT)

	Within the schema, an attribute declaration with attribute name MUST carry the attribute type.
	Rationale
	Untyped XML Schema attributes allow arbitrary content, with no semantics. Attributes must have a type so that specific syntax and semantics will be provided.
	No Unconstrained Element Substitution
	[Rule 6-11] (REF, SUB)

	The schema SHALL NOT contain the element xsd:any.
	Rationale
	The xsd:any particle (see Model Group Restrictions for an informative definition of particle) provides a wildcard that may carry arbitrary content. The particle xsd:any may appear within constraint schemas, extension schemas, and exchange schemas.
	No Unconstrained Attribute Substitution
	[Rule 6-12] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:anyAttribute.
	Rationale
	The xsd:anyAttribute element provides a wildcard, where arbitrary attributes may appear. The element xsd:anyAttribute may appear within constraint schemas or within other schemas that are not NIEM-conformant, but it is prohibited in NIEM-conformant ...
	Component Naming Restrictions
	No Anonymous Type Definitions
	[Rule 6-13] (REF, SUB, EXT)

	Within the schema, any occurrence of the element xsd:complexType or xsd:simpleType MUST appear as an immediate child of the element xsd:schema.
	Rationale
	NIEM does not support anonymous types in NIEM-conformant schemas. All XML Schema "top-level" types (children of the document element) are required by XML Schema to be named. By requiring NIEM type definitions to be top level, they are forced to be n...
	No Local Element Declarations
	[Rule 6-14] (REF, SUB, EXT)

	Within the schema, any element declaration carrying the attribute name MUST appear as an immediate child of the document element xsd:schema.
	Rationale
	All schema components defined by NIEM-conformant schemas must be named, accessible from outside the defining schema, and reusable across schemas. Local element definitions provide named elements that are not reusable outside the context in which the...
	No Local Attribute Definitions
	[Rule 6-15] (REF, SUB, EXT)

	Within the schema, any attribute declaration owning the attribute name MUST appear as an immediate child of the document element xsd:schema.
	Rationale
	All schema components defined by NIEM-conformant schemas are named, accessible from outside the defining schema, and reusable across schemas. Local attribute definitions provide named attributes that are not reusable outside the context in which the...
	No Uniqueness Constraints
	[Rule 6-16] (REF, EXT)

	The schema SHALL NOT contain any of the elements xsd:unique, xsd:key, xsd:keyref, xsd:selector, or xsd:field.
	Rationale
	XML Schema provides NIEM with the ability to apply uniqueness constraints to schema-validated content. These mechanisms, however, establish relationships in a way that is very difficult to understand, extend, and keep consisent through schema reuse....
	Model Group Restrictions
	Restrictions on Particle Ordering
	[Rule 6-17] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:all.
	Rationale
	The element xsd:all provides a set of particles (e.g., elements) that may be included in an instance, in no particular order. This can greatly complicate processing and may be difficult to comprehend and satisfy.
	[Rule 6-18] (REF)

	The schema SHALL NOT contain the element xsd:choice.
	Rationale
	The element xsd:choice provides an exclusive set of particles, one of which may appear in an instance. This can greatly complicate processing and may be difficult to comprehend, satisfy, and reuse.
	The element xsd:choice may be used in extension and exchange schemas, as it presents a simple way for a schema writer to represent a set of optional content. It may also be used in subset schemas and constraint schemas to represent syntactic alterna...
	No Recursively Defined Model Groups
	[Rule 6-19] (REF, SUB)

	Within the schema, any immediate child of a model group xsd:sequence element MUST be one of xsd:annotation or xsd:element
	[Rule 6-20] (EXT)

	Within the schema, any immediate child of a model group xsd:sequence element MUST be one of xsd:annotation, xsd:element, xsd:choice, or xsd:any.
	[Rule 6-21] (EXT)

	Within the schema, any immediate child of a model group xsd:choice element MUST be one of xsd:annotation or xsd:element.
	[Rule 6-22] (EXT)

	The use of xsd:choice SHALL define syntax, structure, grouping, and cardinality of instances, but SHALL NOT define semantics. The semantics of a property within an xsd:choice SHALL be identical to the semantics of the property within an xsd:sequence.
	Rationale
	XML Schema provides the capability for model groups to be recursively defined. This means that a sequence may contain a sequence, and a choice may contain a choice. These rules are designed to keep content models simple, comprehensive, and reusable...
	Restrictions on Named Groups
	[Rule 6-23] (REF, SUB, EXT)

	The schema SHALL NOT contain the element xsd:group.
	Rationale
	NIEM does not allow groups of elements to be named other than as named complex types. A group in XML Schema creates a named entity that may be included in multiple types, and which consists of a sequence of or choice between element particles. The ...
	Particle Cardinality Restrictions
	[Rule 6-24] (REF, SUB, EXT)

	Within the schema, if the element xsd:sequence carries the attribute minOccurs, it MUST set the value for the attribute to 1.
	[Rule 6-25] (REF, SUB, EXT)

	Within the schema, if the element xsd:sequence carries the attribute maxOccurs, it MUST set the value of the attribute to 1.
	Rationale
	XML Schema allows each particle to specify cardinality (how many times the particle may appear in an instance). NIEM restricts the cardinality of xsd:sequence particles to exactly one, to ensure that content model definitions are defined in as straig...
	Discussion
	Note that the particle xsd:any is not allowed in reference schemas or subset schemas by [Rule 6-11]
	Note also that element declarations acting as a particle (particles formed by xsd:element) may have any cardinality; they are not restricted by this rule. Should a user desire the behavior that would be obtained from the use of special cardinalities...
	Block Substitution Restrictions

	1. An instance of this element declaration may not substitute an extended type.
	2. An instance of this element declaration may not substitute a restricted type.
	3. An instance of this element declaration may not substitute another element.
	[Rule 6-26] (REF, EXT)

	Within the schema, if an element declaration carries the attribute block, it MUST set the value for the attribute to the empty string.
	[Rule 6-27] (REF, EXT)

	Within the schema, if a complex type definition carries the attribute block, it MUST set the value for the attribute to the empty string.
	[Rule 6-28] (REF, SUB, EXT)

	Within the schema, if the document element xsd:schema carries the attribute blockDefault, it MUST set the value for the attribute to the empty string.
	Rationale
	Restriction of substitution options reduces capacity for reuse; thus, it is forbidden within NIEM-conformant schemas In particular, setting the block value at the schema level complicates understanding of component definitions.
	Final Value Restrictions
	[Rule 6-29] (REF, SUB)

	Within the schema, if a simple type definition carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-30] (REF, SUB)

	Within the schema, if a complex type definition carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-31] (REF, SUB)

	Within the schema, if an element declaration carries the attribute final, it MUST set the value for the attribute to the empty string.
	[Rule 6-32] (REF, SUB, EXT)

	Within the schema, if the document element xsd:schema carries the attribute finalDefault, it MUST set the value for that attribute to the empty string.
	Rationale
	Restriction of derivation options reduces capacity for reuse and so is forbidden within reference and subset schemas. As well, the use of finalDefault complicates understanding of schemas, so it is only allowed in constraint schemas.
	Default Value Restrictions
	[Rule 6-33] (REF, SUB, EXT, CON)

	Within the schema, any element xsd:element SHALL NOT carry the attribute default.
	[Rule 6-34] (REF, SUB, EXT, CON)

	Within the schema, any element xsd:attribute SHALL NOT carry the attribute default.
	Rationale
	The use of default values means that the act of validating a schema will insert a value into an XML instance where none existed prior to schema validation. Schema validation is for rejection of invalid instances, not for modifying instance content, ...
	xsd:schema Document Element
	[Rule 6-35] (REF, SUB, EXT, CON)

	Within the schema, the document element xsd:schema MUST carry the attribute targetNamespace.
	[Rule 6-36] (REF, SUB, EXT, CON)

	Within the schema, the value of the required attribute targetNamespace on the document element xsd:schema MUST match the production <absolute-URI> as defined by [RFC3986].
	Rationale
	Schemas without defined namespaces provide definitions that are ambiguous, in that they are not universally identifiable.
	Absolute URIs are the only universally meaningful URIs. URIs include both URLs and URNs. Finding the target namespace using standard XML Base technology is complicated and not specified by XML Schema. Relative URIs are not universally identifiable...
	Discussion
	The document element xsd:schema may contain optional attributes attributeFormDefault and elementFormDefault. The values of these attributes are immaterial to a NIEM-conformant schema, as each attribute defined by a NIEM-conformant schema must be de...
	[Rule 6-37] (REF, SUB, EXT, CON)

	Within the schema, the document element xsd:schema MUST carry the attribute version.
	[Rule 6-38] (REF, SUB, EXT, CON)

	Within the schema, the value of the required attribute version on the document element xsd:schema MUST NOT be an empty string.
	Rationale
	It is very useful to be able to tell one version of a schema from another. Apart from the use of namespaces for versioning, it is sometimes necessary to release multiple versions of schema documents. Such use might include:
	• Subset schemas and constraint schemas
	• Error corrections or bug fixes
	• Documentation changes
	• Contact information updates
	In such cases, a different value for the version attribute implies a different version of the schema. No specific meaning is assigned to specific version identifiers.
	Note that some of the above uses for the version attribute are not employed in management of NIEM Core and domain schemas. An author of an application schema or exchange may use the version attribute for these purposes within their schemas.
	Namespace Imports

	1. Is not the local namespace, and
	2. Is referenced from the schema.
	xsd:import Element Restrictions
	[Rule 6-39] (REF, SUB, EXT)

	Within the schema, the element xsd:import MUST carry the attribute namespace.
	[Rule 6-40] (REF, SUB, EXT)

	Within the schema, the value of the required attribute namespace owned by the element xsd:import MUST match the production <absolute-URI> as defined by [RFC3986].
	Rationale
	An import that does not specify a namespace is enabling reference to non-namespaced components. NIEM requires that all components have a defined namespace. It is important that the namespace declared by a schema be universally defined and unambiguo...
	[Rule 6-41] (REF, SUB, EXT)

	Within the schema, the element xsd:import MUST carry the attribute schemaLocation.
	Rationale
	An import that does not specify a schema location gives no clue to processing applications as to where to find an implementation of the namespace. Even though such a provided schema location may be overridden, it is important that an initial default...
	[Rule 6-42] (REF, SUB, EXT)

	Within the schema, the value of the required attribute schemaLocation carried by the element xsd:import MUST match either the production <absolute-URI> or the definition of "relative-path reference," as defined by [RFC3986].
	Rationale
	The default value may be specified either as absolute or relative URIs. Since URNs are not resolvable, they are inappropriate for use in schemaLocation. The requirement for conformance to "relative-path reference" is required to avoid the more obsc...
	[Rule 6-43] (REF, SUB, EXT)

	Within the schema, the value of the required attribute schemaLocation carried by the element xsd:import MUST be resolvable to a XML schema document file that is valid according to [XMLSchemaStructures] and [XMLSchemaDatatypes].
	Rationale
	The XML Schema specification requires that the object imported via xsd:import must be a schema document. This rule reinforces that requirement.
	Discussion
	Note that relative URI references are dereferenced from the location of the schema document performing the import, not from the location of an instance or other schema. Although NIEM distribution schemas use only relative URI references, that need n...
	Including XML Content From Other Namespaces

	1. Carrying attributes from other than the XML or XML Schema namespaces on an element in the XML Schema namespace.
	By the rules of XML Schema, any element may have attributes that are from other namespaces. These attributes do not participate in validation but may carry information useful to tools that process schemas.
	2. Adding content to the elements xsd:appinfo and xsd:documentation.
	XML Schema allows arbitrary XML content to be included within annotations. Such XML does not participate in validation but may communicate useful information to schema readers or processors.
	1. Some tools require imports of namespaces used within schemas and validate against those schemas.
	2. The definition and the validity of content within schemas should be clear.
	[Rule 6-44] (REF, SUB, EXT)

	Within the schema, when a namespace other than the XML namespace or the XML Schema namespace is used, it MUST be imported into the schema using the xsd:import element.
	Rationale
	This rule ensures that used namespaces have recognizable defining sources and that they will cooperate with existing tools.
	[Rule 6-45] (REF, SUB, EXT)

	Within the schema, when a namespace other than the XML namespace or the XML Schema namespace is used, its content MUST be valid with respect to the schema imported for that namespace.
	Rationale
	XML Schema does not address the schema-validity of content used for annotations or attributes on schema components. This rule ensures that content used in such a manner is schema-valid. This encourages interoperable data definitions and schema docu...
	Annotations
	[Rule 6-46] (REF, EXT)

	Within the schema, an element SHALL have at most one instance of an element xsd:annotation as an immediate child.
	Rationale
	XML Schema allows annotations to be added to components in a fairly loose manner: there may be multiple annotations, each of which may have multiple documentation or appinfo elements. This flexibility in the syntax provides no additional expressivit...
	Human-Readable Documentation
	[Rule 6-47] (REF, EXT)

	Within the schema, the content of the xsd:documentation element that constitutes the data definition of a component MUST be character information items as specified by [XMLInfoSet].
	Rationale
	According to the XML Schema specification, the content of xsd:documentation elements is intended for human consumption, whereas other structured XML content is intended for machine consumption. Therefore, the xsd:documentation element MUST NOT conta...
	See [SchemaForXMLSchema], the schema for XML Schema, as an example of documentation elements containing properly escaped XML elements.
	[Rule 6-48] (REF, SUB, EXT)

	XML comments SHALL not be used for persistent information about constructs within the schema.
	Rationale
	Since XML comments are not associated with any specific XML Schema construct, there is no standard way to interpret comments. As such, comments should be reserved for internal use, and XML Schema annotations should be preferred for meaningful inform...
	Machine-Readable Annotations
	[Rule 6-49] (REF, EXT)

	Within the schema, any immediate child of an xsd:appinfo element SHALL be an element information item or a comment information item.
	Rationale
	Application information elements are intended for automatic processing; thus they should contain machine-oriented data, XML.
	[Rule 6-50] (REF, EXT)

	Within the schema, any element that is an immediate child of an xsd:appinfo element SHALL be in a namespace.
	Rationale
	Use of default namespace is allowed, but content has to have a real namespace, and namespaces must be declared. The XML namespaces specification includes the concept of content not in a namespace. Non-namespaced data runs counter to the principle of...
	[Rule 6-51] (REF, EXT)

	Within the schema, an element in the XML Schema namespace MUST NOT occur as a descendant of any element xsd:appinfo.
	Rationale
	NIEM-conformant schemas are designed to be very easily processed. Although uses of XML Schema elements as content of xsd:appinfo elements could be contrived, it is not current practice and could seriously complicate the authoring of schema validator...
	Type Definitions
	Complex Type Definitions
	[Rule 6-52] (REF, SUB, EXT)

	Within the schema, the element xsd:complexType MUST have as an immediate child either the element xsd:complexContent or the element xsd:simpleContent.
	Rationale
	XML Schema provides shorthand to defining complex content of a complex type, which is to define the complex type with immediate children that specify elements, or other groups, and attributes. In the desire to normalize schema representation of type...
	Simple Content (CSC) Restrictions

	1. By extension of an existing CSC.
	2. By extension of an existing simple type.
	[Rule 6-53] (REF)

	Within the schema, the element xsd:simpleContent MUST have as an immediate child the element xsd:extension.
	Rationale
	This rule ensures that the definition of a CSC will use the XML Schema extension facility. This allows for the above cases while disallowing much more complicated syntactic options available in XML Schema.
	Note that the applicability of the above rule allows for use of xsd:restriction within xsd:simpleContent in subset schemas, extension schemas, and exchange schemas.
	[Rule 6-54] (REF, SUB, EXT)

	Within the schema, given an element xsd:simpleContent with a child xsd:extension owning an attribute base, if the attribute base has a value that resolves to the name of a simple type, then the element xsd:extension MUST have an immediate child eleme...
	This rule ensures that a CSC that is created as an immediate extension of a simple type adds the attributes required for specific NIEM linking mechanisms. The attribute group is required to be structures:SimpleObjectAttributeGroup by [Rule 6-59].
	This creates a pattern for CSC definition as follows:
	Complex Content (CCC) Restrictions

	1. By extension of an existing complex type (CCC or CSC).
	2. By extension of the type structure:ComplexObjectType.
	[Rule 6-55] (REF)

	Within the schema, the element xsd:complexContent MUST have as an immediate child the element xsd:extension.
	Rationale
	NIEM does not support, as conformant, the use of complex type restriction. NIEM defines a language, in which specific content is allowed. It does not specify messages that forbid content. Such restrictions may be performed in nonconformant schemas...
	Note that XML Schema requires use of the attribute base on xsd:extension.
	Note also that the applicability allows for the use of restriction in subset schemas, extension schemas, exchange schemas, and constraint schemas.
	[Rule 6-56] (REF, SUB, EXT)

	Within the schema, given an element xsd:complexContent with a child xsd:extension owning an attribute base, the attribute base MUST have a value that resolves to the name of one of the following:
	1. The type structures:ComplexObjectType.
	2. The type structures:MetadataType.
	3. The type structures:AugmentationType.
	4. A complex type that is a NIEM-conformant component.
	This rule ensures that a CCC has well-defined ancestry. In turn, this ensures that every CCC has well-defined semantics.
	[Rule 6-57] (EXT)

	Within the schema, given an element xsd:complexContent with a child xsd:restriction owning an attribute base, the attribute base MUST have a value that resolves to the name of a complex type that is a NIEM-conformant component.
	This ensures that a CCC defined through restriction has well-defined semantics.
	Additional Definitions and Declarations
	Element Declarations
	Attribute Declarations
	Attribute Group Definitions
	[Rule 6-58] (REF, SUB, EXT)

	Within the schema, any occurrence of the element xsd:attributeGroup MUST own an attribute ref.
	The only attribute group used in NIEM-conformant schemas is structures:SimpleObjectAttributeGroup, as established by rules [Rule 6-59] and [Rule 7-39]. Therefore, NIEM-conformant schemas do not define additional attribute groups.
	[Rule 6-59] (REF, SUB, EXT)

	Within the schema, the attribute ref owned by any element xsd:attributeGroup MUST have a value of a qualified name (possibly using the default namespace) that SHALL resolve to the namespace for the NIEM structures namespace and the local name SimpleO...
	The only attribute group used within NIEM-conformant schemas is structures:SimpleObjectAttributeGroup. Therefore, within a NIEM-conformant schema, only this attribute group can be referenced.
	Modeling Rules
	1. They provide support for connecting structural definitions to concepts.
	2. They provide base components from which to derive structural definitions.
	xsd:schema Document Element Restrictions
	[Rule 7-1] (REF, EXT)

	Within the schema, the document element xsd:schema MUST have application information appinfo:ConformantIndicator, with text content "true".
	Rationale
	The appinfo:ConformantIndicator element is how NIEM-conformant schemas indicate that they are, in fact, NIEM-conformant. Without such an indicator, conformance would have to be "guessed" by readers and processors.
	[Rule 7-2] (REF, SUB, EXT, CON)

	Two XML Schema documents SHALL have the same value for attribute targetNamespace carried by the element xsd:schema, if and only if they represent the same set of components.
	[Rule 7-3] (REF, SUB, EXT, CON)

	Two XML Schema documents SHALL have the same value for attribute targetNamespace carried by the element xsd:schema, and different values for attribute version carried by the element xsd:schema if and only if they are different views of the same set o...
	Rationale
	These rules embody the basic philosophy behind NIEM's use of namespaced components: A component is uniquely identified by its class (e.g. element, attribute, type), its namespace (a URI), and its local name (an unqualified string). Any two matching ...
	Annotations

	1. A text definition of each component. This describes what the component means. The term used in this specification for such a text definition is data definition.
	2. The structural definition of each component. This is made up of XML Schema component definitions, along with certain application information (appinfo).
	Human-Readable Documentation
	[Rule 7-4] (REF, EXT)

	Within the schema, any element xsd:complexType MUST be a documented component.
	[Rule 7-5] (REF, EXT)

	Within the schema, any element xsd:simpleType MUST be a documented component.
	[Rule 7-6] (REF, EXT)

	Within the schema, any element xsd:element that is an immediate child of an element xsd:schema MUST be a documented component.
	[Rule 7-7] (REF, EXT)

	Within the schema, any element xsd:attribute that is an immediate child of an element xsd:schema MUST be a documented component.
	[Rule 7-8] (REF, EXT)

	Within the schema, any element xsd:enumeration MUST be a documented component.
	[Rule 7-9] (REF, EXT)

	Within the schema, the document element xsd:schema MUST be a documented component.
	[Rule 7-10] (REF, EXT)

	Words or synonyms for the words within a data element definition SHALL NOT be reused as terms in the corresponding component name if those words dilute the semantics and understanding of, or impart ambiguity to, the entity or concept that the compone...
	[Rule 7-11] (REF, EXT)

	An object class SHALL have one and only one associated semantic meaning (i.e., a single word sense) as described in the definition of the component that represents that object class.
	[Rule 7-12] (REF, EXT)

	An object class SHALL NOT be redefined within the definitions of the components that represent properties or subparts of that entity or class.
	Rationale
	Data definitions should be concise, precise, and unambiguous without embedding additional definitions of data elements that have already been defined once elsewhere (such as object classes). [ISO 11179 Part 4] says that definitions should not be nes...
	[Rule 7-13] (REF, EXT)

	A data definition SHALL NOT contain explicit representational or data typing information such as number characters, type of characters, etc., unless the very nature of the component can be described only by such information.
	Rationale
	A component definition is intended to describe semantic meaning only, not representation or structure. How a component with simple content is represented is indicated through the representation term and further refined through constraints.
	[Rule 7-14] (REF, EXT)

	A component definition SHALL begin with a standard opening phrase that depends on the class of the component per Table 7-1: Standard Opening Phrases:
	A standard opening phrase based on component class helps to ensure consistent definitions that appropriate for the type of component item being defined. These opening phrases also provide a cue that facilitates recognition of the particular kind of ...
	Machine-Readable Annotations

	The appinfo namespace is the namespace represented by the URI "http://niem.gov/niem/appinfo/2.0".
	[Rule 7-15] (REF, EXT)

	The schema SHALL import the appinfo namespace.
	Rationale
	For uniformity, all NIEM-conformant schemas must import the appinfo namespace.
	A component is said to have application information of some element E when the root element that defines the component has an immediate child element xsd:annotation, which has an immediate child element xsd:appinfo, which has as an immediate child th...
	Deprecation

	In a particular NIEM-conformant namespace, a deprecated component is one whose use is not recommended, yet which is maintained in the schema for compatibility with previous versions of the namespace.
	[Rule 7-16] (REF, EXT)

	A component that is deprecated SHALL be indicated as such by the component having application information appinfo:Deprecated, with an attribute value with a value of true.
	Rationale
	Deprecation can allow version management to be more consistent; versions of schema may be incrementally improved without introducing validation problems and incompatibility. As XML Schema lacks a deprecation mechanism, NIEM defines such a mechanism.
	Indicating Conformance

	1. To indicate that a schema is conformant or that it represents a conformant namespace.
	2. To indicate that an imported schema is not conformant or represents a nonconformant namespace.
	Bases of Derived Components
	[Rule 7-17] (REF, EXT)

	Within the schema, the element appinfo:Base MAY be used in one of the following ways:
	1. By a type definition, to indicate the base type, or structures:Object or structures:Association.
	2. By an element declaration, to indicate the base element.
	The element appinfo:Base SHALL NOT be used for any other purpose.
	Rationale
	The appinfo:Base element is required to clarify semantics of types as object or association types, when such derivation is not otherwise derivable from the component definitions.
	[Rule 7-18] (REF, EXT)

	Within the schema, the element appinfo:Base SHALL indicate, by namespace and name, one of the following:
	1. A NIEM-conformant schema component.
	2. structures:Object.
	3. structures:Association.
	[Rule 7-19] (REF, EXT)

	Within the schema, an attribute appinfo:namespace owned by an element appinfo:Base SHALL have a value of either of the following:
	1. A namespace which is the target namespace of a NIEM-conformant schema.
	2. The structures namespace.
	[Rule 7-20] (REF, EXT)

	Within the schema, an element appinfo:Base that does not own an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-21] (REF, EXT)

	Within the schema, an element appinfo:Base SHALL own an attribute appinfo:name.
	[Rule 7-22] (REF, EXT)

	Within the schema, if an element appinfo:Base indicates a NIEM-conformant namespace, then the value of the attribute appinfo:name owned by the element appinfo:Base SHALL indicate a schema component in the indicated namespace.
	[Rule 7-23] (REF, EXT)

	Within the schema, if an element appinfo:Base indicates the structures namespace, then the value of the attribute appinfo:name owned by the element appinfo:Base SHALL have a value of one of the following:
	1. structures:Object.
	2. structures:Association.
	3. A schema component defined by the structures schema.
	Rationale
	Together, this set of rules establishes the element appinfo:Base as a reference to either a NIEM-conformant schema component or to a special NIEM component, which acts as the base for the containing schema component.
	Application of Constructs
	[Rule 7-24] (REF, EXT)

	Within the schema, the element appinfo:AppliesTo MAY be used in any of the following ways:
	1. To indicate a base type to which an augmentation may be applied.
	2. To indicate a base type to which a metadata type may be applied.
	The element appinfo:AppliesTo SHALL NOT be used for any other purpose.
	Rationale
	The appinfo:AppliesTo element is required to express constraints beyond those available within XML Schema. Use of this element allows advanced processing of instances and schemas for type safety.
	[Rule 7-25] (REF, EXT)

	Within the schema, the element appinfo:AppliesTo SHALL indicate a schema component by namespace and name.
	[Rule 7-26] (REF, EXT)

	Within the schema, an attribute appinfo:namespace owned by an element appinfo:AppliesTo SHALL indicate the namespace of the type to which appinfo:AppliesTo refers. The indicated namespace SHALL be defined by a NIEM-conformant schema.
	[Rule 7-27] (REF, EXT)

	Given that the element appinfo:AppliesTo refers to a type, the applicability described by the element SHALL be understood to be the indicated type or a type transitively derived from the indicated type.
	[Rule 7-28] (REF, EXT)

	Within the schema, an element appinfo:AppliesTo that does not carry an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-29] (REF, EXT)

	Within the schema, an element appinfo:AppliesTo SHALL carry an attribute appinfo:name. The value of this attribute SHALL indicate the local name of a schema component within the namespace specified by the element.
	Rationale
	Together, this set of rules establishes the element appinfo:AppliesTo as a reference to a NIEM-conformant schema component to which a NIEM construct may be applied.
	Targets of References
	[Rule 7-30] (REF, EXT)

	Within the schema, the element appinfo:ReferenceTarget SHALL identify the XML Schema type definition of an element information item to which an instance of a reference element may validly refer. The element appinfo:ReferenceTarget SHALL NOT be used ...
	This describes the meaning of a reference target. The term type definition is as used in [XMLSchemaStructures], in the PSVI (post-schema-validation infoset) definition for an element information item. The element appinfo:ReferenceTarget is require...
	[Rule 7-31] (REF, EXT)

	Within the schema, a reference element MUST have at most one instance of the element appinfo:ReferenceTarget.
	Rationale
	Content elements in XML Schema may have at most one type. This rule ensures that reference elements follow the same pattern.
	[Rule 7-32] (REF, EXT)

	Within the schema, the element appinfo:ReferenceTarget SHALL indicate a type definition schema component, by namespace and name.
	[Rule 7-33] (REF, EXT)

	Within the schema, an attribute appinfo:namespace carried by an element appinfo:ReferenceTarget SHALL indicate the namespace of the referenced schema component. The indicated namespace SHALL be defined by a reference or extension schema.
	[Rule 7-34] (REF, EXT)

	Within the schema, an element appinfo:ReferenceTarget that does not carry an attribute appinfo:namespace SHALL refer to the target namespace of the schema in which it is used.
	[Rule 7-35] (REF, EXT)

	Within the schema, an element appinfo:ReferenceTarget SHALL carry an attribute appinfo:name. The value of this attribute SHALL indicate the local name of a type definition schema component within the namespace specified by the element.
	Rationale
	Together, this set of rules establishes the element appinfo:ReferenceTarget as a reference to a NIEM-conformant type definition schema component that a reference element instance may reference.
	Simple Type Definitions
	[Rule 7-36] (REF, SUB, EXT)

	Within the schema, a simple type definition that uses xsd:list SHOULD NOT be defined if any member of the list requires a property or metadata that is different than other members of the list. All members of the list SHOULD have the same metadata, a...
	Rationale
	The members of a list are not individually addressable by NIEM metadata techniques. The members are also not individually addressable by properties; a property has a value of all the members of the list. NIEM provides no method for individually add...
	Complex Type Definitions
	[Rule 7-37] (REF, SUB, EXT)

	Within the schema, a complex type definition SHALL be one of the following classes of types:
	1. An object type.
	2. A role type.
	3. An association type.
	4. A metadata type.
	5. An augmentation type.
	6. An adapter type.
	Rationale
	This rule establishes the classes of NIEM complex types. It is a limited set, each class with distinct semantics.
	[Rule 7-38] (REF, SUB, EXT)

	Within the schema, an element MUST NOT be introduced more than once into the direct content of a type definition. This applies to content acquired through extension of base types. This does not apply to a base element or derived element to one prev...
	Rationale
	This rule ensures that sequences of elements are simple sequences. A type should not define, for example, a sequence of elements A, B, then A again. Definitions should define, instead, what elements may be included, and their cardinality. Specific...
	Object Types

	In a NIEM-conformant schema, an object type is a complex type definition, an instance of which asserts the existence of an object. An object type represents some kind of object: a thing with its own lifespan that has some existence. The object may...
	[Rule 7-39] (REF, EXT)

	Within the schema, an object type SHALL be a complex type definition that either constitutes a NIEM-conformant component or for which there exists a NIEM-conformant component of one of the following forms:
	1. Has simple content, is based on a simple type, and contains the attribute group structures:SimpleObjectAttributeGroup, and has application information appinfo:Base of structures:Object.
	2. Has complex content, and is based on complex type structures:ComplexObjectType, and has application information appinfo:Base of structures:Object.
	3. Is a complex type that is derived from an object type, which is defined according to this rule.
	Rationale
	Object types are at the core of NIEM. They are built in a uniform way, from a simple design pattern: they take one of the two "root" forms outlined above, or they are built from other object types, depending on whether they are of simple or complex...
	Role Types

	A role type is a type that represents a particular function, purpose, usage, or role of an object.
	In a NIEM-conformant schema, a RoleOf element is a reference element whose type is the base type of the role.
	[Rule 7-40] (REF, SUB, EXT)

	Within the schema, any element with a name beginning with the string RoleOf SHALL represent a base type, of which the containing type represents a role.
	Rationale
	A RoleOf element references its corresponding base element. The RoleOf label on the reference element ensures that a role object is distinguishable from other objects and its link to the associated base is also distinguishable from the additional pr...
	Association Types

	In a NIEM-conformant schema, an association type is a type that establishes a relationship between objects, along with the properties of that relationship. An association type provides a structure that does not establish existence of an object but i...
	In a NIEM-conformant schema, an association is an element whose type is an association type.
	[Rule 7-41] (REF, EXT)

	Within the schema, an association type SHALL be a complex type definition that either constitutes a NIEM-conformant component or for which there exists a NIEM-conformant component definition. The NIEM-conformant component definition SHALL have one o...
	1. Has complex content, is based on the complex type structures:ComplexObjectType, and has application information appinfo:Base of structures:Association.
	2. Is a complex type that is derived from an association type, which is defined according to this rule.
	Rationale
	Associations within reference schemas, extensions schemas, and exchange schemas are easily identifiable as such and have a commonly defined base type. For subset schemas, the NIEM-conformant definition may be located in a primary schema and then ide...
	[Rule 7-42] (REF, SUB, EXT)

	Given that an association type defines a relationship between a set of participants, within an association type definition, any element that represents a participant SHALL be a reference element.
	Rationale
	Associations are intended to relate objects defined elsewhere. They are not intended to carry content of participant objects.
	Metadata Types

	A metadata type describes data about data, that is, information that is not descriptive of objects and their relationships, but is descriptive of the data itself. It is useful to provide a general mechanism for data about data. This provides requir...
	Within a NIEM-conformant schema, a metadata element is an element whose type is a metadata type. There are specific limitations on the meaning of a metadata element in an instance; it does not establish existence of an object, nor is it a property o...
	[Rule 7-43] (REF, SUB, EXT)

	Within the schema, a metadata type SHALL contain elements appropriate for a specific class of data about data.
	[Rule 7-44] (REF, SUB, EXT)

	Within the schema, a metadata type and only a metadata type SHALL be derived directly from structures:MetadataType.
	Rationale
	A metadata type establishes a specific, named aggregation of data about data. Any type derived from structures:MetadataType is a metadata type. Metadata types should not be derived from other metadata types. Such metadata types should be used as i...
	[Rule 7-45] (REF, EXT)

	Within the schema, a metadata type MAY have application information appinfo:AppliesTo, indicating the NIEM-conformant object, association, or external adapter types to which the metadata applies.
	[Rule 7-46] (REF, EXT)

	Within the schema, a metadata type that does not have application information appinfo:AppliesTo MAY be applied to any object type, association type, or external adapter type.
	Rationale
	Metadata may be constrained to be applicable to only specific types, or it may be defined to be applicable to any type. The source of a piece of data and the security classification of a piece of data are examples of metadata that may be considered ...
	Augmentation Types

	An augmentation type is a complex type that provides a reusable block of data that may be added to object types or association types.
	An augmentation of a NIEM-conformant object type is a block of additional data added to an object type to carry additional data beyond that of the original object definition.
	[Rule 7-47] (REF, SUB, EXT)

	An augmentation type:
	1. SHALL be transitively derived from structures:AugmentationType.
	2. SHALL contain elements that represent properties to be applied to a base type.
	Rationale
	A base type is the type to which an augmentation is to be applied. An augmentation may be applied to any number of types. Base types are assigned by augmentation elements.
	[Rule 7-48] (REF, SUB, EXT)

	Within the schema, an augmentation element definition:
	1. SHALL have a type that is an augmentation type.
	2. SHALL use the substitutionGroup attribute such that it is transitively substitutable for the element structures:Augmentation.
	An element that is not an augmentation element SHALL NOT meet either of the above criteria.
	Rationale
	An augmentation is trivially identifiable as such. The use of the common structures:Augmentation element allows message builders to optionally delay specifying augmentations to be applied to a type until runtime.
	[Rule 7-49] (REF, EXT)

	Within the schema, an element definition for an augmentation element MAY contain one or more instances of the element structures:AppliesTo as application information to specify types to which the augmentation element applies.
	[Rule 7-50] (REF, EXT)

	Within the schema, an element definition for an augmentation element that does not contain any instances of the element structures:AppliesTo MAY be applied to any object or association type.
	Rationale
	These rules allow schema builders to establish applicability for augmentations. An augmentation may be applicable to specific types.
	Users who wish to apply an augmentation type to a given object type may do so by creating a new augmentation element, applicable to the object type.
	Component Usage
	[Rule 7-51] (REF, SUB, EXT)

	Any type definition referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The XML Schema namespace.
	4. The structures namespace.
	Rationale
	NIEM-conformant schemas are based on other NIEM-conformant schemas and the supporting namespaces. This simplifies processing and understanding of data.
	[Rule 7-52] (REF, SUB, EXT)

	Any element declaration referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The structures namespace.
	4. An external namespace, in accordance with the rules for external schemas as specified by this specification.
	[Rule 7-53] (REF, SUB, EXT)

	Any attribute declaration referenced by a component within the schema MUST be from one of the following:
	1. The schema being defined.
	2. A namespace imported as NIEM-conformant.
	3. The structures namespace.
	4. The XML namespace.
	5. An external namespace, in accordance with the rules for external schemas as specified by this specification.
	Rationale
	NIEM-conformant schemas are based on other NIEM-conformant schemas. All attributes and elements must be from NIEM-conformant schemas, the structures namespace, the XML namespace, or an external namespace. This applies to elements referenced for sub...
	NIEM Structural Facilities

	The structures namespace is the namespace represented by the URI "http://niem.gov/niem/structures/2.0".
	[Rule 7-54] (REF, EXT)

	The schema MUST import the NIEM structures namespace.
	Rationale
	For uniformity, all NIEM-conformant schemas must import the structures namespace.
	[Rule 7-55] (REF, SUB, EXT, INS)

	The schema or instance MUST use content within the NIEM structures namespace as specified in this document and ONLY as specified by this document.
	Rationale
	This rule further enforces uniformity and consistency by mandating use of the NIEM structures namespace as is, without modification. Users are not allowed to insert types, attributes, etc. that are not specified by this document (the NDR).
	Sequence ID
	[Rule 7-56] (REF, SUB, EXT)

	Within the schema, a complex type definition SHALL include the attribute structures:sequenceID if the order of an occurrence of the type, within its parent, relative to its siblings, is meaningful and pertinent and if the schema does not specify the ...
	Rationale
	This rule indicates that, if order is meaningful and the schema will not always represent the desired order, then data modelers need to include sequenceID to allow the proper order to be represented in instances.
	Reference Elements

	1. Data objects are expressed as XML elements.
	2. XML elements contain attributes and other elements.
	• Circular relationships. For example, suppose that object 1 has a relationship to object 2 and object 2 has a relationship to object 1. Expressed via containment, this relationship would result in infinite recursive descent.
	• Repeated relationships. For example, suppose object 1 has a relationship to object 2 and object 3 has a relationship to object 2. Expressed via containment, this would result in a duplicate of object 2.
	A reference element is an element that refers to its value by a reference attribute instead of carrying it as content.
	[Rule 7-57] (REF, SUB, EXT)

	Within the schema, a reference element and only a reference element SHALL be defined to be of type structures:ReferenceType.
	Rationale
	Reference elements must be of the reference type, and elements of the reference type must be reference elements. This rule ensures that users always create reference elements using structures:ReferenceType and cannot use structures:ReferenceType for...
	[Rule 7-58] (REF, SUB, EXT)

	Within the schema, a complex type SHALL NOT be defined such that an instance of that type owns the attribute structures:ref.
	Rationale
	The use of references is limited to reference elements. This constrains the semantics and syntax of references within NIEM instances. Only structures:ReferenceType may use structures:ref, which is the only means for referencing within NIEM-conforma...
	[Rule 7-59] (REF, SUB, EXT)

	Within the schema, any two elements of the form
	NCName
	and
	NCNameReference
	where the string value of NCName is the same in both forms, SHALL be defined to have identical semantics. NIEM recognizes no difference in meaning between a reference element and an element that is not a reference element.
	Rationale
	NIEM-conformant data instances may use concrete data elements and reference elements as needed, to represent the meaning of the fundamental data. There is no difference in meaning between reference and concrete data representations. The two differe...
	Assertions that indicate "included" data is intrinsic, while referenced data is extrinsic, are not valid and are not applicable to NIEM-conformant data instances and data definitions.
	[Rule 7-60] (REF, EXT)

	Within the schema, if both elements NCName and NCNameReference exist, then the appinfo:ReferenceTarget of any NCNameReference element MUST be the type of the element NCName.
	Rationale
	By [Rule 7-59], any such pair of elements, NCName and NCNameReference, will have identical semantics. This rule ensures that an NCNameReference element is documented to refer to the appropriate type (the type of the corresponding NCName element) and...
	Using External Schemas

	An external schema is any schema that is not a supporting schema and that is not NIEM-conformant.
	[Rule 7-61] (REF, EXT)

	Within the schema, an element xsd:import that imports a namespace defined by an external schema MUST have the application information appinfo:ConformantIndicator, with a value of false.
	Rationale
	Knowledge of the conformance of an imported schema allows processors to understand the semantics of referenced components, without additional processing. Namespaces imported into NIEM-conformant schemas are assumed to be conformant unless otherwise ...
	[Rule 7-62] (REF, EXT)

	Within the schema, an element xsd:import that imports a namespace defined by an external schema MUST be a documented component.
	Rationale
	A NIEM-conformant schema has well-known documentation points. Therefore, a schema that imports a NIEM-conformant namespace need not provide additional documentation. However, when an external schema is imported, appropriate documentation must be pr...
	An adapter type is a NIEM-conformant type that adapts external components for use within NIEM. An adapter type creates a new class of object that embodies a single concept composed of external components. A NIEM-conformant schema defines an adapter...
	[Rule 7-63] (REF, EXT)

	Within the schema, an adapter type MUST have application information appinfo:ExternalAdapterTypeIndicator with a value of true. A type that is not an adapter type SHALL NOT contain that indicator.
	Rationale
	This rule flags as external adapters those types that may contain external content. This allows for easier processing.
	[Rule 7-64] (REF, SUB, EXT)

	Within the schema, an adapter type MUST be an immediate extension of type structures:ComplexObjectType.
	Rationale
	The adapter type must contain the content defined for any NIEM component. The type structures:ComplexObjectType provides such content
	[Rule 7-65] (REF, SUB, EXT)

	Within the schema, an adapter type MUST be composed of only elements and attributes from an external standard.
	Rationale
	An adapter type should contain the information from an external standard to express a complete concept. This expression should be composed of content entirely from an external schema. Most likely, the external schema will be based on an external st...
	[Rule 7-66] (REF, EXT)

	Within the schema, an element reference used in an adapter type definition MUST be a documented component.
	[Rule 7-67] (REF, EXT)

	Within the schema, an attribute reference used in an adapter type definition MUST be a documented component.
	Rationale
	In normal (conformant) type definition, a reference to an attribute or element is a reference to a documented component. Within an adapter type, the references to the attributes and elements being adapted are references to undocumented components. ...
	[Rule 7-68] (REF, SUB, EXT)

	Within the schema, an adapter type MUST NOT be extended or restricted.
	Rationale
	Adapter types are meant to stand alone; each type expresses a single concept from an external schema, and adapter types are maintained in separate schemas that only contain adapter types. In this way, processors may easily switch modes, processing NI...
	NIEM Subset Schemas
	[Rule 7-69] (SUB)

	The value of the targetNamespace attribute owned by the xsd:schema document element of the subset schema must be the same as the value of the targetNamespace attribute owned by the xsd:schema document element of the reference schema.
	[Rule 7-70] (SUB)

	The schema must be constructed such that any instance that is XML Schema valid against the schema must also be XML Schema valid against the base schema.
	Rationale
	A subset schema is a briefer, abridged form of its base schema. The subset schema is intended to stand in the place of the base schema for the purpose of XML Schema validation in many situations. As such, it is imperative that the subset schema sus...
	Container Elements

	XML Instance Rules
	Instance Validation
	[Rule 8-1] (INS)

	The XML document MUST be schema-valid, assessed with reference to the schema composed of the reference schemas, extension schemas, exchange schemas, utility schemas, and external schemas for the relevant namespaces.
	Rationale
	The schemas that define the exchange must be authoritative. Each is the reference schema, extension schema, or exchange schema for the namespace it defines. Application developers may use other schemas for various purposes, but for the purposes of ...
	This rule should not be construed to mean that XML validation must be performed on all XML instances as they are served or consumed; only that the XML instances validate if XML validation is performed. The XML Schema component definitions specify XM...
	Instance Meaning
	[Rule 8-2] (INS)

	Within the instance, the meaning of an element with no content is that additional properties are not asserted. There SHALL NOT be additional meaning interpreted for an element with no content.
	Rationale
	Elements without content only show a lack of asserted information. That is, all that is asserted is what is explicitly stated, through a combination of XML instance data and its schema. Data that is not present makes no claims. It may be absent du...
	Component Representation
	[Rule 8-3] (INS)

	Within an element instance, there SHALL NOT be any difference in meaning between a property asserted via element containment and a property asserted by element reference, except as explicitly described by the semantics of the elements involved.
	Rationale
	There is no difference in meaning between relationships established by containment and those established by reference. They are simply two mechanisms for expressing connections between objects. Neither mechanism implies that properties are intrinsi...
	[Rule 8-4] (INS)

	Given that the IDREF that is the value of an attribute structures:ref matches the value of an ID attribute on some element in the XML document, that ID attribute must be an occurrence of the attribute structures:id.
	Rationale
	This states that in NIEM-conformant content, structures:ref attributes must refer to structures:id attributes. By [XML], an IDREF is required to reference an ID. This rule ensures that the target of a reference is a NIEM ID for easier processing of...
	[Rule 8-5] (INS)

	Within an element instance, given that a reference element is restricted to a target type T, any attribute structures:ref MUST reference an element that has a type definition of type T or that is derived from type T.
	Rationale
	This rule says that the type of the object pointed to by a structures:ref attribute must be of a type specified by the reference element definition. The restriction of types is defined in the application information of the reference element definit...
	Component Ordering
	[Rule 8-6] (INS)

	The order of elements that are children of an element SHALL be presented as if their sequential order is as follows:
	1. First, elements owning an attribute structures:sequenceID, in the order that would be yielded with their sequence IDs sorted via sort element as defined by [XSLT], with a data type of number and an order of ascending.
	2. Following those elements, the remaining elements, in the order in which they occur within the XML instance.
	Rationale
	Because of NIEM's use of structured, defined types and its use of xsd:sequence, as well as various representation mechanisms, the order of data within an XML instance may require more precise definition and may vary from instance to instance. The tr...
	In this definition, the term "presented" may mean presentation to the user, reports, or transfer to other data systems. It is meaningful only when the order of appearance of items within a sequence is expressed. Such an order is only the default fo...
	[Rule 8-7] (REF, EXT, INS)

	Within a schema or instance, the attribute structures:sequenceID SHALL NOT be interpreted as meaningful beyond an indicator of sequential order of an object relative to its siblings.
	Rationale
	Siblings of a data item are items that have the same parent. Note that, using the reference and relationships mechanisms, data objects may have multiple parents. The sequenceID is truly metadata, helping to express the structure of the data rather ...
	Instance Metadata

	• Metadata m1 asserts Adam Barber gave the name.
	• Metadata m2 asserts the name and the birth date were reported on 4/26/2005.
	• Link metadata m3 asserts a 25% probability that the name goes with the person.
	• Metadata objects may appear outside the data they describe.
	• Metadata objects may be reused.
	• Data may refer to more than one metadata object.
	• Metadata pertains to an object or simple content, while link metadata pertains to the relationship between objects.
	[Rule 8-8] (INS)

	Within an element instance, when an object O links to a metadata object via an attribute structures:metadata, the information in the metadata object SHALL be applied to the object O.
	[Rule 8-9] (INS)

	Within an element instance, when an object O1 contains an element E, with content object O2 or with a reference to object O2, and O2 links to a metadata object via an attribute structures:linkMetadata, the information in the metadata object SHALL be ...
	Rationale
	These two rules define the meaning of metadata:
	• structures:metadata applies metadata to an object.
	• structures:linkMetadata applies metadata to a relationship between two objects.
	[Rule 8-10] (INS)

	Given that each IDREF in the value of an attribute structures:metadata must match the value of an ID attribute on some element in the XML document, that ID attribute MUST be an occurrence of the attribute structures:id.
	[Rule 8-11] (INS)

	Each element that an attribute structures:metadata references MUST have a type definition that is derived from structures:MetadataType.
	[Rule 8-12] (INS)

	Given that each IDREF in the value of an attribute structures:linkMetadata must match the value of an ID attribute on some element in the XML document, that ID attribute MUST be an occurrence of the attribute structures:id.
	[Rule 8-13] (INS)

	Each element that an attribute structures:linkMetadata references MUST have a type definition that is derived from structures:MetadataType.
	Rationale
	All structures:metadata and structures:linkMetadata attributes must refer to metadata objects, and the reference to that object must be established using the structures:id attribute, to facilitate processing of XML documents.
	[Rule 8-14] (INS)

	Given that an element information item E has a type definition of some type T, each metadata type that is the type definition of an element information item referenced by an attribute structures:metadata or structures:linkMetadata on element E MUST b...
	Rationale
	The applicability is determined by structures:AppliesTo application information of the metadata type definition. The instances must correspond to the types specified by the metadata type definition.
	Naming Rules
	Extension of XSD Namespace Simple Types
	[Rule 9-1] (REF, SUB, EXT)

	Within the schema, a complex type that is a direct extension of a simple type from the XML Schema namespace simple type MAY use the same local name as the simple type if and only if the extension adds no content other than the attribute group structu...
	Rationale
	It is useful to build complex type bases for further extension. The NIEM distribution proxy schema xsd.xsd provides complex type bases for some of the simple types in the XML Schema namespace. However, the complex types in this proxy schema reuse t...
	Usage of English
	[Rule 9-2] (REF, SUB, EXT)

	The name of any XML Schema component defined by the schema SHALL be composed of words from the English language, using the prevalent U.S. spelling, as provided by [OED].
	Rationale
	The English language has many spelling variations for the same word. For example, American English “program” has a corresponding British spelling “programme.” This variation has the potential to cause interoperability problems when XML components are...
	Characters in Names
	[Rule 9-3] (REF, SUB, EXT)

	The name of any XML Schema component defined by the schema SHALL contain only the following characters:
	• Upper-case letters ('A'-'Z').
	• Lower-case letters ('a'-'z').
	• Digits ('0'-'9').
	• Hyphen ('-').
	Other characters, such as the underscore ('_') character and the period ('.') character SHALL NOT appear in component names in NIEM-conformant schemas.
	[Rule 9-4] (REF, SUB, EXT)

	The hyphen character ('-') MAY appear in component names only when used as a separator between parts of a single word, phrase, or value, which would otherwise be incomprehensible without the use of a separator.
	Rationale
	Names of standards and specifications, in particular, tend to consist of series of discrete numbers. Such names require some explicit separator to keep the values from running together. The separator used within NIEM is the hyphen.
	Character Case
	[Rule 9-5] (REF, SUB, EXT)

	Within the schema, any attribute declaration SHALL have a name that begins with a lower-case letter ('a'-'z').
	[Rule 9-6] (REF, SUB, EXT)

	Within the schema, any XML Schema component other than an attribute declaration SHALL have a name that begins with an upper-case letter ('A'-'Z').
	[Rule 9-7] (REF, SUB, EXT)

	The name of any XML Schema component defined by the schema SHALL use the camel case formatting convention.
	Rationale
	The foregoing rules establish lowerCamelCase for all NIEM components that are XML attributes and UpperCamelCase for all NIEM components that are types, elements, or groups.
	Use of Acronyms and Abbreviations
	[Rule 9-8] (REF, SUB, EXT)

	The schema MUST consistently use approved acronyms, abbreviations, and word truncations within defined names. The approved shortened forms are defined in Table 9-1: Abbreviations Used in NIEM Core Names .
	Consistent, controlled, and documented abridged terms that are used frequently and/or tend to be lengthy can support readability, clarity, and reduction of name length.
	Word Forms
	[Rule 9-9] (REF, SUB, EXT)

	A noun used as a term in the name of an XML Schema component MUST be in singular form unless the concept itself is plural.
	[Rule 9-10] (REF, SUB, EXT)

	A verb used as a term in the name of an XML Schema component MUST be used in the present tense unless the concept itself is past tense.
	[Rule 9-11] (REF, SUB, EXT)

	Articles, conjunctions, and prepositions SHALL NOT be used in NIEM component names except where they are required for clarity or by standard convention.
	Rationale
	Articles (e.g., a, an, the), conjunctions (e.g., and, or, but), and prepositions (e.g., at, by, for, from, in, of, to) are all disallowed in NIEM component names, unless they are required. For example, PowerOfAttorneyCode requires the preposition. ...
	Name Generation
	[Rule 9-12] (REF, SUB, EXT)

	Except as specified elsewhere in this document, any element or attribute defined within the schema SHALL have a name that takes the form:
	• Object-class qualifier terms (0 or more).
	• An object class term (1).
	• Property qualifier terms (0 or more).
	• A property term (1).
	• Representation qualifier terms (0 or more).
	• A representation term (1).
	Rationale
	Consistent naming rules are helpful for users who wish to understand components with which they are unfamiliar, as well as for users to find components with known semantics. This rule establishes the basic structure for an element or attribute name,...
	Object-Class Term
	[Rule 9-13] (REF, SUB, EXT)

	The object-class term of a NIEM component SHALL consist of a term identifying a category of concrete concepts or entities.
	Rationale
	The object-class term indicates the object category that this data component describes or represents. This term provides valuable context and narrows the scope of the component to an actual class of things or concepts.
	Example
	Concept term: Activity
	Entity term: Vehicle
	Property Term
	[Rule 9-14] (REF, SUB, EXT)

	A property term SHALL describe or represent a characteristic or subpart of an entity or concept.
	Rationale
	The property term describes the central meaning of the data component.
	Qualifier Terms
	[Rule 9-15] (REF, SUB, EXT)

	Multiple qualifier terms MAY be used within a component name as necessary to ensure clarity and uniqueness within its namespace and usage context.
	[Rule 9-16] (REF, SUB, EXT)

	The number of qualifier terms SHOULD be limited to the absolute minimum required to make the component name unique and understandable.
	[Rule 9-17] (REF, SUB, EXT)

	The order of qualifiers SHALL NOT be used to differentiate names.
	Rationale
	Very large vocabularies may have many similar and closely related properties and concepts. The use of object, property, and representation terms alone is often not sufficient to construct meaningful names that can uniquely distinguish such component...
	Representation Term

	1. It can indicate the style of component. For example, types are clearly labeled with the representation term Type.
	2. It helps prevent name conflicts and confusion. For example, elements and types may not be given the same name.
	3. It indicates the nature of the value carried by element. Labeling elements and attributes with a notional indicator of the content eases discovery and comprehension.
	[Rule 9-18] (REF, EXT)

	If any word in the representation term is redundant with any word in the property term, one occurrence SHOULD be deleted.
	This rule, carried over from 11179, is designed to prevent repeating terms unnecessarily within component names. For example, this rule allows designers to avoid naming an element "PersonFirstNameName."
	[Rule 9-19] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of simple content MUST use a representation term found in Table 9-2: Representation Terms.
	[Rule 9-20] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of complex content, and that corresponds to a concept listed in Table 9-2: Representation Terms, MUST use a representation term from that table.
	[Rule 9-21] (REF, SUB, EXT)

	Within the schema, the name of an element declaration that is of complex content and that does not correspond to a concept listed in Table 9-2: Representation Terms MUST NOT use a representation term.
	[Rule 9-22] (REF, SUB, EXT)

	Within the schema, the name of an attribute declaration MUST use a representation term from Table 9-2: Representation Terms.
	Rationale
	An element that represents a value listed in the table should have a representation term. It should do so even if its type is complex with multiple parts. For example, a type with multiple fields may represent a sound binary, a date, or a name.
	NIEM Type Names
	All Type Components
	[Rule 9-23] (REF, SUB, EXT)

	Within the schema, the name of any type definition MUST use the representation term Type.
	Rationale
	Using the representation term Type immediately identifies XML types in a NIEM-conformant schema and prevents naming collisions with corresponding XML elements and attributes.
	Simple Type Components
	[Rule 9-24] (REF, SUB, EXT)

	Within the schema, the name of any simple type definition SHALL use the representation term qualifier Simple. This qualifier SHALL appear after any other representation term qualifiers.
	Rationale
	Specific uses of type definitions have similar syntax but very different effects on data definitions. Schemas that clearly identify complex and simple type definitions are easier to understand without tool support. This rule ensures that names of s...
	Code Type Components

	A code type is a simple type schema component definition that contains multiple xsd:enumeration facets.
	[Rule 9-25] (REF, SUB, EXT)

	Within the schema, the name of any code type SHALL use the representation term qualifier Code.
	Rationale
	Using the qualifier Code (e.g. CodeType, CodeSimpleType) immediately identifies a type as representing a fixed list of codes. These types may be handled in specific ways, as lists of codes are expected to have their own lifecycles, including version...
	[Rule 9-26] (REF, SUB, EXT)

	Within the schema, any type definition which has a base type definition of a code type or which is transitively based on a code type SHALL have a name that uses the representation term qualifier Code.
	Rationale
	This expands the use of the representation term qualifier Code to any type based on a code list.
	Association Type Components
	[Rule 9-27] (REF, SUB, EXT)

	Within the schema, any association type SHALL have a name that uses the representation term qualifier Association. Types other than association types SHALL NOT use the representation term qualifier Association.
	Rationale
	Using the qualifier Association immediately identifies a type as representing an association.
	Augmentation Type Components
	[Rule 9-28] (REF, SUB, EXT)

	Within the schema, any augmentation type SHALL have a name that uses the representation term qualifier Augmentation. Types other than augmentation types SHALL NOT use the representation term qualifier Augmentation.
	Rationale
	Using the qualifier Augmentation immediately identifies a type as representing an augmentation.
	Metadata Type Components
	[Rule 9-29] (REF, SUB, EXT)

	Within the schema, any metadata type SHALL have a name that uses the representation term qualifier Metadata. Types other than metadata types SHALL NOT use the representation term qualifier Metadata.
	Rationale
	Using the qualifier Metadata immediately identifies a type as representing metadata.
	NIEM Property Names
	Attribute Group Names
	[Rule 9-30] (REF, SUB, EXT)

	Within the schema, the name of any attribute group definition schema component SHALL use the representation term AttributeGroup.
	Rationale
	This clearly identifies attribute groups and partitions their names from the names of other types of schema components.
	Reference Names
	[Rule 9-31] (REF, SUB, EXT)

	Within the schema, the name of any reference element SHALL use the representation term suffix Reference.
	Rationale
	Reference elements are identical in semantics to elements that are not by reference. However, they refer to their values by a reference attribute instead of carrying it as content of the XML element. The use of a suffix helps indicate that the elem...
	Note that the use of the representation term suffix is one of the situations in which there is a slight divergence from the general rule for name generation as discussed in [Rule 9-12].
	Association Names
	[Rule 9-32] (REF, SUB, EXT)

	Within the schema, the name of an association element SHALL use the representation term qualifier Association.
	Rationale
	Using the qualifier Association immediately identifies an element as representing an association.
	Augmentation Names
	[Rule 9-33] (REF, SUB, EXT)

	Within the schema, the name of an augmentation element SHALL use the representation term Augmentation.
	Rationale
	Using the qualifier Augmentation immediately identifies an element as representing an augmentation.
	Metadata Names
	[Rule 9-34] (REF, SUB, EXT)

	Within the schema, the name of a metadata element SHALL use the representation term Metadata.
	Rationale
	Using the qualifier Metadata immediately identifies an element as representing metadata.
	Role Names
	[Rule 9-35] (REF, SUB, EXT)

	Within the schema, the name of a role SHALL use the property term RoleOf.
	Rationale
	Using the property term RoleOf immediately identifies an element as representing a role.
	NIEM Overview

	• NIEM reference schemas: Schemas containing content created or approved by the NIEM steering committees are periodically released in schema distributions. The structure and content of such distributions are not specified in this document. This doc...
	• NIEM support schemas: NIEM includes two special schemas, the appinfo and the structures schemas, for annotating and structuring NIEM-conformant schemas.
	• Extension Schema: a NIEM-conformant schema that adds domain- or application-specific content to the base NIEM model.
	• Exchange Schema: a NIEM-conformant schema that specifies a document in a particular exchange.
	• Subset Schema: a profile of a NIEM-conformant schema, derived from a reference schema, but which specifies instances that require only a portion of the reference schema.
	• Constraint Schema: a schema which adds additional constraints to NIEM-conformant instances, but which is assumed to validate in concert with existing NIEM-conformant or subset schemas. A constraint schema need not validate constraints that are app...
	Name Syntax for Special Components

	Table B-1: Name Syntax for Special Components
	Supporting Schemas

	The appinfo namespace
	Discussion
	The namespace for the appinfo namespace is http://niem.gov/niem/appinfo/2.0.
	Discussion
	The Resource element provides a method for application information to define a name within a schema, without the name being bound to a schema component. This is used by the structures schema to define names for structures:Object and structures:Assoc...
	Discussion
	The Deprecated element provides a method for identifying components as being deprecated. A deprecated component is one which is provided but whose use is not recommended.
	Discussion
	The Base element provides a mechanism for indicating base types and base elements in schema for the cases in which XML Schema mechanisms are insufficient. For example, it is used to indicate Object or Association bases.
	Discussion
	The ReferenceTarget element indicates a NIEM type which may be a target (that is, a destination) of a NIEM reference element. It may be used in combinations to indicate a set of valid types.
	Discussion
	The AppliesTo element is used in two ways. First, it indicates the set of types to which a metadata type may be applied. Second, it indicates the set of types to which an augmentation element may be applied.
	Discussion
	The ConformantIndicator element may be used in two ways. First, it is included as application information for a schema document element to indicate that the schema is NIEM-conformant. Second, it is used as application information of a namespace imp...
	Discussion
	The ExternalAdapterTypeIndicator element indicates that a complex type is an external adapter type. Such a type is one composed of elements and attributes from non-NIEM-conformant schemas. The indicator allows schema processors to switch to alterna...
	The structures schema
	Discussion
	The target namespace for the structures schema is http://niem.gov/niem/structures/2.0.
	Discussion
	The structures schema uses components from the appinfo namespace.
	Discussion
	The Object resource defines an identifier that acts as a conceptual base for objects in NIEM-conformant schemas.
	Discussion
	The Association resource defines an identifier that acts as a conceptual base for association in NIEM-conformant schemas.
	Discussion
	The id attribute is used to define XML IDs for NIEM objects. These IDs may be targets of reference elements, metadata attributes, and link metadata attributes.
	Discussion
	The linkMetadata attribute allows an element to point to metadata that affects the relationship between the context and the value of the object.
	Discussion
	The attribute metadata allows an object to point to metadata that affects itself.
	Discussion
	The ref attribute is used by reference elements in NIEM to refer to an object via an ID reference, rather than including the object itself as element content.
	Discussion
	The sequenceID attribute allows a series of elements to define a sequence for content that does not correspond to the order of element declarations within a type. This attribute may override the sequence of elements appearing within an instance.
	Discussion
	The SimpleObjectAttributeGroup attribute group provides a collection of attributes that are appropriate for definition of object types.
	Discussion
	The Augmentation element provides a substitution group head for augmentations. The designer of a message or object may use this element within an object definition. This will allow the selection of augmentations dynamically, at run time (or at leas...
	Discussion
	The Metadata element provides a substitution group head for metadata. Like the substitution group head for augmentations, this allows selection of metadata to be decided late in message creation, rather than at schema authoring time. This element m...
	Discussion
	The AugmentationType type is a base type for all augmentations. An augmentation may have metadata and an ID but may not have link metadata, as it does not establish a relationship between its value and its context. The individual element contents o...
	Discussion
	The ComplexObjectType type provides a base class for object definition, association definitions, and external adapter type definitions. An instance of one of these types may have an ID. It may have metadata as it establishes the existence of an obj...
	Discussion
	The MetadataType type is a base class for metadata type definition. This type provides only an ID, as the metadata may be referenced. It does not itself have metadata and does not have link metadata.
	Discussion
	The ReferenceType type is the type of all reference elements within NIEM-conformant schemas. This type provides a reference attribute to reference an object defined elsewhere. It includes an ID, as the link established by a reference element may ne...
	NIEM 2.0 Reference Schemas – Directory Listing
	References

	Basic concepts are covered at #basicconcepts.
	RDF data model is described at #section-data-model.
	EBNF notation is described at #sec-notation.
	IDREF constraint is described at #idref.
	NCName is described at #NT-NCName.
	Annotations are described at #Annotation_details.
	The element xsl:sort is described at #element-sort.
	List of Principles
	List of Definitions
	List of Rules
	Index
	Notices

