logo
CONTENT TYPES

Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm

Cite this: ACS Energy Lett. 2019, 4, 1, 317–324
Publication Date (Web):December 14, 2018
https://doi.org/10.1021/acsenergylett.8b02035
Copyright © 2018 American Chemical Society
Subscribed Access
Article Views
6779
Altmetric
-
Citations
LEARN ABOUT THESE METRICS

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

PDF (2 MB) OpenURL UNIV OF NORTH TEXAS

Abstract

Significant advances have been made in recent years discovering new electrocatalysts and developing a fundamental understanding of electrochemical CO2 reduction processes. This field has progressed to the point that efforts can now focus on translating this knowledge toward the development of practical CO2 electrolyzers, which have the potential to replace conventional petrochemical processes as a sustainable route to produce fuels and chemicals. In this Perspective, we take a critical look at the progress in incorporating electrochemical CO2 reduction catalysts into practical device architectures that operate using vapor-phase CO2 reactants, thereby overcoming intrinsic limitations of aqueous-based systems. Performance comparison is made between state-of-the-art CO2 electrolyzers and commercial H2O electrolyzers—a well-established technology that provides realistic performance targets. Beyond just higher rates, vapor-fed reactors represent new paradigms for unprecedented control of local reaction conditions, and we provide a perspective on the challenges and opportunities for generating fundamental knowledge and achieving technological progress toward the development of practical CO2 electrolyzers.

The development of new technologies that reduce greenhouse gas emissions while producing fuels and commodity chemicals has the potential to mitigate the devastating impacts of climate change by transforming the petrochemical sector toward sustainability. Electrochemical CO2 reduction (CO2R) coupled with renewably generated electricity (wind, solar, hydro) provides an attractive approach for the carbon-neutral production of valuable hydrocarbon, alcohol, and carbonyl products that find widespread use in the energy and chemical sectors. For this artificial photosynthesis process to be implemented at scale, highly active and selective CO2R catalysts must be developed and ultimately integrated into devices that can achieve high conversion rates and energy-conversion efficiencies to the desired product(s). Vapor-fed CO2 devices represent a promising platform for such a technology.

On a fundamental level, there has been much progress understanding electrochemical CO2R in the liquid phase, where CO2 molecules are solubilized in an aqueous electrolyte and reduced on the surface of a catalyst (Figure 1a). The unprecedented level of synergy between theoretical and experimental research toward aqueous-phase CO2R has led to improved understanding regarding the impact of electrolyte ions,(1−3) pH,(4) mass transport,(5−7) temperature,(8) and pressure(8,9) on activity and selectivity. As a result, activity descriptors(10,11) and mechanistic insight into reaction pathways(12,13) have guided catalyst design efforts, leading to the discovery of new compositions(14−16) and morphologies that are more active and selective to desired CO2R products. A succinct overview of these advances has been provided in a recently published perspective piece.(17) It is furthermore expected these efforts will be accelerated with the implementation of machine learning processes for catalyst discovery.(18,19)

Figure 1

Figure 1. Different electrochemical CO2R reactor schemes. (a) Aqueous-phase CO2R, where CO2 is first solubilized in an aqueous electrolyte and then reduced at a catalyst surface. Vapor-fed CO2R employing an (b) aqueous or (c) polymer electrolyte.

Moving toward practical reactor designs that operate using CO2 delivered to the cathode in the vapor phase can help to overcome these performance and solubility challenges.

While the above referenced studies have been critical in establishing a deeper understanding of CO2R, they have traditionally relied upon aqueous-phase CO2R reactors designed for fundamental investigations (Figure 1a). From an applied standpoint, however, these test reactors have many practical limitations that must be addressed. Most notably, the poor solubility (ca. 34 mM) of CO2 in aqueous electrolytes, along with acid/base buffer (CO2/HCO3/CO3–2) equilibria lead to intrinsic challenges toward achieving high conversion rates and energy efficiencies.(20) Moving toward practical reactor designs that operate using CO2 delivered to the cathode in the vapor phase (Figure 1b,c) can help to overcome these performance and solubility challenges. Such gas-diffusion electrodes (GDEs) can achieve this by employing a porous catalyst layer along with diffusion media to facilitate reactant transport and distribution. GDEs have been used in other electrochemical energy-conversion devices such as fuel cells and electrolyzers, where the architecture has been optimized for high current density and low transport losses. However, the adaptation to CO2R will require further advancement, as different operating strategies and understandings are needed to address product selectivity considerations, which is important to avoid the need for costly downstream separations.(21) Furthermore, the actual electrolyte can either be aqueous to form a catalyst/liquid electrolyte interface (Figure 1b), or ideally an ion-conducting polymer that can transport charged species (e.g., H+ or OH) and form a catalyst/polymer-electrolyte interface (Figure 1c).

A recently published article(22) provides a critical overview of various electrolyzer designs that can be considered, along with a review of the technological achievements made in recent years on electrochemical CO2R reactor designs. In this Perspective, we discuss the challenges and opportunities facing GDE development for electrochemical CO2R. We provide context in terms of CO2R electrocatalysis, and include a discussion of the intrinsic advantages and unexpected opportunities of GDEs in an effort to motivate researchers to translate current understanding toward new GDE designs. The purpose of this Perspective is not to provide a comprehensive review on the topic of electrochemical CO2R or GDE development. Instead, the goal is to provide a forward-looking perspective to inspire and provide direction for these fields of research, using the technology maturation process of commercial water electrolyzers as realistic performance targets. We identify areas deemed important for developing a fundamental understanding of the underlying chemistry, processes, and phenomena occurring in GDEs. This insight is essential for advancing the state of electrochemical CO2R technologies toward commercial viability.

State-of-the-Art. In comparison to electrodes studied in aqueous-phase electrochemical reactors, various types of vapor-fed CO2R electrodes have been successful in improving the partial current densities and energy efficiencies for CO2R.(23) This has been achieved by taking the most selective catalysts identified through fundamental aqueous-phase reactor investigations and integrating them into vapor-fed device designs. This research translation trend is depicted in Figure 2a, which summarizes state-of-the-art faradaic efficiencies versus partial current densities achieved for CO, formate, ethylene, and ethanol production. Performance obtained from vapor-fed GDEs(24−36) (solid symbols) are shown in comparison to similar catalyst compositions tested in aqueous-phase reactors(1,14,37−47) (hollow symbols). While different reactor designs and catalyst configurations were used throughout these studies, this comparison shows the general trend of vapor-fed GDE research successfully improving partial current densities beyond those achievable in aqueous-phase investigations, while retaining similar selectivity. Among these major products shown, the highest faradaic efficiencies and partial current densities are generally reported for CO and formate, as there are a number of different catalyst types that are intrinsically selective to these 2e reduction products.(36,48−52) On the other hand, data for the further reduced (>2e) products, ethylene and ethanol, demonstrates that selectivity is still a major challenge. This selectivity challenge is largely because ethylene and ethanol are competitively coproduced on Cu-based catalysts through very similar mechanistic reaction pathways. However, improvements in ethylene selectivity have been observed by implementing Cu-based catalysts in vapor-fed GDEs for electrochemical CO2R,(24,26) along with similar results demonstrated for electrochemical carbon-monoxide reduction.(53,54) This observation suggests that vapor-fed conditions are a promising avenue for tuning the local environment and reaction conditions that control CO2R selectivity (vide infra), while simultaneously achieving higher partial current densities. However, altering the local CO2 environment is largely underexplored for GDEs and presents an opportunity for increased understanding compared to solely aqueous-phase reactor investigations.

Figure 2

Figure 2. State-of-the-art performance of vapor-fed CO2 devices. (a) Faradaic efficiencies versus partial current densities to ethylene, ethanol, carbon monoxide, and formate. (b) Energy efficiencies versus partial current densities to ethylene, carbon monoxide, formate, and hydrogen. Performances obtained for vapor-fed CO2R electrodes are shown in solid symbols, while performance for electrodes in aqueous-phase CO2R reactors are shown in hollow symbols. All energy efficiencies were calculated as voltage efficiencies using the formula:, where Eanode0 and Ecathode0 are the reversible potentials, FE is the faradaic efficiency for the CO2R product, and Vcell is the uncompensated cell voltage.

On a system level, Figure 2b shows a summary of state-of-the-art energy efficiencies versus partial current densities, which takes into account transport resistances (ionic and electronic), along with kinetic losses from both the anode and cathode.(55) A comparison is also provided to the performance of representative alkaline(55) and proton-exchange membrane(56) (PEM) H2O electrolyzers. It is interesting to note that all of the vapor-fed CO2R cells incorporate an aqueous electrolyte (Figure 1b), in part because alkaline electrolytes can improve energy efficiencies by reducing cathodic overpotentials. Thus, a traditional commercial H2O electrolyzer with an aqueous alkaline electrolyte(55) likely provides the most appropriate comparison. While the representative alkaline H2O electrolyzer performance is superior to that of the vapor-fed CO2 cells shown in Figure 2b, the performance of CO2R to CO cells has been recently closing the gap. Comparing CO2R cell data to the representative PEM H2O electrolyzer shows the intrinsic advantages of the PEM configuration (Figure 1c) for high current-density applications (Figure 2b) due to their more efficient reactant management, high reaction area, and minimal distances for ion transport. Clearly, there are opportunities to develop vapor-fed CO2 devices in this configuration as there is currently a dearth of such studies. Moving forward, it is necessary to understand and optimize transport properties and reaction kinetics in vapor-fed CO2R devices to advance the performance toward practical viability. While we have focused on partial current density, Faradaic efficiency, and energy efficiency as immediately important performance figures of merit, we note that other parameters such as CO2 utilization and component stability will also become increasingly important.

The challenges and opportunities facing vapor-fed CO2R electrode development relate to understanding and optimizing the multitude of processes occurring in three-dimensional GDEs. These processes span different length and time scales, with the complex interplay between phenomena ultimately having a governing effect on the CO2 reaction selectivity and the energy-conversion efficiencies and rates.

Challenges and Opportunities. A crucial first step in the development of vapor-fed CO2R devices relates to engineering the GDE structures. Despite decades of studies, GDEs continue to be an active area of research in the fuel-cell sector, and performance improvements are still being realized through GDE optimization strategies that aim to address the many open questions that remain. GDEs in fuel cells may represent a simplified case in comparison to those in CO2R cells, as reaction selectivity and different product phases (vapor versus liquid) are not as crucial considerations for fuel cells. The challenges and opportunities facing vapor-fed CO2R electrode development relate to understanding and optimizing the multitude of processes occurring in three-dimensional GDEs. These processes span different length and time scales (Figure 3), with the complex interplay between phenomena ultimately having a governing effect on the CO2 reaction selectivity and the energy-conversion efficiencies and rates. As these research efforts are accelerated, it will be necessary to translate fundamental knowledge from aqueous-phase CO2R studies to vapor-fed systems and identify gaps and emergent phenomena. The vapor-fed systems are inherently more complex, due to the presence of a myriad of heterogeneous interfaces on the micro- and nanometer scales. Future research and scientific challenges must be addressed by closely coupled experimental and theoretical investigations. Areas deemed important for knowledge generation and technological process are outlined herein.

Figure 3

Figure 3. Schematic of a three-dimensional GDE depicting the multiple length scales where phenomena are occurring during electrochemical CO2R.

Transport of Reactants. In vapor-phase CO2R electrodes, the delivery of relevant reaction species (CO2, electrons, and H+) can be readily optimized to achieve improved conversion rates. Most notably, vapor-fed cells overcome the intrinsic solubility challenges of CO2 in aqueous electrolytes (ca. 34 mM). At these low concentrations, mass-transport limitations significantly hinder CO2 conversion rates in aqueous-phase devices when current densities exceed ca. 10 mA/cm2.(20) The type of catalyst and GDE fabrication process must be carefully selected to maximize the catalytically active surface area available, and micro- and nanoscale electrode architectures must be designed to optimize CO2, ion, and product transport simultaneously.(57) If present, the properties of the diffusion media, including porosity, pore structure, hydrophilicity, and thickness also play significant roles in governing electrode performance. These parameters have been explored and optimized in the case of fuel cells,(58) whereby H2/O2 fuel cells are able to reliably achieve current densities in excess of 1 A/cm2. This provides a good basis for comparison, yet very limited understanding exists toward the design and development of high current density CO2R electrodes, which must be established through concerted experimental and theoretical efforts.

The relative humidity and concentration of water in vapor-fed CO2R reactors can be carefully controlled to overcome the intrinsic challenges associated with aqueous-phase CO2R, where the concentration of water at the catalyst surface is ca. 55 M, whereas in a typical ion-exchange membrane, water concentrations on the order of 1–25 M or so are obtainable via humidity control although there is trade-off in ionic conductivity at low water contents.(59−61) Water can be a proton source for CO2R as well as for the undesirable HER. As the reversible potentials for most electrochemical CO2 reactions lie within 200 mV of the HER,(37) the HER provides competition to CO2R by occupying electrocatalytically active sites and consuming electrons as well as the proton source, resulting in reduced CO2 conversion rates and energy efficiencies toward the desired product(s). By delivering CO2 to the cathode in the vapor-phase, the local partial pressure of CO2 can be decoupled from the concentration of water (provided an ionic transport pathway remains), enabling strategies to steer selectivity by controlling reactant transport to tune the coverage of intermediates on the catalyst surface. The impact of CO2 partial pressure on vapor-fed device performance is, however, not well understood and should be the focus of future studies. Parametric investigations on well-characterized GDEs should be conducted and closely coupled to the development of continuum mathematical models to understand transport processes throughout these 3-dimensional porous electrodes and identify their impact on performance.

Polymer Electrolyte and Ionomer: Charge Carrier Transport and Catalyst/Electrolyte Interfaces. As previously mentioned, a key challenge of aqueous-phase CO2R is the CO2/carbonate/bicarbonate buffering equilibria that limits the range of operational pH values for CO2R, and convolutes an accurate depiction of the boundary-layer properties at the catalyst surface.(20) This leads to inflexibility in tuning the chemical properties of the catalyst/electrolyte interface, despite the importance of these chemical properties in dictating surface reaction kinetics, mechanisms, and charge-transport processes. For example, electrolyte pH is known significantly impact CO2R activity and selectivity. In particular, increased activity toward valuable C–C coupled products are favored at high pH values,(4,62) which cannot be reliably achieved for aqueous-phase CO2R due to the above-mentioned equilibria. This presents a valuable opportunity to develop and utilize polymer electrolytes that can operate in different pH regimes and may exhibit very different ion concentrations due to their thinness as well as background charge. Furthermore, advances in polymer electrolytes must be translated to the development of ionomers for incorporation throughout the three-dimensional structure of a GDE to create an interconnected thin-film network needed for ionic species transport. Despite similar structures, the behavior of ionomer thin films in an electrode can vary quite significantly from the bulk polymer,(60) and advances in their development and understanding are needed.

Solid-state polymer electrolytes (Figure 1c) pose many intrinsic advantages over liquid-phase electrolytes (Figure 1b). Particularly, simplified device designs requiring fewer auxiliary components for electrolyte circulation and replenishment, and the elimination of any mobile counterions other than protons and hydroxyls are ideal from a sustainability and CO2 utilization standpoint. Vapor-fed GDE based devices employing polymer electrolytes also provide additional transport advantages versus aqueous electrolytes as they enable shorter distances between the anode and cathode,(63) thereby minimizing ohmic resistances through a “zero-gap” complete solid-state configuration. Avoiding the use of corrosive liquid electrolytes also poses several safety advantages, including avoiding the risk of leaking or heat-induced pressure buildup. Polymer electrolytes furthermore enable operation at higher pressures and potentially allow for differential pressures to be used between the two electrodes, as reactant crossover can be suppressed.(63) Finally, they provide an opportunity for separation of volatile liquid-phase CO2R products directly at the site of generation. For example, when targeting alcohol products, in comparison to aqueous-phase CO2R, vapor-fed devices will avoid the formation of azeotropic alcohol/water mixtures that would require energy intensive downstream separation processes.(21) Clearly there is an immense opportunity for the development of solid polymer electrolytes and their integration with vapor-fed CO2R GDEs. Key challenges include designing and integrating new polymer electrolytes that simultaneously satisfy the requirements of low cost, high ionic conductivity and selectivity, resistance to reactant/product crossover, CO2 tolerance, and long-term chemical and mechanical stability under operating conditions.

On the electrode level, the ionomer properties, including type (i.e., anionic, cationic), structure and catalyst/ionomer interactions strongly influence CO2R activity and selectivity, where the tethering of the ionic groups hinder movement of their counterions as well as influence the reactivity of the ionic group themselves relative to their behavior in liquid electrolytes. Ionic species (e.g., H+, OH, HCO3) transport in the ionomer phase is a crucial consideration, in addition to the distribution of the ionomer phase throughout the three-dimensional GDE structure. Particularly, optimized ionomer distributions can enable good charge species transport and active site utilization, while nonideal distributions can adversely affect performance through catalytic or transport resistances.(64) There also exist enticing opportunities to modify ionomer structures to accommodate functional or ionic species that can provide promotional CO2R effects, such as increasing the local CO2 concentration, decreasing selective site poisoning through blocky architectures,(15) or impacting reaction mechanisms and routes through chemical modification(65) and field effects, where the local ion concentrations and distances can be more precisely controlled.(2)

While recent advances have enabled understanding of how different parameters (i.e., pH, electrolyte concentrations, catalyst functionalization) fundamentally affect aqueous-phase CO2R catalysis, it is an opportune time to translate and validate this current state of understanding to highly porous vapor-fed GDEs. For example, polymer electrolytes exhibit different acid/base equilibria time constants than aqueous electrolytes due to the existence of the polymer backbone.(66) Furthermore, while one may obtain the desired high pH in aqueous electrolytes using high flow rates, this provides challenges from a practicality standpoint;(24) a similar effect may perhaps be obtained with polymer electrolytes since their thinness and possibility for high current-density operation result in large hydroxide fluxes and amounts in the electrode ionomer. Targeted approaches to understand polymer electrolyte effects, ionomer distributions, ionomer/catalyst interactions and charge-carrier transport properties must be carried out on model and/or prototype vapor-fed CO2R systems, where the use of new polymer electrolytes and ionomers provide an increased ability to control and manipulate the local reaction environment at the catalyst surface. It is suggested that researchers leverage previous efforts on these topics reported in the fuel cell or electrolyzer literature, especially as anion-exchange membranes and ionomers become more prevalent and understood.

Opportunities for Fundamental Understanding. With the seemingly overwhelming number of factors that govern the multiscale processes and performance of a GDE, a detailed understanding of these phenomena will require experimental approaches closely coupled with multiscale theoretical modeling and prediction. Comprehensive models do not currently exist that simultaneously capture and bridge quantum- and molecular-level dynamics with continuum models of reactant and product transport. The difficulty lies in the disparate length- and time-scales between these processes that require the combination of nonlinear partial differential equations with complex boundary conditions. Robust numerical techniques that can accomplish this are needed, which will enable the necessary multiprocess understanding and optimization that will be essential for guiding and understanding GDE approaches.

In terms of experimental approaches, the increasing complexity of vapor-fed devices necessitates the development and utilization of operando, in situ, and ex situ probes that probe interfacial phenomena in highly porous electrodes. For this, simplified vapor-fed cells can potentially be designed to deconvolute the influence of common experimental parameters.(67) This could serve to enable facile characterization and CO2R evaluation of catalyst and electrode structures, which will accelerate the implementation of new GDE formulations in high-performance devices. Additionally, vapor-fed GDEs offer a promising platform for experimentally characterizing the multiscale properties of devices and processes occurring during operation. By minimizing the use of liquids, challenges associated with beam attenuation and refraction are avoided, enabling mechanistic probing of electrode processes using X-ray scattering, absorption, or photoelectron techniques. For example, the electronic or chemical structure of catalytically active surface sites in GDEs under reaction conditions can be probed by in situ X-ray absorption spectroscopy(68−70) or in situ X-ray photoelectron spectroscopy,(71,72) respectively; meanwhile the effects of electrode pore sizes, structures, and surface properties on microscale transport processes can be interrogated by X-ray computed tomography coupled with performance evaluation.(73−77) Developing an improved understanding of the effects of operating conditions and GDE configurations on performance will provide opportunity to engineer devices to provide multivariable optimization for achieving unprecedented knowledge and performance.

Beyond GDE designs to optimize the multiscale processes underlying their operation, electrode integration into vapor-fed reactors provides an ideal opportunity for advanced understanding. The impact of operational parameters such as relative humidity, reactant flow rates, temperature, and device electrical potential on CO2 conversion rates and efficiency remains largely unexplored, yet provide additional levers to tune performance and selectivity. The type of polymer electrolyte (proton exchange, anion exchange, bipolar) and anode design and materials are essential considerations for incorporating GDEs into working devices,(78,79) and GDE compatibility with electrolytes and anodes must be understood. The stability of GDEs under operating conditions is also an important topic that has not been addressed in detail here or in the literature, because vapor-fed CO2R electrode design is a relatively early stage field of research. Stable, long-term operation will be essential for achieving practicality of these devices. As these devices will ideally be coupled with renewable sources of power, the question of variability and how it relates to GDE performance and stability must also be understood and addressed. Furthermore, engineering vapor-fed GDEs to be capable of accommodating low-grade or dilute CO2 feed sources (e.g., atmospheric CO2) improves the practicality of these devices to different applications and elucidation of these effects is important.

Particularly, there is an immense scientific opportunity to develop fundamental understanding of the multi-scale processes occurring in three-dimensional GDEs, and to optimize GDE performance through rational engineering approaches.

Outlook. Recent efforts have demonstrated the potential of translating scientific advances made in electrochemical CO2 reduction research toward the development of practical CO2 electrolyzers. Key challenges and opportunities that remain involve the understanding and development of three-dimensional vapor-fed CO2 reduction electrodes that can achieve high conversion rates and energy efficiencies toward the desired products. Particularly, there is an immense scientific opportunity to develop fundamental understanding of the multiscale processes occurring in three-dimensional GDEs, and to optimize GDE performance through rational engineering approaches. Closely integrated experimental and theoretic investigations are required to progress upon our current state of understanding and perpetuate the advancement of CO2 electrolyzers toward practical relevance. The knowledge generated and progress made in catalyst integration, electrode engineering, and electrochemical device design will also be directly applicable to other electrochemical conversion devices that could be of technological importance in the near future to replace gigatonne-scale, carbon-intensive industrial processes. These include sustainable electrochemical technologies for the production of fuels and chemicals from carbon-based feedstocks, or the synthesis of ammonia-based fertilizers from ambient N2.

Author Contributions

D.H. and C.H.: Equal author contributions.

The authors declare no competing financial interest.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Thomas F. Jaramillo - Department of Chemical Engineering, Stanford University, 443 Via Ortega Way, Stanford, California 94305, United States; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States; Orcidhttp://orcid.org/0000-0001-9900-0622; Email: [email protected]
    • Adam Z. Weber - Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS70-108B, Berkeley, California 94720, United States; Orcidhttp://orcid.org/0000-0002-7749-1624; Email: [email protected]
  • Authors
    • Drew Higgins - Department of Chemical Engineering, Stanford University, 443 Via Ortega Way, Stanford, California 94305, United States; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States; Orcidhttp://orcid.org/0000-0002-0585-2670
    • Christopher Hahn - Department of Chemical Engineering, Stanford University, 443 Via Ortega Way, Stanford, California 94305, United States; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States; Orcidhttp://orcid.org/0000-0002-2772-6341
    • Chengxiang Xiang - Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125, United States; Orcidhttp://orcid.org/0000-0002-1698-6754
  • Author Contributions

    D.H. and C.H.: Equal author contributions.

  • Notes

    The authors declare no competing financial interest.

Biographies

ARTICLE SECTIONS
Jump To

Drew Higgins

Drew Higgins has been at Stanford University and SLAC National Laboratory since 2015, first as a Banting Postdoctoral Fellow and then Associate Staff Scientist working on electrochemical catalyst development, understanding and device integration. In January 2019, he starts a Faculty position at McMaster University in the Department of Chemical Engineering. https://www.higginslab.com/.

Christopher Hahn

Christopher Hahn began his current position at SLAC National Accelerator Laboratory in 2015, where he is conducting research with the Joint Center for Artificial Photosynthesis on catalyst discovery and understanding reaction mechanisms for electrochemical CO2 reduction. https://suncat.stanford.edu/people/christopher-hahn.

Chengxiang Xiang

Chengxiang (“CX”) Xiang and his team are working on development of testbed prototypes for photoelectrochemical CO2 reduction and water-splitting. http://sunlight.caltech.edu/cx/.

Thomas F. Jaramillo

Thomas Jaramillo is an Associate Professor at Stanford and SLAC National Accelerator Laboratory and is a Thrust Coordinator in JCAP overseeing electrocatalysis research. His laboratory focuses on fundamental catalytic processes occurring on solid-state surfaces in both the production and consumption of energy. http://jaramillogroup.stanford.edu/.

Adam Z. Weber

Adam Weber is currently a Staff Scientist at LBNL where he leads the Energy Conversion Group and is a Thrust Coordinator in JCAP overseeing continuum modeling, multicomponent integration, and test-bed construction and evaluation. He is a Fellow of the Electrochemical Society for his research on understanding electrochemical technologies. https://weberlab.lbl.gov/.

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

References

ARTICLE SECTIONS
Jump To

This article references 79 other publications.

  1. 1
    Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Vayenas, C. G., White, R. E., Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89189.
  2. 2
    Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2017, 139 (32), 1127711287,  DOI: 10.1021/jacs.7b06765
  3. 3
    Resasco, J.; Lum, Y.; Clark, E.; Zeledon, J. Z.; Bell, A. T. Effects of Anion Identity and Concentration on Electrochemical Reduction of CO2. ChemElectroChem 2018, 5 (7), 10641072,  DOI: 10.1002/celc.201701316
  4. 4
    Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C. Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and PH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catal. 2018, 8, 74457454,  DOI: 10.1021/acscatal.8b01200
  5. 5
    Singh, M. R.; Goodpaster, J. D.; Weber, A. Z.; Head-Gordon, M.; Bell, A. T. Mechanistic Insights into Electrochemical Reduction of CO2 over Ag Using Density Functional Theory and Transport Models. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (42), E8812,  DOI: 10.1073/pnas.1713164114
  6. 6
    Lobaccaro, P.; Singh, M. R.; Clark, E. L.; Kwon, Y.; Bell, A. T.; Ager, J. W. Effects of Temperature and Gas-Liquid Mass Transfer on the Operation of Small Electrochemical Cells for the Quantitative Evaluation of CO2 Reduction Electrocatalysts. Phys. Chem. Chem. Phys. 2016, 18 (38), 2677726785,  DOI: 10.1039/C6CP05287H
  7. 7
    Hashiba, H.; Weng, L.-C.; Chen, Y.; Sato, H. K.; Yotsuhashi, S.; Xiang, C.; Weber, A. Z. Effects of Electrolyte Buffer Capacity on Surface Reactant Species and the Reaction Rate of CO2 in Electrochemical Co2 Reduction. J. Phys. Chem. C 2018, 122 (7), 37193726,  DOI: 10.1021/acs.jpcc.7b11316
  8. 8
    Hashiba, H.; Yotsuhashi, S.; Deguchi, M.; Yamada, Y. Systematic Analysis of Electrochemical CO2 Reduction with Various Reaction Parameters Using Combinatorial Reactors. ACS Comb. Sci. 2016, 18 (4), 203208,  DOI: 10.1021/acscombsci.6b00021
  9. 9
    Ahn, S. T.; Abu-Baker, I.; Palmore, G. T. R. Electroreduction of CO2 on Polycrystalline Copper: Effect of Temperature on Product Selectivity. Catal. Today 2017, 288, 2429,  DOI: 10.1016/j.cattod.2016.09.028
  10. 10
    Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Nørskov, J. K. Understanding Trends in Electrochemical Carbon Dioxide Reduction Rates. Nat. Commun. 2017, 8, 15438,  DOI: 10.1038/ncomms15438
  11. 11
    Rendón-Calle, A.; Builes, S.; Calle-Vallejo, F. A Brief Review of the Computational Modeling of CO2 Electroreduction on Cu Electrodes. Curr. Opin. Electrochem. 2018, 9, 158,  DOI: 10.1016/j.coelec.2018.03.012
  12. 12
    Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catal. 2018, 8 (2), 14901499,  DOI: 10.1021/acscatal.7b03477
  13. 13
    Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6 (20), 40734082,  DOI: 10.1021/acs.jpclett.5b01559
  14. 14
    Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 Reduction over Compressively Strained Cuag Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. J. Am. Chem. Soc. 2017, 139 (44), 1584815857,  DOI: 10.1021/jacs.7b08607
  15. 15
    Han, Z.; Kortlever, R.; Chen, H.-Y.; Peters, J. C.; Agapie, T. CO2 Reduction Selective for C ≥ 2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Cent. Sci. 2017, 3 (8), 853859,  DOI: 10.1021/acscentsci.7b00180
  16. 16
    Higgins, D.; Landers, A. T.; Ji, Y.; Nitopi, S.; Morales-Guio, C. G.; Wang, L.; Chan, K.; Hahn, C.; Jaramillo, T. F. Guiding Electrochemical Carbon Dioxide Reduction toward Carbonyls Using Copper Silver Thin Films with Interphase Miscibility. ACS Energy Lett. 2018, 3, 29472955,  DOI: 10.1021/acsenergylett.8b01736
  17. 17
    Raciti, D.; Wang, C. Recent Advances in CO2 Reduction Electrocatalysis on Copper. ACS Energy Lett. 2018, 3 (7), 15451556,  DOI: 10.1021/acsenergylett.8b00553
  18. 18
    De Luna, P.; Wei, J.; Bengio, Y.; Aspuru-Guzik, A.; Sargent, E. Use Machine Learning to Find Energy Materials. Nature 2017, 552 (7683), 23,  DOI: 10.1038/d41586-017-07820-6
  19. 19
    Ulissi, Z. W.; Tang, M. T.; Xiao, J.; Liu, X.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction. ACS Catal. 2017, 7 (10), 66006608,  DOI: 10.1021/acscatal.7b01648
  20. 20
    Singh, M. R.; Clark, E. L.; Bell, A. T. Effects of Electrolyte, Catalyst, and Membrane Composition and Operating Conditions on the Performance of Solar-Driven Electrochemical Reduction of Carbon Dioxide. Phys. Chem. Chem. Phys. 2015, 17 (29), 1892418936,  DOI: 10.1039/C5CP03283K
  21. 21
    Greenblatt, J. B.; Miller, D. J.; Ager, J. W.; Houle, F. A.; Sharp, I. D. The Technical and Energetic Challenges of Separating (Photo)Electrochemical Carbon Dioxide Reduction Products. Joule 2018, 2 (3), 381420,  DOI: 10.1016/j.joule.2018.01.014
  22. 22
    Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P. Electrolytic CO2 Reduction in a Flow Cell. Acc. Chem. Res. 2018, 51 (4), 910918,  DOI: 10.1021/acs.accounts.8b00010
  23. 23
    Jhong, H.-R. M.; Ma, S.; Kenis, P. J. A. Electrochemical Conversion of CO2 to Useful Chemicals: Current Status, Remaining Challenges, and Future Opportunities. Curr. Opin. Chem. Eng. 2013, 2 (2), 191199,  DOI: 10.1016/j.coche.2013.03.005
  24. 24
    Dinh, C.-T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. CO2 Electroreduction to Ethylene Via Hydroxide-Mediated Copper Catalysis at an Abrupt Interface. Science 2018, 360 (6390), 783787,  DOI: 10.1126/science.aas9100
  25. 25
    Ma, S.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P. J. A. One-Step Electrosynthesis of Ethylene and Ethanol from CO2 in an Alkaline Electrolyzer. J. Power Sources 2016, 301, 219228,  DOI: 10.1016/j.jpowsour.2015.09.124
  26. 26
    Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 2018, 140 (17), 57915797,  DOI: 10.1021/jacs.8b01868
  27. 27
    Zhuang, T.-T.; Liang, Z.-Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.; Quintero-Bermudez, R. Steering Post-C–C Coupling Selectivity Enables High Efficiency Electroreduction of Carbon Dioxide to Multi-Carbon Alcohols. Nature Catalysis 2018, 1 (6), 421428,  DOI: 10.1038/s41929-018-0084-7
  28. 28
    Lv, J.-J.; Jouny, M.; Luc, W.; Zhu, W.; Zhu, J.-J.; Jiao, F. A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction. Adv. Mater. 2018, 30 (49), 1803111,  DOI: 10.1002/adma.201803111
  29. 29
    Verma, S.; Hamasaki, Y.; Kim, C.; Huang, W.; Lu, S.; Jhong, H.-R. M.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. Insights into the Low Overpotential Electroreduction of CO2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer. ACS Energy Lett. 2018, 3 (1), 193198,  DOI: 10.1021/acsenergylett.7b01096
  30. 30
    Ma, S.; Luo, R.; Gold, J. I.; Yu, A. Z.; Kim, B.; Kenis, P. J. A. Carbon Nanotube Containing Ag Catalyst Layers for Efficient and Selective Reduction of Carbon Dioxide. J. Mater. Chem. A 2016, 4 (22), 85738578,  DOI: 10.1039/C6TA00427J
  31. 31
    Dufek, E. J.; Lister, T. E.; Stone, S. G.; McIlwain, M. E. Operation of a Pressurized System for Continuous Reduction of CO2. J. Electrochem. Soc. 2012, 159 (9), F514F517,  DOI: 10.1149/2.011209jes
  32. 32
    Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Technical Photosynthesis Involving CO2 Electrolysis and Fermentation. Nature Catalysis 2018, 1 (1), 3239,  DOI: 10.1038/s41929-017-0005-1
  33. 33
    Whipple, D. T.; Finke, E. C.; Kenis, P. J. A. Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of Ph. Electrochem. Solid-State Lett. 2010, 13 (9), B109B111,  DOI: 10.1149/1.3456590
  34. 34
    Lu, X.; Leung, D. Y. C.; Wang, H.; Xuan, J. A High Performance Dual Electrolyte Microfluidic Reactor for the Utilization of CO2. Appl. Energy 2017, 194, 549559,  DOI: 10.1016/j.apenergy.2016.05.091
  35. 35
    Li, H.; Oloman, C. Development of a Continuous Reactor for the Electro-Reduction of Carbon Dioxide to Formate – Part 2: Scale-Up. J. Appl. Electrochem. 2007, 37 (10), 11071117,  DOI: 10.1007/s10800-007-9371-8
  36. 36
    Yang, H.; Kaczur, J. J.; Sajjad, S. D.; Masel, R. I. Electrochemical Conversion of Co2 to Formic Acid Utilizing Sustainion Membranes. J. CO2 Utilization 2017, 20, 208217,  DOI: 10.1016/j.jcou.2017.04.011
  37. 37
    Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces. Energy Environ. Sci. 2012, 5 (5), 70507059,  DOI: 10.1039/c2ee21234j
  38. 38
    Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Metal Ion Cycling of Cu Foil for Selective C–C Coupling in Electrochemical CO2 Reduction. Nature Catalysis 2018, 1 (2), 111119,  DOI: 10.1038/s41929-017-0009-x
  39. 39
    Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Copper Nanoparticle Ensembles for Selective Electroreduction of CO2 to C2–C3 Products. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (40), 1056010565,  DOI: 10.1073/pnas.1711493114
  40. 40
    Ren, D.; Ang, B. S.-H.; Yeo, B. S. Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cuxzn Catalysts. ACS Catal. 2016, 6 (12), 82398247,  DOI: 10.1021/acscatal.6b02162
  41. 41
    Cave, E. R.; Montoya, J. H.; Kuhl, K. P.; Abram, D. N.; Hatsukade, T.; Shi, C.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Electrochemical CO2 Reduction on Au Surfaces: Mechanistic Aspects Regarding the Formation of Major and Minor Products. Phys. Chem. Chem. Phys. 2017, 19 (24), 1585615863,  DOI: 10.1039/C7CP02855E
  42. 42
    Hatsukade, T.; Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Insights into the Electrocatalytic Reduction of CO2 on Metallic Silver Surfaces. Phys. Chem. Chem. Phys. 2014, 16 (27), 1381413819,  DOI: 10.1039/C4CP00692E
  43. 43
    Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A Selective and Efficient Electrocatalyst for Carbon Dioxide Reduction. Nat. Commun. 2014, 5, 3242,  DOI: 10.1038/ncomms4242
  44. 44
    Chen, Y.; Li, C. W.; Kanan, M. W. Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 1996919972,  DOI: 10.1021/ja309317u
  45. 45
    Zheng, X.; De Luna, P.; García de Arquer, F. P.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y.; Banis, M. N.; Li, Y.; Liu, M. Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule 2017, 1 (4), 794805,  DOI: 10.1016/j.joule.2017.09.014
  46. 46
    Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 48224827,  DOI: 10.1021/acscatal.7b00687
  47. 47
    Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Partially Oxidized Atomic Cobalt Layers for Carbon Dioxide Electroreduction to Liquid Fuel. Nature 2016, 529, 68,  DOI: 10.1038/nature16455
  48. 48
    Zhao, S.; Jin, R.; Jin, R. Opportunities and Challenges in CO2 Reduction by Gold- and Silver-Based Electrocatalysts: From Bulk Metals to Nanoparticles and Atomically Precise Nanoclusters. ACS Energy Lett. 2018, 3 (2), 452462,  DOI: 10.1021/acsenergylett.7b01104
  49. 49
    Cai, Z.; Wu, Y.; Wu, Z.; Yin, L.; Weng, Z.; Zhong, Y.; Xu, W.; Sun, X.; Wang, H. Unlocking Bifunctional Electrocatalytic Activity for CO2 Reduction Reaction by Win-Win Metal–Oxide Cooperation. ACS Energy Lett. 2018, 3 (11), 28162822,  DOI: 10.1021/acsenergylett.8b01767
  50. 50
    Lu, X.; Wu, Y.; Yuan, X.; Huang, L.; Wu, Z.; Xuan, J.; Wang, Y.; Wang, H. High-Performance Electrochemical CO2 Reduction Cells Based on Non-Noble Metal Catalysts. ACS Energy Lett. 2018, 3 (10), 25272532,  DOI: 10.1021/acsenergylett.8b01681
  51. 51
    Kaczur, J. J.; Yang, H.; Liu, Z.; Sajjad, S. D.; Masel, R. I. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes. Front. Chem. 2018, 6, 263,  DOI: 10.3389/fchem.2018.00263
  52. 52
    Salvatore, D. A.; Weekes, D. M.; He, J.; Dettelbach, K. E.; Li, Y. C.; Mallouk, T. E.; Berlinguette, C. P. Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Lett. 2018, 3 (1), 149154,  DOI: 10.1021/acsenergylett.7b01017
  53. 53
    Ripatti, D. S.; Veltman, T. R.; Kanan, M. W. Carbon Monoxide Gas Diffusion Electrolysis That Produces Concentrated C2 Products with High Single-Pass Conversion. Joule 2018,  DOI: 10.1016/j.joule.2018.10.007
  54. 54
    Jouny, M.; Luc, W.; Jiao, F. High-Rate Electroreduction of Carbon Monoxide to Multi-Carbon Products. Nature Catal. 2018, 1 (10), 748755,  DOI: 10.1038/s41929-018-0133-2
  55. 55
    Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Energy Combust. Sci. 2010, 36 (3), 307326,  DOI: 10.1016/j.pecs.2009.11.002
  56. 56
    Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A Comprehensive Review on Pem Water Electrolysis. Int. J. Hydrogen Energy 2013, 38 (12), 49014934,  DOI: 10.1016/j.ijhydene.2013.01.151
  57. 57
    Weng, L. C.; Bell, A. T.; Weber, A. Z. Modeling Gas-Diffusion Electrodes for CO2 Reduction. Phys. Chem. Chem. Phys. 2018, 20 (25), 1697316984,  DOI: 10.1039/C8CP01319E
  58. 58
    Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W. B.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M. A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells. J. Electrochem. Soc. 2014, 161 (12), F1254F1299,  DOI: 10.1149/2.0751412jes
  59. 59
    Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K. Anion-Exchange Membranes in Electrochemical Energy Systems. Energy Environ. Sci. 2014, 7 (10), 31353191,  DOI: 10.1039/C4EE01303D
  60. 60
    Kusoglu, A.; Weber, A. Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117 (3), 9871104,  DOI: 10.1021/acs.chemrev.6b00159
  61. 61
    Dekel, D. R. Review of Cell Performance in Anion Exchange Membrane Fuel Cells. J. Power Sources 2018, 375, 158169,  DOI: 10.1016/j.jpowsour.2017.07.117
  62. 62
    Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Electroreduction of Carbon Monoxide to Methane and Ethylene at a Copper Electrode in Aqueous Solutions at Ambient Temperature and Pressure. J. Am. Chem. Soc. 1987, 109 (16), 50225023,  DOI: 10.1021/ja00250a044
  63. 63
    Paidar, M.; Fateev, V.; Bouzek, K. Membrane Electrolysis—History, Current Status and Perspective. Electrochim. Acta 2016, 209, 737756,  DOI: 10.1016/j.electacta.2016.05.209
  64. 64
    Weber, A. Z.; Kusoglu, A. Unexplained Transport Resistances for Low-Loaded Fuel-Cell Catalyst Layers. J. Mater. Chem. A 2014, 2 (41), 1720717211,  DOI: 10.1039/C4TA02952F
  65. 65
    Tamura, J.; Ono, A.; Sugano, Y.; Huang, C.; Nishizawa, H.; Mikoshiba, S. Electrochemical Reduction of CO2 to Ethylene Glycol on Imidazolium Ion-Terminated Self-Assembly Monolayer-Modified Au Electrodes in an Aqueous Solution. Phys. Chem. Chem. Phys. 2015, 17 (39), 2607226078,  DOI: 10.1039/C5CP03028E
  66. 66
    Divekar, A. G.; Park, A. M.; Owczarczyk, Z. R.; Seifert, S.; Pivovar, B. S.; Herring, A. M. A Study of Carbonate Formation Kinetics and Morphological Effects Observed on Oh- Form of Pfaem When Exposed to Air Containing CO2. ECS Trans. 2017, 80 (8), 10051011,  DOI: 10.1149/08008.1005ecst
  67. 67
    Inaba, M.; Jensen, A. W.; Sievers, G. W.; Escudero-Escribano, M.; Zana, A.; Arenz, M. Benchmarking High Surface Area Electrocatalysts in a Gas Diffusion Electrode: Measurement of Oxygen Reduction Activities under Realistic Conditions. Energy Environ. Sci. 2018, 11, 988,  DOI: 10.1039/C8EE00019K
  68. 68
    Wiltshire, R. J. K.; King, C. R.; Rose, A.; Wells, P. P.; Hogarth, M. P.; Thompsett, D.; Russell, A. E. A Pem Fuel Cell for in Situ Xas Studies. Electrochim. Acta 2005, 50 (25), 52085217,  DOI: 10.1016/j.electacta.2005.05.038
  69. 69
    Ramaker, D. E.; Korovina, A.; Croze, V.; Melke, J.; Roth, C. Following Orr Intermediates Adsorbed on a Pt Cathode Catalyst During Break-in of a Pem Fuel Cell by in Operando X-Ray Absorption Spectroscopy. Phys. Chem. Chem. Phys. 2014, 16 (27), 1364513653,  DOI: 10.1039/C4CP00192C
  70. 70
    Ishiguro, N.; Saida, T.; Uruga, T.; Nagamatsu, S.-i.; Sekizawa, O.; Nitta, K.; Yamamoto, T.; Ohkoshi, S.-i.; Iwasawa, Y.; Yokoyama, T. Operando Time-Resolved X-Ray Absorption Fine Structure Study for Surface Events on a Pt3Co/C Cathode Catalyst in a Polymer Electrolyte Fuel Cell During Voltage-Operating Processes. ACS Catal. 2012, 2 (7), 13191330,  DOI: 10.1021/cs300228p
  71. 71
    Casalongue, H. S.; Kaya, S.; Viswanathan, V.; Miller, D. J.; Friebel, D.; Hansen, H. A.; Nørskov, J. K.; Nilsson, A.; Ogasawara, H. Direct Observation of the Oxygenated Species During Oxygen Reduction on a Platinum Fuel Cell Cathode. Nat. Commun. 2013, 4, 2817,  DOI: 10.1038/ncomms3817
  72. 72
    Sanchez Casalongue, H. G.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In Situ Observation of Surface Species on Iridium Oxide Nanoparticles During the Oxygen Evolution Reaction. Angew. Chem., Int. Ed. 2014, 53 (28), 71697172,  DOI: 10.1002/anie.201402311
  73. 73
    Zenyuk, I. V.; Parkinson, D. Y.; Hwang, G.; Weber, A. Z. Probing Water Distribution in Compressed Fuel-Cell Gas-Diffusion Layers Using X-Ray Computed Tomography. Electrochem. Commun. 2015, 53, 2428,  DOI: 10.1016/j.elecom.2015.02.005
  74. 74
    Medici, E. F.; Zenyuk, I. V.; Parkinson, D. Y.; Weber, A. Z.; Allen, J. S. Understanding Water Transport in Polymer Electrolyte Fuel Cells Using Coupled Continuum and Pore-Network Models. Fuel Cells 2016, 16 (6), 725733,  DOI: 10.1002/fuce.201500213
  75. 75
    Cetinbas, F. C.; Wang, X. H.; Ahluwalia, R. K.; Kariuki, N. N.; Winarski, R. P.; Yang, Z. W.; Sharman, J.; Myers, D. J. Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded Pefc Electrodes. J. Electrochem. Soc. 2017, 164 (14), F1596F1607,  DOI: 10.1149/2.1111714jes
  76. 76
    Komini Babu, S.; Chung, H. T.; Zelenay, P.; Litster, S. Resolving Electrode Morphology’s Impact on Platinum Group Metal-Free Cathode Performance Using Nano-Ct of 3d Hierarchical Pore and Ionomer Distribution. ACS Appl. Mater. Interfaces 2016, 8 (48), 3276432777,  DOI: 10.1021/acsami.6b08844
  77. 77
    Cetinbas, F. C.; Ahluwalia, R. K.; Kariuki, N.; De Andrade, V.; Fongalland, D.; Smith, L.; Sharman, J.; Ferreira, P.; Rasouli, S.; Myers, D. J. Hybrid Approach Combining Multiple Characterization Techniques and Simulations for Microstructural Analysis of Proton Exchange Membrane Fuel Cell Electrodes. J. Power Sources 2017, 344, 6273,  DOI: 10.1016/j.jpowsour.2017.01.104
  78. 78
    Vermaas, D. A.; Smith, W. A. Synergistic Electrochemical CO2 Reduction and Water Oxidation with a Bipolar Membrane. ACS Energy Lett. 2016, 1 (6), 11431148,  DOI: 10.1021/acsenergylett.6b00557
  79. 79
    Li, Y. C.; Zhou, D.; Yan, Z.; Gonçalves, R. H.; Salvatore, D. A.; Berlinguette, C. P.; Mallouk, T. E. Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells. ACS Energy Lett. 2016, 1 (6), 11491153,  DOI: 10.1021/acsenergylett.6b00475

Cited By


This article is cited by 110 publications.

  1. Ivan Grigioni, Laxmi Kishore Sagar, Yuguang C. Li, Geonhui Lee, Yu Yan, Koen Bertens, Rui Kai Miao, Xue Wang, Jehad Abed, Da Hye Won, F. Pelayo García de Arquer, Alexander H. Ip, David Sinton, Edward H. Sargent. CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm–2 with InP Colloidal Quantum Dot Derived Catalysts. ACS Energy Letters 2020, Article ASAP.OpenURL UNIV OF NORTH TEXAS
  2. María de Jesus Gálvez-Vázquez, Pavel Moreno-García, Heng Xu, Yuhui Hou, Huifang Hu, Iván Zelocualtecatl Montiel, Alexander V. Rudnev, Shima Alinejad, Vitali Grozovski, Benjamin J. Wiley, Matthias Arenz, Peter Broekmann. Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer. ACS Catalysis 2020, 10 (21) , 13096-13108. https://doi.org/10.1021/acscatal.0c03609OpenURL UNIV OF NORTH TEXAS
  3. Kai junge Puring, Olga Evers, Michael Prokein, Daniel Siegmund, Fabian Scholten, Nils Mölders, Manfred Renner, Beatriz Roldan Cuenya, Marcus Petermann, Eckhard Weidner, Ulf-Peter Apfel. Assessing the Influence of Supercritical Carbon Dioxide on the Electrochemical Reduction to Formic Acid Using Carbon-Supported Copper Catalysts. ACS Catalysis 2020, 10 (21) , 12783-12789. https://doi.org/10.1021/acscatal.0c02983OpenURL UNIV OF NORTH TEXAS
  4. Matthew F. Philips, Gert-Jan M. Gruter, Marc T. M. Koper, Klaas Jan P. Schouten. Optimizing the Electrochemical Reduction of CO2 to Formate: A State-of-the-Art Analysis. ACS Sustainable Chemistry & Engineering 2020, 8 (41) , 15430-15444. https://doi.org/10.1021/acssuschemeng.0c05215OpenURL UNIV OF NORTH TEXAS
  5. Syed Asad Abbas, Jun Tae Song, Ying Chuan Tan, Ki Min Nam, Jihun Oh, Kwang-Deog Jung. Synthesis of a Nickel Single-Atom Catalyst Based on Ni–N4–xCx Active Sites for Highly Efficient CO2 Reduction Utilizing a Gas Diffusion Electrode. ACS Applied Energy Materials 2020, 3 (9) , 8739-8745. https://doi.org/10.1021/acsaem.0c01283OpenURL UNIV OF NORTH TEXAS
  6. Fabian Bienen, Dennis Kopljar, Armin Löwe, Simon Geiger, Norbert Wagner, Elias Klemm, Kaspar Andreas Friedrich. Revealing Mechanistic Processes in Gas-Diffusion Electrodes During CO2 Reduction via Impedance Spectroscopy. ACS Sustainable Chemistry & Engineering 2020, 8 (36) , 13759-13768. https://doi.org/10.1021/acssuschemeng.0c04451OpenURL UNIV OF NORTH TEXAS
  7. Julie C. Fornaciari, Darinka Primc, Kenta Kawashima, Bryan R. Wygant, Sumit Verma, Leonardo Spanu, C. Buddie Mullins, Alexis T. Bell, Adam Z. Weber. A Perspective on the Electrochemical Oxidation of Methane to Methanol in Membrane Electrode Assemblies. ACS Energy Letters 2020, 5 (9) , 2954-2963. https://doi.org/10.1021/acsenergylett.0c01508OpenURL UNIV OF NORTH TEXAS
  8. Adnan Ozden, Fengwang Li, F. Pelayo Garcı́a de Arquer, Alonso Rosas-Hernández, Arnaud Thevenon, Yuhang Wang, Sung-Fu Hung, Xue Wang, Bin Chen, Jun Li, Joshua Wicks, Mingchuan Luo, Ziyun Wang, Theodor Agapie, Jonas C. Peters, Edward H. Sargent, David Sinton. High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Letters 2020, 5 (9) , 2811-2818. https://doi.org/10.1021/acsenergylett.0c01266OpenURL UNIV OF NORTH TEXAS
  9. Mohammadreza Nazemi, Pengfei Ou, Abdulaziz Alabbady, Luke Soule, Alan Liu, Jun Song, Todd A. Sulchek, Meilin Liu, Mostafa A. El-Sayed. Electrosynthesis of Ammonia Using Porous Bimetallic Pd–Ag Nanocatalysts in Liquid- and Gas-Phase Systems. ACS Catalysis 2020, 10 (17) , 10197-10206. https://doi.org/10.1021/acscatal.0c02680OpenURL UNIV OF NORTH TEXAS
  10. Guohui Zhang, Anthony Kucernak. Gas Accessible Membrane Electrode (GAME): A Versatile Platform for Elucidating Electrocatalytic Processes Using Real-Time and in Situ Hyphenated Electrochemical Techniques. ACS Catalysis 2020, 10 (17) , 9684-9693. https://doi.org/10.1021/acscatal.0c02433OpenURL UNIV OF NORTH TEXAS
  11. Paul Morandi, Nazym Tuleushova, Sophie Tingry, Julien Cambedouzou, Shelley D. Minteer, David Cornu, Yaovi Holade. Bromide-Regulated Anisotropic Growth of Desert-Rose-Like Nanostructured Gold onto Carbon Fiber Electrodes as Freestanding Electrocatalysts. ACS Applied Energy Materials 2020, 3 (8) , 7560-7571. https://doi.org/10.1021/acsaem.0c01008OpenURL UNIV OF NORTH TEXAS
  12. Kevin W. Kimura, Rileigh Casebolt, Jessica Cimada DaSilva, Elyse Kauffman, Jiyoon Kim, Tyler A. Dunbar, Christopher J. Pollock, Jin Suntivich, Tobias Hanrath. Selective Electrochemical CO2 Reduction during Pulsed Potential Stems from Dynamic Interface. ACS Catalysis 2020, 10 (15) , 8632-8639. https://doi.org/10.1021/acscatal.0c02630OpenURL UNIV OF NORTH TEXAS
  13. Eric W. Lees, Maxwell Goldman, Arthur G. Fink, David J. Dvorak, Danielle A. Salvatore, Zishuai Zhang, Nicholas W. X. Loo, Curtis P. Berlinguette. Electrodes Designed for Converting Bicarbonate into CO. ACS Energy Letters 2020, 5 (7) , 2165-2173. https://doi.org/10.1021/acsenergylett.0c00898OpenURL UNIV OF NORTH TEXAS
  14. Shintaro Kato, Kazuyuki Iwase, Takashi Harada, Shuji Nakanishi, Kazuhide Kamiya. Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework. ACS Applied Materials & Interfaces 2020, 12 (26) , 29376-29382. https://doi.org/10.1021/acsami.0c07228OpenURL UNIV OF NORTH TEXAS
  15. Jie He, Csaba Janáky. Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality. ACS Energy Letters 2020, 5 (6) , 1996-2014. https://doi.org/10.1021/acsenergylett.0c00645OpenURL UNIV OF NORTH TEXAS
  16. Gian Luca De Gregorio, Thomas Burdyny, Anna Loiudice, Pranit Iyengar, Wilson A. Smith, Raffaella Buonsanti. Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities. ACS Catalysis 2020, 10 (9) , 4854-4862. https://doi.org/10.1021/acscatal.0c00297OpenURL UNIV OF NORTH TEXAS
  17. Sarah M. Dischinger, Shubham Gupta, Blaine M. Carter, Daniel J. Miller. Transport of Neutral and Charged Solutes in Imidazolium-Functionalized Poly(phenylene oxide) Membranes for Artificial Photosynthesis. Industrial & Engineering Chemistry Research 2020, 59 (12) , 5257-5266. https://doi.org/10.1021/acs.iecr.9b05628OpenURL UNIV OF NORTH TEXAS
  18. Mu-Huai Fang, Carl Osby M. Mariano, Po-Yen Chen, Shu-Fen Hu, Ru-Shi Liu. Cuboid-Size-Controlled Color-Tunable Eu-Doped Alkali–Lithosilicate Phosphors. Chemistry of Materials 2020, 32 (5) , 1748-1759. https://doi.org/10.1021/acs.chemmater.9b04861OpenURL UNIV OF NORTH TEXAS
  19. Wen-Hui Cheng, Matthias H. Richter, Ian Sullivan, David M. Larson, Chengxiang Xiang, Bruce S. Brunschwig, Harry A. Atwater. CO2 Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination. ACS Energy Letters 2020, 5 (2) , 470-476. https://doi.org/10.1021/acsenergylett.9b02576OpenURL UNIV OF NORTH TEXAS
  20. Tanya K. Todorova, Moritz W. Schreiber, Marc Fontecave. Mechanistic Understanding of CO2 Reduction Reaction (CO2RR) Toward Multicarbon Products by Heterogeneous Copper-Based Catalysts. ACS Catalysis 2020, 10 (3) , 1754-1768. https://doi.org/10.1021/acscatal.9b04746OpenURL UNIV OF NORTH TEXAS
  21. Mahinder Ramdin, Andrew R. T. Morrison, Mariette de Groen, Rien van Haperen, Robert de Kler, Erdem Irtem, Antero T. Laitinen, Leo J. P. van den Broeke, Tom Breugelmans, J. P. Martin Trusler, Wiebren de Jong, Thijs J. H. Vlugt. High-Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: Effect of pH on the Downstream Separation Process and Economics. Industrial & Engineering Chemistry Research 2019, 58 (51) , 22718-22740. https://doi.org/10.1021/acs.iecr.9b03970OpenURL UNIV OF NORTH TEXAS
  22. Gastón O. Larrazábal, Patrick Strøm-Hansen, Jens P. Heli, Kevin Zeiter, Kasper T. Therkildsen, Ib Chorkendorff, Brian Seger. Analysis of Mass Flows and Membrane Cross-over in CO2 Reduction at High Current Densities in an MEA-Type Electrolyzer. ACS Applied Materials & Interfaces 2019, 11 (44) , 41281-41288. https://doi.org/10.1021/acsami.9b13081OpenURL UNIV OF NORTH TEXAS
  23. Ian Sullivan, Lihao Han, Soo Hong Lee, Meng Lin, David M. Larson, Walter S. Drisdell, Chengxiang Xiang. A Hybrid Catalyst-Bonded Membrane Device for Electrochemical Carbon Monoxide Reduction at Different Relative Humidities. ACS Sustainable Chemistry & Engineering 2019, 7 (20) , 16964-16970. https://doi.org/10.1021/acssuschemeng.9b04959OpenURL UNIV OF NORTH TEXAS
  24. Kailun Yang, Recep Kas, Wilson A. Smith. In Situ Infrared Spectroscopy Reveals Persistent Alkalinity near Electrode Surfaces during CO2 Electroreduction. Journal of the American Chemical Society 2019, 141 (40) , 15891-15900. https://doi.org/10.1021/jacs.9b07000OpenURL UNIV OF NORTH TEXAS
  25. Zihang Su, Subarna Kole, Leigh C. Harden, Varada M. Palakkal, ChulOong Kim, Greshma Nair, Christopher G. Arges, Julie N. Renner. Peptide-Modified Electrode Surfaces for Promoting Anion Exchange Ionomer Microphase Separation and Ionic Conductivity. ACS Materials Letters 2019, 1 (4) , 467-475. https://doi.org/10.1021/acsmaterialslett.9b00173OpenURL UNIV OF NORTH TEXAS
  26. Riming Wang, Henrik Haspel, Alexey Pustovarenko, Alla Dikhtiarenko, Artem Russkikh, Genrikh Shterk, Dmitrii Osadchii, Samy Ould-Chikh, Ming Ma, Wilson A. Smith, Kazuhiro Takanabe, Freek Kapteijn, Jorge Gascon. Maximizing Ag Utilization in High-Rate CO2 Electrochemical Reduction with a Coordination Polymer-Mediated Gas Diffusion Electrode. ACS Energy Letters 2019, 4 (8) , 2024-2031. https://doi.org/10.1021/acsenergylett.9b01509OpenURL UNIV OF NORTH TEXAS
  27. B. Endrődi, E. Kecsenovity, A. Samu, F. Darvas, R. V. Jones, V. Török, A. Danyi, C. Janáky. Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency. ACS Energy Letters 2019, 4 (7) , 1770-1777. https://doi.org/10.1021/acsenergylett.9b01142OpenURL UNIV OF NORTH TEXAS
  28. Stephanie Nitopi, Erlend Bertheussen, Soren B. Scott, Xinyan Liu, Albert K. Engstfeld, Sebastian Horch, Brian Seger, Ifan E. L. Stephens, Karen Chan, Christopher Hahn, Jens K. Nørskov, Thomas F. Jaramillo, Ib Chorkendorff. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews 2019, 119 (12) , 7610-7672. https://doi.org/10.1021/acs.chemrev.8b00705OpenURL UNIV OF NORTH TEXAS
  29. Kei Murata, Hayato Tanaka, Kazuyuki Ishii. Electrochemical Reduction of CO2 by a Gas-Diffusion Electrode Composed of fac-Re(diimine)(CO)3Cl and Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (19) , 12073-12080. https://doi.org/10.1021/acs.jpcc.8b12505OpenURL UNIV OF NORTH TEXAS
  30. Yiran Cao, Cíntia Soares, Natan Padoin, Timothy Noël. Gas bubbles have controversial effects on Taylor flow electrochemistry. Chemical Engineering Journal 2021, 406 , 126811. https://doi.org/10.1016/j.cej.2020.126811OpenURL UNIV OF NORTH TEXAS
  31. Ara Jo, Sungwon Kim, Hyanjoo Park, Hee-Young Park, Jong Hyun Jang, Hyun S. Park. Enhanced electrochemical conversion of CO2 to CO at bimetallic Ag-Zn catalysts formed on polypyrrole-coated electrode. Journal of Catalysis 2021, 393 , 92-99. https://doi.org/10.1016/j.jcat.2020.11.018OpenURL UNIV OF NORTH TEXAS
  32. Shunji Xie, Wenchao Ma, Xuejiao Wu, Haikun Zhang, Qinghong Zhang, Yangdong Wang, Ye Wang. Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy & Environmental Science 2021, 7 https://doi.org/10.1039/D0EE01860KOpenURL UNIV OF NORTH TEXAS
  33. Lei Fan, Chuan Xia, Peng Zhu, Yingying Lu, Haotian Wang. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17403-1OpenURL UNIV OF NORTH TEXAS
  34. Jiao Deng, Sheng-Chih Lin, Jack Fuller, Jesus A. Iñiguez, Danlei Xiang, Di Yang, Gary Chan, Hao Ming Chen, Anastassia N. Alexandrova, Chong Liu. Ambient methane functionalization initiated by electrochemical oxidation of a vanadium (V)-oxo dimer. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17494-wOpenURL UNIV OF NORTH TEXAS
  35. Ibadillah A. Digdaya, Ian Sullivan, Meng Lin, Lihao Han, Wen-Hui Cheng, Harry A. Atwater, Chengxiang Xiang. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18232-yOpenURL UNIV OF NORTH TEXAS
  36. Carlos Jiménez, Jesús García, Fabiola Martínez, Rafael Camarillo, Jesusa Rincón. Deposition of Cu on CNT to synthesize electrocatalysts for the electrochemical reduction of CO2: Advantages of supercritical fluid deposition technique. The Journal of Supercritical Fluids 2020, 166 , 104999. https://doi.org/10.1016/j.supflu.2020.104999OpenURL UNIV OF NORTH TEXAS
  37. Karen Chan. A few basic concepts in electrochemical carbon dioxide reduction. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19369-6OpenURL UNIV OF NORTH TEXAS
  38. Yunzhen Wu, Panlong Zhai, Shuyan Cao, Zhuwei Li, Bo Zhang, Yanting Zhang, Xiaowa Nie, Licheng Sun, Jungang Hou. Beyond d Orbits: Steering the Selectivity of Electrochemical CO 2 Reduction via Hybridized sp Band of Sulfur‐Incorporated Porous Cd Architectures with Dual Collaborative Sites. Advanced Energy Materials 2020, 10 (45) , 2002499. https://doi.org/10.1002/aenm.202002499OpenURL UNIV OF NORTH TEXAS
  39. Huan Xie, Yangyang Wan, Xiaoming Wang, Jiashun Liang, Gang Lu, Tanyuan Wang, Guoliang Chai, Nadia Mohd Adli, Cameron Priest, Yunhui Huang, Gang Wu, Qing Li. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Applied Catalysis B: Environmental 2020, , 119783. https://doi.org/10.1016/j.apcatb.2020.119783OpenURL UNIV OF NORTH TEXAS
  40. Federica Proietto, François Berche, Alessandro Galia, Onofrio Scialdone. Electrochemical conversion of pressurized CO2 at simple silver-based cathodes in undivided cells: study of the effect of pressure and other operative parameters. Journal of Applied Electrochemistry 2020, 9 https://doi.org/10.1007/s10800-020-01505-1OpenURL UNIV OF NORTH TEXAS
  41. Razik Djara, Nathalie Masquelez, Marie‐Agnès Lacour, Abdelhafid Merzouki, Julien Cambedouzou, David Cornu, Sophie Tingry, Yaovi Holade. Self‐Supported Electrocatalysts Derived from Nickel‐Cobalt Modified Polyaniline Polymer for H 2 ‐Evolution and O 2 ‐Evolution Reactions. ChemCatChem 2020, 12 (22) , 5789-5796. https://doi.org/10.1002/cctc.202001235OpenURL UNIV OF NORTH TEXAS
  42. Xin Wei, Dominik Vogel, Laura Keller, Stefanie Kriescher, Matthias Wessling. Microtubular Gas Diffusion Electrode Based on Ruthenium‐Carbon Nanotubes for Ambient Electrochemical Nitrogen Reduction to Ammonia. ChemElectroChem 2020, 7 (22) , 4679-4684. https://doi.org/10.1002/celc.202001370OpenURL UNIV OF NORTH TEXAS
  43. Tu N. Nguyen, Cao-Thang Dinh. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chemical Society Reviews 2020, 49 (21) , 7488-7504. https://doi.org/10.1039/D0CS00230EOpenURL UNIV OF NORTH TEXAS
  44. Yixu Zong, Pongkarn Chakthranont, Jin Suntivich. Temperature Effect of CO2 Reduction Electrocatalysis on Copper: Potential Dependency of Activation Energy. Journal of Electrochemical Energy Conversion and Storage 2020, 17 (4) https://doi.org/10.1115/1.4046552OpenURL UNIV OF NORTH TEXAS
  45. Ramato Ashu Tufa, Debabrata Chanda, Ming Ma, David Aili, Taye Beyene Demissie, Jan Vaes, Qingfeng Li, Shanhu Liu, Deepak Pant. Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts. Applied Energy 2020, 277 , 115557. https://doi.org/10.1016/j.apenergy.2020.115557OpenURL UNIV OF NORTH TEXAS
  46. Haksung Lee, Chan-Woong Choi, Ki-Weon Kang, Ji-Won Jin. A Study on the Evaluation of Effective Properties of Randomly Distributed Gas Diffusion Layer (GDL) Tissues with Different Compression Ratios. Applied Sciences 2020, 10 (21) , 7407. https://doi.org/10.3390/app10217407OpenURL UNIV OF NORTH TEXAS
  47. Yu Yang, Fengwang Li. Reactor design for electrochemical CO2 conversion towards large scale applications. Current Opinion in Green and Sustainable Chemistry 2020, , 100419. https://doi.org/10.1016/j.cogsc.2020.100419OpenURL UNIV OF NORTH TEXAS
  48. Anthony Vasileff, Yanping Zhu, Xing Zhi, Yongqiang Zhao, Lei Ge, Hao Ming Chen, Yao Zheng, Shi‐Zhang Qiao. Electrochemical Reduction of CO 2 to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie International Edition 2020, 59 (44) , 19649-19653. https://doi.org/10.1002/anie.202004846OpenURL UNIV OF NORTH TEXAS
  49. Anthony Vasileff, Yanping Zhu, Xing Zhi, Yongqiang Zhao, Lei Ge, Hao Ming Chen, Yao Zheng, Shi‐Zhang Qiao. Electrochemical Reduction of CO 2 to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie 2020, 132 (44) , 19817-19821. https://doi.org/10.1002/ange.202004846OpenURL UNIV OF NORTH TEXAS
  50. Naoto Todoroki, Hiroto Tsurumaki, Hiroki Tei, Tomohiro Mochizuki, Toshimasa Wadayama. Online Electrochemical Mass Spectrometry Combined with the Rotating Disk Electrode Method for Direct Observations of Potential-Dependent Molecular Behaviors in the Electrode Surface Vicinity. Journal of The Electrochemical Society 2020, 167 (10) , 106503. https://doi.org/10.1149/1945-7111/ab9960OpenURL UNIV OF NORTH TEXAS
  51. Julie C. Fornaciari, Michael R. Gerhardt, Jie Zhou, Yagya N. Regmi, Nemanja Danilovic, Alexis T. Bell, Adam Z. Weber. The Role of Water in Vapor-fed Proton-Exchange-Membrane Electrolysis. Journal of The Electrochemical Society 2020, 167 (10) , 104508. https://doi.org/10.1149/1945-7111/ab9b09OpenURL UNIV OF NORTH TEXAS
  52. Xiaomin Xu, Yangli Pan, Yijun Zhong, Ran Ran, Zongping Shao. Ruddlesden–Popper perovskites in electrocatalysis. Materials Horizons 2020, 7 (10) , 2519-2565. https://doi.org/10.1039/D0MH00477DOpenURL UNIV OF NORTH TEXAS
  53. Charles E. Creissen, Marc Fontecave. Solar‐Driven Electrochemical CO 2 Reduction with Heterogeneous Catalysts. Advanced Energy Materials 2020, 11 , 2002652. https://doi.org/10.1002/aenm.202002652OpenURL UNIV OF NORTH TEXAS
  54. Carlos Jiménez, María Isabel Cerrillo, Fabiola Martínez, Rafael Camarillo, Jesusa Rincón. Effect of carbon support on the catalytic activity of copper-based catalyst in CO2 electroreduction. Separation and Purification Technology 2020, 248 , 117083. https://doi.org/10.1016/j.seppur.2020.117083OpenURL UNIV OF NORTH TEXAS
  55. Woong Hee Lee, Young-Jin Ko, Yongjun Choi, Si Young Lee, Chang Hyuck Choi, Yun Jeong Hwang, Byoung Koun Min, Peter Strasser, Hyung-Suk Oh. Highly selective and scalable CO2 to CO - Electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy 2020, 76 , 105030. https://doi.org/10.1016/j.nanoen.2020.105030OpenURL UNIV OF NORTH TEXAS
  56. Ana Cristina Pérez-Sequera, Manuel Antonio Díaz-Pérez, Juan Carlos Serrano-Ruiz. Recent Advances in the Electroreduction of CO2 over Heteroatom-Doped Carbon Materials. Catalysts 2020, 10 (10) , 1179. https://doi.org/10.3390/catal10101179OpenURL UNIV OF NORTH TEXAS
  57. Eric W. Lees, Benjamin A. W. Mowbray, Danielle A. Salvatore, Grace L. Simpson, David J. Dvorak, Shaoxuan Ren, Jacky Chau, Katherine L. Milton, Curtis P. Berlinguette. Linking gas diffusion electrode composition to CO 2 reduction in a flow cell. Journal of Materials Chemistry A 2020, 8 (37) , 19493-19501. https://doi.org/10.1039/D0TA03570JOpenURL UNIV OF NORTH TEXAS
  58. Mrinmay Mandal. CO 2 Electroreduction to Multicarbon Products. ChemElectroChem 2020, 7 (18) , 3713-3715. https://doi.org/10.1002/celc.202000798OpenURL UNIV OF NORTH TEXAS
  59. Bert De Mot, Mahinder Ramdin, Jonas Hereijgers, Thijs J. H. Vlugt, Tom Breugelmans. Direct Water Injection in Catholyte‐Free Zero‐Gap Carbon Dioxide Electrolyzers. ChemElectroChem 2020, 7 (18) , 3839-3843. https://doi.org/10.1002/celc.202000961OpenURL UNIV OF NORTH TEXAS
  60. Yuxin WU, Kazuhide KAMIYA, Takuya HASHIMOTO, Rino SUGIMOTO, Takashi HARADA, Katsushi FUJII, Shuji NAKANISHI. Electrochemical CO2 Reduction Using Gas Diffusion Electrode Loading Ni-doped Covalent Triazine Frameworks in Acidic Electrolytes. Electrochemistry 2020, 88 (5) , 359-364. https://doi.org/10.5796/electrochemistry.20-64036OpenURL UNIV OF NORTH TEXAS
  61. Nienke J. Firet, Thomas Burdyny, Nathan T. Nesbitt, Sanjana Chandrashekar, Alessandro Longo, Wilson A. Smith. Copper and silver gas diffusion electrodes performing CO 2 reduction studied through operando X-ray absorption spectroscopy. Catalysis Science & Technology 2020, 10 (17) , 5870-5885. https://doi.org/10.1039/D0CY01267JOpenURL UNIV OF NORTH TEXAS
  62. Xiao Zhang, Yang Wang, Meng Gu, Maoyu Wang, Zisheng Zhang, Weiying Pan, Zhan Jiang, Hongzhi Zheng, Marcos Lucero, Hailiang Wang, George E. Sterbinsky, Qing Ma, Yang-Gang Wang, Zhenxing Feng, Jun Li, Hongjie Dai, Yongye Liang. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nature Energy 2020, 5 (9) , 684-692. https://doi.org/10.1038/s41560-020-0667-9OpenURL UNIV OF NORTH TEXAS
  63. Stefan Popović, Milutin Smiljanić, Primož Jovanovič, Jan Vavra, Raffaella Buonsanti, Nejc Hodnik. Stability and Degradation Mechanisms of Copper‐Based Catalysts for Electrochemical CO 2 Reduction. Angewandte Chemie International Edition 2020, 59 (35) , 14736-14746. https://doi.org/10.1002/anie.202000617OpenURL UNIV OF NORTH TEXAS
  64. Stefan Popović, Milutin Smiljanić, Primož Jovanovič, Jan Vavra, Raffaella Buonsanti, Nejc Hodnik. Stability and Degradation Mechanisms of Copper‐Based Catalysts for Electrochemical CO 2 Reduction. Angewandte Chemie 2020, 132 (35) , 14844-14854. https://doi.org/10.1002/ange.202000617OpenURL UNIV OF NORTH TEXAS
  65. Fuping Pan, Yang Yang. Designing CO 2 reduction electrode materials by morphology and interface engineering. Energy & Environmental Science 2020, 13 (8) , 2275-2309. https://doi.org/10.1039/D0EE00900HOpenURL UNIV OF NORTH TEXAS
  66. Carlos A. Fernandez, Nicholas M. Hortance, Yu-Hsuan Liu, Jeonghoon Lim, Kelsey B. Hatzell, Marta C. Hatzell. Opportunities for intermediate temperature renewable ammonia electrosynthesis. Journal of Materials Chemistry A 2020, 8 (31) , 15591-15606. https://doi.org/10.1039/D0TA03753BOpenURL UNIV OF NORTH TEXAS
  67. Kai Junge Puring, Daniel Siegmund, Jana Timm, Florian Möllenbruck, Steffen Schemme, Roland Marschall, Ulf‐Peter Apfel. Electrochemical CO 2 Reduction: Tailoring Catalyst Layers in Gas Diffusion Electrodes. Advanced Sustainable Systems 2020, 52 , 2000088. https://doi.org/10.1002/adsu.202000088OpenURL UNIV OF NORTH TEXAS
  68. Yunzhen Wu, Shuyan Cao, Jungang Hou, Zhuwei Li, Bo Zhang, Panlong Zhai, Yanting Zhang, Licheng Sun. Rational Design of Nanocatalysts with Nonmetal Species Modification for Electrochemical CO 2 Reduction. Advanced Energy Materials 2020, 10 (29) , 2000588. https://doi.org/10.1002/aenm.202000588OpenURL UNIV OF NORTH TEXAS
  69. Guobin Wen, Bohua Ren, Moon G. Park, Jie Yang, Haozhen Dou, Zhen Zhang, Ya‐Ping Deng, Zhengyu Bai, Lin Yang, Jeff Gostick, Gianluigi A. Botton, Yongfeng Hu, Zhongwei Chen. Ternary Sn‐Ti‐O Electrocatalyst Boosts the Stability and Energy Efficiency of CO 2 Reduction. Angewandte Chemie International Edition 2020, 59 (31) , 12860-12867. https://doi.org/10.1002/anie.202004149OpenURL UNIV OF NORTH TEXAS
  70. Guobin Wen, Bohua Ren, Moon G. Park, Jie Yang, Haozhen Dou, Zhen Zhang, Ya‐Ping Deng, Zhengyu Bai, Lin Yang, Jeff Gostick, Gianluigi A. Botton, Yongfeng Hu, Zhongwei Chen. Ternary Sn‐Ti‐O Electrocatalyst Boosts the Stability and Energy Efficiency of CO 2 Reduction. Angewandte Chemie 2020, 132 (31) , 12960-12967. https://doi.org/10.1002/ange.202004149OpenURL UNIV OF NORTH TEXAS
  71. Weilai Yu, Harold J. Fu, Thomas Mueller, Bruce S. Brunschwig, Nathan S. Lewis. Atomic force microscopy: Emerging illuminated and operando techniques for solar fuel research. The Journal of Chemical Physics 2020, 153 (2) , 020902. https://doi.org/10.1063/5.0009858OpenURL UNIV OF NORTH TEXAS
  72. Mengran Li, Sahil Garg, Xiaoxia Chang, Lei Ge, Liye Li, Muxina Konarova, Thomas E. Rufford, Victor Rudolph, Geoff Wang. Toward Excellence of Transition Metal‐Based Catalysts for CO 2 Electrochemical Reduction: An Overview of Strategies and Rationales. Small Methods 2020, 4 (7) , 2000033. https://doi.org/10.1002/smtd.202000033OpenURL UNIV OF NORTH TEXAS
  73. Woong Hee Lee, Hong Nhan Nong, Chang Hyuck Choi, Keun Hwa Chae, Yun Jeong Hwang, Byoung Koun Min, Peter Strasser, Hyung-Suk Oh. Carbon-Supported IrCoO nanoparticles as an efficient and stable OER electrocatalyst for practicable CO2 electrolysis. Applied Catalysis B: Environmental 2020, 269 , 118820. https://doi.org/10.1016/j.apcatb.2020.118820OpenURL UNIV OF NORTH TEXAS
  74. Qiurong Shi, Sooyeon Hwang, Haipeng Yang, Fatma Ismail, Dong Su, Drew Higgins, Gang Wu. Supported and coordinated single metal site electrocatalysts. Materials Today 2020, 37 , 93-111. https://doi.org/10.1016/j.mattod.2020.02.019OpenURL UNIV OF NORTH TEXAS
  75. Lei Wang, Drew C. Higgins, Yongfei Ji, Carlos G. Morales-Guio, Karen Chan, Christopher Hahn, Thomas F. Jaramillo. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proceedings of the National Academy of Sciences 2020, 117 (23) , 12572-12575. https://doi.org/10.1073/pnas.1821683117OpenURL UNIV OF NORTH TEXAS
  76. Albertus D. Handoko, Hetian Chen, Yanwei Lum, Qianfan Zhang, Babak Anasori, Zhi Wei Seh. Two-Dimensional Titanium and Molybdenum Carbide MXenes as Electrocatalysts for CO2 Reduction. iScience 2020, 23 (6) , 101181. https://doi.org/10.1016/j.isci.2020.101181OpenURL UNIV OF NORTH TEXAS
  77. Sandra Hernandez-Aldave, Enrico Andreoli. Fundamentals of Gas Diffusion Electrodes and Electrolysers for Carbon Dioxide Utilisation: Challenges and Opportunities. Catalysts 2020, 10 (6) , 713. https://doi.org/10.3390/catal10060713OpenURL UNIV OF NORTH TEXAS
  78. Ana Sofía Varela. The importance of pH in controlling the selectivity of the electrochemical CO2 reduction. Current Opinion in Green and Sustainable Chemistry 2020, , 100371. https://doi.org/10.1016/j.cogsc.2020.100371OpenURL UNIV OF NORTH TEXAS
  79. Yaovi Holade, Nazym Tuleushova, Sophie Tingry, Karine Servat, Teko W. Napporn, Hazar Guesmi, David Cornu, K. Boniface Kokoh. Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production. Catalysis Science & Technology 2020, 10 (10) , 3071-3112. https://doi.org/10.1039/C9CY02446HOpenURL UNIV OF NORTH TEXAS
  80. Sven Jovanovic, Ralf Krause, Alexander Lüken, Jörg Ackermann, Steffen Merz, Peter Jakes, Rüdiger-A. Eichel, Josef Granwehr. Post-Test Raman Investigation of Silver Based Gas Diffusion Electrodes. Journal of The Electrochemical Society 2020, 167 (8) , 086505. https://doi.org/10.1149/1945-7111/ab8ce1OpenURL UNIV OF NORTH TEXAS
  81. Nikifar Lazouski, Minju Chung, Kindle Williams, Michal L. Gala, Karthish Manthiram. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nature Catalysis 2020, 3 (5) , 463-469. https://doi.org/10.1038/s41929-020-0455-8OpenURL UNIV OF NORTH TEXAS
  82. Samuel C. Perry, Pui-ki Leung, Ling Wang, Carlos Ponce de León. Developments on carbon dioxide reduction: Their promise, achievements, and challenges. Current Opinion in Electrochemistry 2020, 20 , 88-98. https://doi.org/10.1016/j.coelec.2020.04.014OpenURL UNIV OF NORTH TEXAS
  83. Yani Pan, Janine Mauzeroll. Boosting CO2 Reduction: Creating an Efficient Path for Gas Transport. Joule 2020, 4 (4) , 712-714. https://doi.org/10.1016/j.joule.2020.03.015OpenURL UNIV OF NORTH TEXAS
  84. Shima Alinejad, Masanori Inaba, Johanna Schröder, Jia Du, Jonathan Quinson, Alessandro Zana, Matthias Arenz. Testing fuel cell catalysts under more realistic reaction conditions: accelerated stress tests in a gas diffusion electrode setup. Journal of Physics: Energy 2020, 2 (2) , 024003. https://doi.org/10.1088/2515-7655/ab67e2OpenURL UNIV OF NORTH TEXAS
  85. Dang Le Tri Nguyen, Younghye Kim, Yun Jeong Hwang, Da Hye Won. Progress in development of electrocatalyst for CO 2 conversion to selective CO production. Carbon Energy 2020, 2 (1) , 72-98. https://doi.org/10.1002/cey2.27OpenURL UNIV OF NORTH TEXAS
  86. Jonathan P. Edwards, Yi Xu, Christine M. Gabardo, Cao-Thang Dinh, Jun Li, ZhenBang Qi, Adnan Ozden, Edward H. Sargent, David Sinton. Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Applied Energy 2020, 261 , 114305. https://doi.org/10.1016/j.apenergy.2019.114305OpenURL UNIV OF NORTH TEXAS
  87. Carlos Jiménez, Jesús García, Fabiola Martínez, Rafael Camarillo, Jesusa Rincón. Cu nanoparticles deposited on CNT by supercritical fluid deposition for electrochemical reduction of CO2 in a gas phase GDE cell. Electrochimica Acta 2020, 337 , 135663. https://doi.org/10.1016/j.electacta.2020.135663OpenURL UNIV OF NORTH TEXAS
  88. Recep Kas, Kailun Yang, Divya Bohra, Ruud Kortlever, Thomas Burdyny, Wilson A. Smith. Electrochemical CO 2 reduction on nanostructured metal electrodes: fact or defect?. Chemical Science 2020, 11 (7) , 1738-1749. https://doi.org/10.1039/C9SC05375AOpenURL UNIV OF NORTH TEXAS
  89. F. Pelayo García de Arquer, Cao-Thang Dinh, Adnan Ozden, Joshua Wicks, Christopher McCallum, Ahmad R. Kirmani, Dae-Hyun Nam, Christine Gabardo, Ali Seifitokaldani, Xue Wang, Yuguang C. Li, Fengwang Li, Jonathan Edwards, Lee J. Richter, Steven J. Thorpe, David Sinton, Edward H. Sargent. CO 2 electrolysis to multicarbon products at activities greater than 1 A cm −2. Science 2020, 367 (6478) , 661-666. https://doi.org/10.1126/science.aay4217OpenURL UNIV OF NORTH TEXAS
  90. Sarah Lamaison, David Wakerley, Juliette Blanchard, David Montero, Gwenaëlle Rousse, Dimitri Mercier, Philippe Marcus, Dario Taverna, Domitille Giaume, Victor Mougel, Marc Fontecave. High-Current-Density CO2-to-CO Electroreduction on Ag-Alloyed Zn Dendrites at Elevated Pressure. Joule 2020, 4 (2) , 395-406. https://doi.org/10.1016/j.joule.2019.11.014OpenURL UNIV OF NORTH TEXAS
  91. Lei Fan, Chuan Xia, Fangqi Yang, Jun Wang, Haotian Wang, Yingying Lu. Strategies in catalysts and electrolyzer design for electrochemical CO 2 reduction toward C 2+ products. Science Advances 2020, 6 (8) , eaay3111. https://doi.org/10.1126/sciadv.aay3111OpenURL UNIV OF NORTH TEXAS
  92. Sahil Garg, Mengran Li, Adam Z. Weber, Lei Ge, Liye Li, Victor Rudolph, Guoxiong Wang, Thomas E. Rufford. Advances and challenges in electrochemical CO 2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. Journal of Materials Chemistry A 2020, 8 (4) , 1511-1544. https://doi.org/10.1039/C9TA13298HOpenURL UNIV OF NORTH TEXAS
  93. Laurent Delafontaine, Tristan Asset, Plamen Atanassov. Metal‐Nitrogen‐Carbon Electrocatalysts for CO2 Reduction Towards Syngas Generation. ChemSusChem 2020, https://doi.org/10.1002/cssc.201903281OpenURL UNIV OF NORTH TEXAS
  94. Sahil Garg, Mengran Li, Thomas E. Rufford, Lei Ge, Victor Rudolph, Ruth Knibbe, Muxina Konarova, Geoff G. X. Wang. Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO 2 Reduction. ChemSusChem 2020, 13 (2) , 304-311. https://doi.org/10.1002/cssc.201902433OpenURL UNIV OF NORTH TEXAS
  95. Joseph T. Perryman, Jessica C. Ortiz-Rodríguez, Joshua W. Jude, Forrest P. Hyler, Ryan C. Davis, Apurva Mehta, Ambarish R. Kulkarni, Christopher J. Patridge, Jesús M. Velázquez. Metal-promoted Mo 6 S 8 clusters: a platform for probing ensemble effects on the electrochemical conversion of CO 2 and CO to methanol. Materials Horizons 2020, 7 (1) , 193-202. https://doi.org/10.1039/C9MH00745HOpenURL UNIV OF NORTH TEXAS
  96. Esperanza Ruiz Martínez, José María Sánchez Hervás. Electrocatalytic Production of Methanol from Carbon Dioxide. 2020,,, 165-208. https://doi.org/10.1007/978-3-030-28622-4_7OpenURL UNIV OF NORTH TEXAS
  97. Peng Huang, Jinxi Chen, Peilin Deng, Fan Yang, Jing Pan, Kai Qi, Hongfang Liu, Bao Yu Xia. Grain refinement of self-supported copper electrode by multiple-redox treatment for enhanced carbon dioxide electroreduction towards carbon monoxide generation. Journal of Catalysis 2020, 381 , 608-614. https://doi.org/10.1016/j.jcat.2019.12.008OpenURL UNIV OF NORTH TEXAS
  98. Jinkyu Lim, Phil Woong Kang, Sun Seo Jeon, Hyunjoo Lee. Electrochemically deposited Sn catalysts with dense tips on a gas diffusion electrode for electrochemical CO 2 reduction. Journal of Materials Chemistry A 2020, 1 https://doi.org/10.1039/D0TA00569JOpenURL UNIV OF NORTH TEXAS
  99. Wenhao Ren, Chuan Zhao. Paths towards enhanced electrochemical CO2 reduction. National Science Review 2020, 7 (1) , 7-9. https://doi.org/10.1093/nsr/nwz121OpenURL UNIV OF NORTH TEXAS
  100. Johannes Seidler, Jana Strugatchi, Tobias Gärtner, Siegfried R. Waldvogel. Does electrifying organic synthesis pay off? The energy efficiency of electro-organic conversions. MRS Energy & Sustainability 2020, 7 https://doi.org/10.1557/mre.2020.42OpenURL UNIV OF NORTH TEXAS
  101. Souradip Malkhandi, Boon Siang Yeo. Electrochemical conversion of carbon dioxide to high value chemicals using gas-diffusion electrodes. Current Opinion in Chemical Engineering 2019, 26 , 112-121. https://doi.org/10.1016/j.coche.2019.09.008OpenURL UNIV OF NORTH TEXAS
  102. Hao Shen, Zhengxiang Gu, Gengfeng Zheng. Pushing the activity of CO2 electroreduction by system engineering. Science Bulletin 2019, 64 (24) , 1805-1816. https://doi.org/10.1016/j.scib.2019.08.027OpenURL UNIV OF NORTH TEXAS
  103. Matthew Jouny, Gregory S. Hutchings, Feng Jiao. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nature Catalysis 2019, 2 (12) , 1062-1070. https://doi.org/10.1038/s41929-019-0388-2OpenURL UNIV OF NORTH TEXAS
  104. Matthieu Weber, Nazym Tuleushova, Joelle Zgheib, Cassandre Lamboux, Igor Iatsunskyi, Emerson Coy, Valerie Flaud, Sophie Tingry, David Cornu, Philippe Miele, Mikhael Bechelany, Yaovi Holade. Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes. Applied Catalysis B: Environmental 2019, 257 , 117917. https://doi.org/10.1016/j.apcatb.2019.117917OpenURL UNIV OF NORTH TEXAS
  105. David Wakerley, Sarah Lamaison, François Ozanam, Nicolas Menguy, Dimitri Mercier, Philippe Marcus, Marc Fontecave, Victor Mougel. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials 2019, 18 (11) , 1222-1227. https://doi.org/10.1038/s41563-019-0445-xOpenURL UNIV OF NORTH TEXAS
  106. Raffaella Buonsanti. A solid advance in electrolytes. Nature Energy 2019, 4 (9) , 728-729. https://doi.org/10.1038/s41560-019-0461-8OpenURL UNIV OF NORTH TEXAS
  107. Paula Sebastián‐Pascual, Stefano Mezzavilla, Ifan E. L. Stephens, María Escudero‐Escribano. Structure‐Sensitivity and Electrolyte Effects in CO 2 Electroreduction: From Model Studies to Applications. ChemCatChem 2019, 11 (16) , 3626-3645. https://doi.org/10.1002/cctc.201900552OpenURL UNIV OF NORTH TEXAS
  108. Lien-Chun Weng, Alexis T. Bell, Adam Z. Weber. Towards membrane-electrode assembly systems for CO 2 reduction: a modeling study. Energy & Environmental Science 2019, 12 (6) , 1950-1968. https://doi.org/10.1039/C9EE00909DOpenURL UNIV OF NORTH TEXAS
  109. Gustav W. Sievers, Anders W. Jensen, Volker Brüser, Matthias Arenz, María Escudero-Escribano. Sputtered Platinum Thin-films for Oxygen Reduction in Gas Diffusion Electrodes: A Model System for Studies under Realistic Reaction Conditions. Surfaces 2019, 2 (2) , 336-348. https://doi.org/10.3390/surfaces2020025OpenURL UNIV OF NORTH TEXAS
  110. Jun Song, Hakhyeon Song, Beomil Kim, Jihun Oh. Towards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems. Catalysts 2019, 9 (3) , 224. https://doi.org/10.3390/catal9030224OpenURL UNIV OF NORTH TEXAS
  • Abstract

    Figure 1

    Figure 1. Different electrochemical CO2R reactor schemes. (a) Aqueous-phase CO2R, where CO2 is first solubilized in an aqueous electrolyte and then reduced at a catalyst surface. Vapor-fed CO2R employing an (b) aqueous or (c) polymer electrolyte.

    Figure 2

    Figure 2. State-of-the-art performance of vapor-fed CO2 devices. (a) Faradaic efficiencies versus partial current densities to ethylene, ethanol, carbon monoxide, and formate. (b) Energy efficiencies versus partial current densities to ethylene, carbon monoxide, formate, and hydrogen. Performances obtained for vapor-fed CO2R electrodes are shown in solid symbols, while performance for electrodes in aqueous-phase CO2R reactors are shown in hollow symbols. All energy efficiencies were calculated as voltage efficiencies using the formula:, where Eanode0 and Ecathode0 are the reversible potentials, FE is the faradaic efficiency for the CO2R product, and Vcell is the uncompensated cell voltage.

    Figure 3

    Figure 3. Schematic of a three-dimensional GDE depicting the multiple length scales where phenomena are occurring during electrochemical CO2R.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 79 other publications.

    1. 1
      Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Vayenas, C. G., White, R. E., Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89189.
    2. 2
      Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2017, 139 (32), 1127711287,  DOI: 10.1021/jacs.7b06765
    3. 3
      Resasco, J.; Lum, Y.; Clark, E.; Zeledon, J. Z.; Bell, A. T. Effects of Anion Identity and Concentration on Electrochemical Reduction of CO2. ChemElectroChem 2018, 5 (7), 10641072,  DOI: 10.1002/celc.201701316
    4. 4
      Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C. Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and PH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catal. 2018, 8, 74457454,  DOI: 10.1021/acscatal.8b01200
    5. 5
      Singh, M. R.; Goodpaster, J. D.; Weber, A. Z.; Head-Gordon, M.; Bell, A. T. Mechanistic Insights into Electrochemical Reduction of CO2 over Ag Using Density Functional Theory and Transport Models. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (42), E8812,  DOI: 10.1073/pnas.1713164114
    6. 6
      Lobaccaro, P.; Singh, M. R.; Clark, E. L.; Kwon, Y.; Bell, A. T.; Ager, J. W. Effects of Temperature and Gas-Liquid Mass Transfer on the Operation of Small Electrochemical Cells for the Quantitative Evaluation of CO2 Reduction Electrocatalysts. Phys. Chem. Chem. Phys. 2016, 18 (38), 2677726785,  DOI: 10.1039/C6CP05287H
    7. 7
      Hashiba, H.; Weng, L.-C.; Chen, Y.; Sato, H. K.; Yotsuhashi, S.; Xiang, C.; Weber, A. Z. Effects of Electrolyte Buffer Capacity on Surface Reactant Species and the Reaction Rate of CO2 in Electrochemical Co2 Reduction. J. Phys. Chem. C 2018, 122 (7), 37193726,  DOI: 10.1021/acs.jpcc.7b11316
    8. 8
      Hashiba, H.; Yotsuhashi, S.; Deguchi, M.; Yamada, Y. Systematic Analysis of Electrochemical CO2 Reduction with Various Reaction Parameters Using Combinatorial Reactors. ACS Comb. Sci. 2016, 18 (4), 203208,  DOI: 10.1021/acscombsci.6b00021
    9. 9
      Ahn, S. T.; Abu-Baker, I.; Palmore, G. T. R. Electroreduction of CO2 on Polycrystalline Copper: Effect of Temperature on Product Selectivity. Catal. Today 2017, 288, 2429,  DOI: 10.1016/j.cattod.2016.09.028
    10. 10
      Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Nørskov, J. K. Understanding Trends in Electrochemical Carbon Dioxide Reduction Rates. Nat. Commun. 2017, 8, 15438,  DOI: 10.1038/ncomms15438
    11. 11
      Rendón-Calle, A.; Builes, S.; Calle-Vallejo, F. A Brief Review of the Computational Modeling of CO2 Electroreduction on Cu Electrodes. Curr. Opin. Electrochem. 2018, 9, 158,  DOI: 10.1016/j.coelec.2018.03.012
    12. 12
      Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catal. 2018, 8 (2), 14901499,  DOI: 10.1021/acscatal.7b03477
    13. 13
      Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6 (20), 40734082,  DOI: 10.1021/acs.jpclett.5b01559
    14. 14
      Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 Reduction over Compressively Strained Cuag Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. J. Am. Chem. Soc. 2017, 139 (44), 1584815857,  DOI: 10.1021/jacs.7b08607
    15. 15
      Han, Z.; Kortlever, R.; Chen, H.-Y.; Peters, J. C.; Agapie, T. CO2 Reduction Selective for C ≥ 2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Cent. Sci. 2017, 3 (8), 853859,  DOI: 10.1021/acscentsci.7b00180
    16. 16
      Higgins, D.; Landers, A. T.; Ji, Y.; Nitopi, S.; Morales-Guio, C. G.; Wang, L.; Chan, K.; Hahn, C.; Jaramillo, T. F. Guiding Electrochemical Carbon Dioxide Reduction toward Carbonyls Using Copper Silver Thin Films with Interphase Miscibility. ACS Energy Lett. 2018, 3, 29472955,  DOI: 10.1021/acsenergylett.8b01736
    17. 17
      Raciti, D.; Wang, C. Recent Advances in CO2 Reduction Electrocatalysis on Copper. ACS Energy Lett. 2018, 3 (7), 15451556,  DOI: 10.1021/acsenergylett.8b00553
    18. 18
      De Luna, P.; Wei, J.; Bengio, Y.; Aspuru-Guzik, A.; Sargent, E. Use Machine Learning to Find Energy Materials. Nature 2017, 552 (7683), 23,  DOI: 10.1038/d41586-017-07820-6
    19. 19
      Ulissi, Z. W.; Tang, M. T.; Xiao, J.; Liu, X.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction. ACS Catal. 2017, 7 (10), 66006608,  DOI: 10.1021/acscatal.7b01648
    20. 20
      Singh, M. R.; Clark, E. L.; Bell, A. T. Effects of Electrolyte, Catalyst, and Membrane Composition and Operating Conditions on the Performance of Solar-Driven Electrochemical Reduction of Carbon Dioxide. Phys. Chem. Chem. Phys. 2015, 17 (29), 1892418936,  DOI: 10.1039/C5CP03283K
    21. 21
      Greenblatt, J. B.; Miller, D. J.; Ager, J. W.; Houle, F. A.; Sharp, I. D. The Technical and Energetic Challenges of Separating (Photo)Electrochemical Carbon Dioxide Reduction Products. Joule 2018, 2 (3), 381420,  DOI: 10.1016/j.joule.2018.01.014
    22. 22
      Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P. Electrolytic CO2 Reduction in a Flow Cell. Acc. Chem. Res. 2018, 51 (4), 910918,  DOI: 10.1021/acs.accounts.8b00010
    23. 23
      Jhong, H.-R. M.; Ma, S.; Kenis, P. J. A. Electrochemical Conversion of CO2 to Useful Chemicals: Current Status, Remaining Challenges, and Future Opportunities. Curr. Opin. Chem. Eng. 2013, 2 (2), 191199,  DOI: 10.1016/j.coche.2013.03.005
    24. 24
      Dinh, C.-T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. CO2 Electroreduction to Ethylene Via Hydroxide-Mediated Copper Catalysis at an Abrupt Interface. Science 2018, 360 (6390), 783787,  DOI: 10.1126/science.aas9100
    25. 25
      Ma, S.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P. J. A. One-Step Electrosynthesis of Ethylene and Ethanol from CO2 in an Alkaline Electrolyzer. J. Power Sources 2016, 301, 219228,  DOI: 10.1016/j.jpowsour.2015.09.124
    26. 26
      Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 2018, 140 (17), 57915797,  DOI: 10.1021/jacs.8b01868
    27. 27
      Zhuang, T.-T.; Liang, Z.-Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.; Quintero-Bermudez, R. Steering Post-C–C Coupling Selectivity Enables High Efficiency Electroreduction of Carbon Dioxide to Multi-Carbon Alcohols. Nature Catalysis 2018, 1 (6), 421428,  DOI: 10.1038/s41929-018-0084-7
    28. 28
      Lv, J.-J.; Jouny, M.; Luc, W.; Zhu, W.; Zhu, J.-J.; Jiao, F. A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction. Adv. Mater. 2018, 30 (49), 1803111,  DOI: 10.1002/adma.201803111
    29. 29
      Verma, S.; Hamasaki, Y.; Kim, C.; Huang, W.; Lu, S.; Jhong, H.-R. M.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. Insights into the Low Overpotential Electroreduction of CO2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer. ACS Energy Lett. 2018, 3 (1), 193198,  DOI: 10.1021/acsenergylett.7b01096
    30. 30
      Ma, S.; Luo, R.; Gold, J. I.; Yu, A. Z.; Kim, B.; Kenis, P. J. A. Carbon Nanotube Containing Ag Catalyst Layers for Efficient and Selective Reduction of Carbon Dioxide. J. Mater. Chem. A 2016, 4 (22), 85738578,  DOI: 10.1039/C6TA00427J
    31. 31
      Dufek, E. J.; Lister, T. E.; Stone, S. G.; McIlwain, M. E. Operation of a Pressurized System for Continuous Reduction of CO2. J. Electrochem. Soc. 2012, 159 (9), F514F517,  DOI: 10.1149/2.011209jes
    32. 32
      Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Technical Photosynthesis Involving CO2 Electrolysis and Fermentation. Nature Catalysis 2018, 1 (1), 3239,  DOI: 10.1038/s41929-017-0005-1
    33. 33
      Whipple, D. T.; Finke, E. C.; Kenis, P. J. A. Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of Ph. Electrochem. Solid-State Lett. 2010, 13 (9), B109B111,  DOI: 10.1149/1.3456590
    34. 34
      Lu, X.; Leung, D. Y. C.; Wang, H.; Xuan, J. A High Performance Dual Electrolyte Microfluidic Reactor for the Utilization of CO2. Appl. Energy 2017, 194, 549559,  DOI: 10.1016/j.apenergy.2016.05.091
    35. 35
      Li, H.; Oloman, C. Development of a Continuous Reactor for the Electro-Reduction of Carbon Dioxide to Formate – Part 2: Scale-Up. J. Appl. Electrochem. 2007, 37 (10), 11071117,  DOI: 10.1007/s10800-007-9371-8
    36. 36
      Yang, H.; Kaczur, J. J.; Sajjad, S. D.; Masel, R. I. Electrochemical Conversion of Co2 to Formic Acid Utilizing Sustainion Membranes. J. CO2 Utilization 2017, 20, 208217,  DOI: 10.1016/j.jcou.2017.04.011
    37. 37
      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New Insights into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper Surfaces. Energy Environ. Sci. 2012, 5 (5), 70507059,  DOI: 10.1039/c2ee21234j
    38. 38
      Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Metal Ion Cycling of Cu Foil for Selective C–C Coupling in Electrochemical CO2 Reduction. Nature Catalysis 2018, 1 (2), 111119,  DOI: 10.1038/s41929-017-0009-x
    39. 39
      Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Copper Nanoparticle Ensembles for Selective Electroreduction of CO2 to C2–C3 Products. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (40), 1056010565,  DOI: 10.1073/pnas.1711493114
    40. 40
      Ren, D.; Ang, B. S.-H.; Yeo, B. S. Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cuxzn Catalysts. ACS Catal. 2016, 6 (12), 82398247,  DOI: 10.1021/acscatal.6b02162
    41. 41
      Cave, E. R.; Montoya, J. H.; Kuhl, K. P.; Abram, D. N.; Hatsukade, T.; Shi, C.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Electrochemical CO2 Reduction on Au Surfaces: Mechanistic Aspects Regarding the Formation of Major and Minor Products. Phys. Chem. Chem. Phys. 2017, 19 (24), 1585615863,  DOI: 10.1039/C7CP02855E
    42. 42
      Hatsukade, T.; Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Insights into the Electrocatalytic Reduction of CO2 on Metallic Silver Surfaces. Phys. Chem. Chem. Phys. 2014, 16 (27), 1381413819,  DOI: 10.1039/C4CP00692E
    43. 43
      Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A Selective and Efficient Electrocatalyst for Carbon Dioxide Reduction. Nat. Commun. 2014, 5, 3242,  DOI: 10.1038/ncomms4242
    44. 44
      Chen, Y.; Li, C. W.; Kanan, M. W. Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 1996919972,  DOI: 10.1021/ja309317u
    45. 45
      Zheng, X.; De Luna, P.; García de Arquer, F. P.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y.; Banis, M. N.; Li, Y.; Liu, M. Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule 2017, 1 (4), 794805,  DOI: 10.1016/j.joule.2017.09.014
    46. 46
      Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 48224827,  DOI: 10.1021/acscatal.7b00687
    47. 47
      Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Partially Oxidized Atomic Cobalt Layers for Carbon Dioxide Electroreduction to Liquid Fuel. Nature 2016, 529, 68,  DOI: 10.1038/nature16455
    48. 48
      Zhao, S.; Jin, R.; Jin, R. Opportunities and Challenges in CO2 Reduction by Gold- and Silver-Based Electrocatalysts: From Bulk Metals to Nanoparticles and Atomically Precise Nanoclusters. ACS Energy Lett. 2018, 3 (2), 452462,  DOI: 10.1021/acsenergylett.7b01104
    49. 49
      Cai, Z.; Wu, Y.; Wu, Z.; Yin, L.; Weng, Z.; Zhong, Y.; Xu, W.; Sun, X.; Wang, H. Unlocking Bifunctional Electrocatalytic Activity for CO2 Reduction Reaction by Win-Win Metal–Oxide Cooperation. ACS Energy Lett. 2018, 3 (11), 28162822,  DOI: 10.1021/acsenergylett.8b01767
    50. 50
      Lu, X.; Wu, Y.; Yuan, X.; Huang, L.; Wu, Z.; Xuan, J.; Wang, Y.; Wang, H. High-Performance Electrochemical CO2 Reduction Cells Based on Non-Noble Metal Catalysts. ACS Energy Lett. 2018, 3 (10), 25272532,  DOI: 10.1021/acsenergylett.8b01681
    51. 51
      Kaczur, J. J.; Yang, H.; Liu, Z.; Sajjad, S. D.; Masel, R. I. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes. Front. Chem. 2018, 6, 263,  DOI: 10.3389/fchem.2018.00263
    52. 52
      Salvatore, D. A.; Weekes, D. M.; He, J.; Dettelbach, K. E.; Li, Y. C.; Mallouk, T. E.; Berlinguette, C. P. Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Lett. 2018, 3 (1), 149154,  DOI: 10.1021/acsenergylett.7b01017
    53. 53
      Ripatti, D. S.; Veltman, T. R.; Kanan, M. W. Carbon Monoxide Gas Diffusion Electrolysis That Produces Concentrated C2 Products with High Single-Pass Conversion. Joule 2018,  DOI: 10.1016/j.joule.2018.10.007
    54. 54
      Jouny, M.; Luc, W.; Jiao, F. High-Rate Electroreduction of Carbon Monoxide to Multi-Carbon Products. Nature Catal. 2018, 1 (10), 748755,  DOI: 10.1038/s41929-018-0133-2
    55. 55
      Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Energy Combust. Sci. 2010, 36 (3), 307326,  DOI: 10.1016/j.pecs.2009.11.002
    56. 56
      Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A Comprehensive Review on Pem Water Electrolysis. Int. J. Hydrogen Energy 2013, 38 (12), 49014934,  DOI: 10.1016/j.ijhydene.2013.01.151
    57. 57
      Weng, L. C.; Bell, A. T.; Weber, A. Z. Modeling Gas-Diffusion Electrodes for CO2 Reduction. Phys. Chem. Chem. Phys. 2018, 20 (25), 1697316984,  DOI: 10.1039/C8CP01319E
    58. 58
      Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W. B.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M. A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells. J. Electrochem. Soc. 2014, 161 (12), F1254F1299,  DOI: 10.1149/2.0751412jes
    59. 59
      Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K. Anion-Exchange Membranes in Electrochemical Energy Systems. Energy Environ. Sci. 2014, 7 (10), 31353191,  DOI: 10.1039/C4EE01303D
    60. 60
      Kusoglu, A.; Weber, A. Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117 (3), 9871104,  DOI: 10.1021/acs.chemrev.6b00159
    61. 61
      Dekel, D. R. Review of Cell Performance in Anion Exchange Membrane Fuel Cells. J. Power Sources 2018, 375, 158169,  DOI: 10.1016/j.jpowsour.2017.07.117
    62. 62
      Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Electroreduction of Carbon Monoxide to Methane and Ethylene at a Copper Electrode in Aqueous Solutions at Ambient Temperature and Pressure. J. Am. Chem. Soc. 1987, 109 (16), 50225023,  DOI: 10.1021/ja00250a044
    63. 63
      Paidar, M.; Fateev, V.; Bouzek, K. Membrane Electrolysis—History, Current Status and Perspective. Electrochim. Acta 2016, 209, 737756,  DOI: 10.1016/j.electacta.2016.05.209
    64. 64
      Weber, A. Z.; Kusoglu, A. Unexplained Transport Resistances for Low-Loaded Fuel-Cell Catalyst Layers. J. Mater. Chem. A 2014, 2 (41), 1720717211,  DOI: 10.1039/C4TA02952F
    65. 65
      Tamura, J.; Ono, A.; Sugano, Y.; Huang, C.; Nishizawa, H.; Mikoshiba, S. Electrochemical Reduction of CO2 to Ethylene Glycol on Imidazolium Ion-Terminated Self-Assembly Monolayer-Modified Au Electrodes in an Aqueous Solution. Phys. Chem. Chem. Phys. 2015, 17 (39), 2607226078,  DOI: 10.1039/C5CP03028E
    66. 66
      Divekar, A. G.; Park, A. M.; Owczarczyk, Z. R.; Seifert, S.; Pivovar, B. S.; Herring, A. M. A Study of Carbonate Formation Kinetics and Morphological Effects Observed on Oh- Form of Pfaem When Exposed to Air Containing CO2. ECS Trans. 2017, 80 (8), 10051011,  DOI: 10.1149/08008.1005ecst
    67. 67
      Inaba, M.; Jensen, A. W.; Sievers, G. W.; Escudero-Escribano, M.; Zana, A.; Arenz, M. Benchmarking High Surface Area Electrocatalysts in a Gas Diffusion Electrode: Measurement of Oxygen Reduction Activities under Realistic Conditions. Energy Environ. Sci. 2018, 11, 988,  DOI: 10.1039/C8EE00019K
    68. 68
      Wiltshire, R. J. K.; King, C. R.; Rose, A.; Wells, P. P.; Hogarth, M. P.; Thompsett, D.; Russell, A. E. A Pem Fuel Cell for in Situ Xas Studies. Electrochim. Acta 2005, 50 (25), 52085217,  DOI: 10.1016/j.electacta.2005.05.038
    69. 69
      Ramaker, D. E.; Korovina, A.; Croze, V.; Melke, J.; Roth, C. Following Orr Intermediates Adsorbed on a Pt Cathode Catalyst During Break-in of a Pem Fuel Cell by in Operando X-Ray Absorption Spectroscopy. Phys. Chem. Chem. Phys. 2014, 16 (27), 1364513653,  DOI: 10.1039/C4CP00192C
    70. 70
      Ishiguro, N.; Saida, T.; Uruga, T.; Nagamatsu, S.-i.; Sekizawa, O.; Nitta, K.; Yamamoto, T.; Ohkoshi, S.-i.; Iwasawa, Y.; Yokoyama, T. Operando Time-Resolved X-Ray Absorption Fine Structure Study for Surface Events on a Pt3Co/C Cathode Catalyst in a Polymer Electrolyte Fuel Cell During Voltage-Operating Processes. ACS Catal. 2012, 2 (7), 13191330,  DOI: 10.1021/cs300228p
    71. 71
      Casalongue, H. S.; Kaya, S.; Viswanathan, V.; Miller, D. J.; Friebel, D.; Hansen, H. A.; Nørskov, J. K.; Nilsson, A.; Ogasawara, H. Direct Observation of the Oxygenated Species During Oxygen Reduction on a Platinum Fuel Cell Cathode. Nat. Commun. 2013, 4, 2817,  DOI: 10.1038/ncomms3817
    72. 72
      Sanchez Casalongue, H. G.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In Situ Observation of Surface Species on Iridium Oxide Nanoparticles During the Oxygen Evolution Reaction. Angew. Chem., Int. Ed. 2014, 53 (28), 71697172,  DOI: 10.1002/anie.201402311
    73. 73
      Zenyuk, I. V.; Parkinson, D. Y.; Hwang, G.; Weber, A. Z. Probing Water Distribution in Compressed Fuel-Cell Gas-Diffusion Layers Using X-Ray Computed Tomography. Electrochem. Commun. 2015, 53, 2428,  DOI: 10.1016/j.elecom.2015.02.005
    74. 74
      Medici, E. F.; Zenyuk, I. V.; Parkinson, D. Y.; Weber, A. Z.; Allen, J. S. Understanding Water Transport in Polymer Electrolyte Fuel Cells Using Coupled Continuum and Pore-Network Models. Fuel Cells 2016, 16 (6), 725733,  DOI: 10.1002/fuce.201500213
    75. 75
      Cetinbas, F. C.; Wang, X. H.; Ahluwalia, R. K.; Kariuki, N. N.; Winarski, R. P.; Yang, Z. W.; Sharman, J.; Myers, D. J. Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded Pefc Electrodes. J. Electrochem. Soc. 2017, 164 (14), F1596F1607,  DOI: 10.1149/2.1111714jes
    76. 76
      Komini Babu, S.; Chung, H. T.; Zelenay, P.; Litster, S. Resolving Electrode Morphology’s Impact on Platinum Group Metal-Free Cathode Performance Using Nano-Ct of 3d Hierarchical Pore and Ionomer Distribution. ACS Appl. Mater. Interfaces 2016, 8 (48), 3276432777,  DOI: 10.1021/acsami.6b08844
    77. 77
      Cetinbas, F. C.; Ahluwalia, R. K.; Kariuki, N.; De Andrade, V.; Fongalland, D.; Smith, L.; Sharman, J.; Ferreira, P.; Rasouli, S.; Myers, D. J. Hybrid Approach Combining Multiple Characterization Techniques and Simulations for Microstructural Analysis of Proton Exchange Membrane Fuel Cell Electrodes. J. Power Sources 2017, 344, 6273,  DOI: 10.1016/j.jpowsour.2017.01.104
    78. 78
      Vermaas, D. A.; Smith, W. A. Synergistic Electrochemical CO2 Reduction and Water Oxidation with a Bipolar Membrane. ACS Energy Lett. 2016, 1 (6), 11431148,  DOI: 10.1021/acsenergylett.6b00557
    79. 79
      Li, Y. C.; Zhou, D.; Yan, Z.; Gonçalves, R. H.; Salvatore, D. A.; Berlinguette, C. P.; Mallouk, T. E. Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells. ACS Energy Lett. 2016, 1 (6), 11491153,  DOI: 10.1021/acsenergylett.6b00475

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

OOPS

You have to login with your ACS ID befor you can login with your Mendeley account.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE