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Abstract

This paper addresses the problem of estimating salinity for a large region in the Atlantic Ocean containing the Gulf Stream and
its recirculation. Together with Part 1 [Thacker, W.C., 2007-this issue. Estimating salinity to complement observed temperature: 1.
Gulf of Mexico. Journal of Marine Systems. doi:10.1016/j.jmarsys.2005.06.008.] dealing with the Gulf of Mexico, this reports on
the first efforts of a project for developing world-wide capability for estimating salinity to complement expendable-
bathythermograph (XBT) data. Such estimates are particularly important for this region, where the strong frontal contrasts render
the task of assimilating XBT data into numerical models more sensitive to the treatment of salinity.

Differences in salinity's co-variability with temperature and with longitude, latitude, and day-of-year from the northwestern part
of the region with the Gulf Stream to the southeastern part more characteristic of the Sargasso sea suggested that the region be
partitioned to achieve more accurate salinity estimates. In general, accuracies were better in the southeastern sub-region than in the
more highly variable northwestern sub-region with root-mean-square estimation errors of 0.15 psu at 25 dbar and 0.02 psu at
300 dbar as compared with 0.35 psu and 0.50 psu, respectively, but in the southeast there was an unexpected error maximum
around 1000 dbar where estimates were slightly less accurate than in the northwest. For pressures greater than 1400 dbar root-
mean-square errors in both sub-regions were less than 0.02 psu.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The companion paper (Thacker, 2007-this issue)
introduces a project for developing the capability of
estimating salinity from observations of temperature, so
that salinity can be corrected when expendable-bathy-
thermograph (XBT) data are assimilated into numerical
models of oceanic circulation. The success reported
there for estimating salinity for the Gulf of Mexico with
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its Loop Current suggested that the next step should be
to investigate a large, highly variable region in the North
Atlantic Ocean containing the Gulf Stream. Similar
success for this region would indicate that relatively
large and complicated regions might be addressed with-
out having to deal with more, smaller regions that would
slow the progress of the project.

As the project is still in an exploratory stage, the exact
boundaries of the region to study were quite arbitrary, so
the 30° longitude by 20° latitude region for this study
shown on the map in Fig. 1 was chosen with the thought
that experience here might provide guidance for the
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Fig. 1. Map of the North Atlantic Ocean showing the area addressed in this study. Red dots represent the 11,644 CTD stations from the World Ocean
Database 2001 for the rectangular region. Bathymetric contours at 500, 1000, 1200, and 2000 m are indicated in gray.
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choice of other regions as the study progresses. Nova
Scotia can be seen at its northwest corner, the Bahamas to
the southwest, and the Azores to the east; Bermuda is on
its western boundary. Except for the Scotian Shelf and the
Grand Banks, most of the region is very deep.1 Both
temperature and salinity exhibit a wide range of variability
across this large region. In particular, they change abruptly
across the fronts associated with the meandering Gulf
Stream (Watts, 1983) and with the drifting warm-core
eddies to its north and cold-core eddies to its south
(Richardson, 1983). Moreover, the region is open with
nothing preventing water from crossing its arbitrary
boundaries.While the primary external influence is that of
the Gulf Stream entering from the west, water from the
Labrador Current impinges from the north (Loder et al.,
1998), and there are less pronounced exchanges across the
southern and eastern boundaries.
1 Thanks are extended to Dong-Shan Ko of the Naval Research
Laboratory for providing the DBDB2 bathymetric data. The contours
in Fig. 1 are not labelled, but the shelf can be identified from the
closely spaced contours in the north.
In spite of this region's size and complexity and the
wide ranges over which its salinity and temperature vary,
throughout the region salinity exhibits a pronounced co-
variability with temperature. Scatter plots of temperature
vs. salinity at fixed pressure show data throughout the
region cluster along relatively well-defined curves.2

While this co-variability is relatively weak near the
ocean's surface, it is stronger in and below the
thermocline, allowing knowledge of temperature to
restrict the range of salinity by more than an order of
magnitude. Still, the various water types encountered in
this region contribute to the spread of salinity values. If
they could be identified and treated separately, accuracy
might be improved. Unfortunately, identifying the water
type from temperature and location is difficult and
deserves a separate study. The challenges of the
continental shelf are finessed by basing the salinity
2 To study water-mass anomalies Armi and Bray (1982) describe the
TS curve over a wide pressure range using a cubic-spline function.
Their fit was not to the measurements but to curves from two previous
analyses (Iselin, 1936; Worthington and Metcalf, 1961).



3 The deepest level considered by Thacker (2007-this issue) is
1600 dbar. In that study, there were far fewer long profiles, so profiles
with differing lengths were used.
4 Temperatures were required to be between 0 °C and 30 °C,

salinities were required to be between 25 psu and 38 psu, and
potential densities relative to the surface were required to be greater
than 1022 kg/m3.
5 Whereas a smaller value was used in part 1 for the Gulf of Mexico

(Thacker, 2007-this issue), 0.03 kg/m3 is roughly the accuracy to
which potential density can be estimated by the equation of state
(Tomczak and Godfrey, 2003; Millero and Poisson, 1981).
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estimates on data from the deeper parts of this rather
arbitrary rectangle. Still, some of these data reflect intru-
sions of the colder, fresher water from the shelf. Further-
more, some of the spread appears to be associated with a
difference between the northwestern part of the region,
which is the domain of the Gulf Stream and its recircu-
lation, and the southeastern part, which might be regarded
as part of the Sargasso Sea. Just as the choice of the
rectangle was arbitrary, so is the position of the boundary
between northwest and southeast sub-regions. Even
though this study is primarily exploratory, with the intent
to discover the problems that must be overcome, and even
though the results might be improved with additional
effort, the empirical relationships presented here for
estimating salinity in this region are extremely useful.

In the northwestern sub-region, for pressures greater
than 300 dbar, i.e., in and below the thermocline, the tight
relationship between temperature and salinity allows a
fourth-degree polynomial of temperature to estimate sa-
linity with root-mean-square (rms) errors smaller than
0.05 psu. Nearer the surface, where the TS relationship is
less well-defined, no empirical function of temperature
can provide such accurate estimates of salinity. However,
using longitude and day-of-year as supplemental regres-
sors can compensate to some extent, reducing errors at
25 dbar from the temperature-only level of roughly
0.6 psu to approximately 0.43 psu. As surface salinity
might soon become routinely observed from space, it is
interesting to note that it might allow rms errors for
estimates of salinity at 25 dbar to be reduced to 0.3 psu.

In the southeastern sub-region, different models were
needed. A second-degree polynomial of temperature
was sufficient to capture TS co-variability, and both
longitude and latitude provided useful information
about salinity, even at depth, as did day-of-year. While
overall the accuracies for estimating salinity in this sub-
region were higher than for the northwest with rms
errors below 0.025 psu between 250 dbar and 700 dbar
and only 0.15 psu at 25 dbar, there was a local rms-error
maximum of 0.07 psu in the vicinity of 1000 dbar.

2. CTD data

The locations of the 11,644 CTD stations from the
National Oceanographic Data Center's World Ocean
Database 2001 (Conkright et al., 2002b), which might
be used to establish empirical relationships between
salinity and temperature for the region from 65°W to
35°W and from 25°N to 45°N, are shown as dots on the
map in Fig. 1. These stations were occupied during
years 1970 to 2000 with the bulk of the data collected in
summer months; there were only 1398 for months
November through March but 10246 for April through
October. Over half (6782) of these stations are in water
where the bottom depth is less than 1000 m, which is so
well sampled that dots for some stations obscure others,
while the deeper regions are less well sampled. The
sampling is far from uniform; some areas are essentially
over sampled while others are hardly sampled at all. In
particular, there are far fewer stations in the southern
half of the region than in the northern half and fewer in
the east than in the west. Still, there are parts of the
world, especially in the southern hemisphere with much
less data, so this region should be considered to be data-
rich. In fact there are far more data than are needed, and
working with so many profiles is inconvenient.

Because the continental shelf offers its own compli-
cations for estimating salinity, we decided to focus on
the deeper water. While many of the profiles in the
deeper regions fail to descend below the range of XBTs,
enough do to allow empirical relationships between
salinity and temperature to be established using data
from the same profiles at all depths. After excluding
those profiles that do not reach 1600 dbar,3 those that
start deeper than 25 dbar, and those that have gaps
greater than 10 dbar, the remainder were interpolated
linearly to standard pressure levels at 25 dbar intervals.
Then the few profiles with extreme outliers4 and with
potential-density inversions greater than 0.03 kg/m3

were discarded,5 leaving 1390 profiles with which to
work. Fig. 2 shows the locations of these 1390 stations.

Before proceeding with the task of identifying empi-
rical models from these CTD data, it is useful to explore
how they are distributed. Fig. 3 uses box-and-whisker
plots to summarise the distributions of temperature and
salinity from the 1390 profiles at standard pressure
levels. The central dots in these plots indicate the
medians of the data at each pressure level; the boxes
indicate the inter-quartile ranges containing the values
for half the data for that level, the whiskers extend from
each end of the box to the nearest value within 1.5 times
the box's width to indicate the expected range of the
data; and the more extreme values are indicated with
dots. A few data can be seen as isolated outliers, which
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Fig. 2. Locations of the 1390 stations with long profiles. Colors correspond to those used in Fig. 5.
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could indicate either bad data or unusual natural
variability, but any bad data that might have values
within the ranges of the whiskers are not revealed.

Unlike box-and-whisker plots for the Gulf of Mexico
(Thacker, 2007-this issue), which allowed the identifica-
tion of bad data as detached outliers, these show very few
outliers, detached or otherwise, most of which are cold
and fresh and above 400 m and appear to be consistent
with water that has intruded from the shelf. While fewer
outliers might be taken as an indication that these data are
much cleaner than those for the Gulf, and they are in fact
cleaner, the differences regarding outliers stems from
differences in the sizes of the inter-quartile ranges: about
10 °C and 1.25 psu for pressures less than 500 dbar for
these data as compared to less than 2 °C and 0.4 psu for the
Gulf data. The smaller inter-quartile ranges for the Gulf
data lead to shorter whiskers and allow more outliers,
while the larger ranges for these data cause thewhiskers to
extend to encompass most of the data.

The histograms in Fig. 4 show in more detail how the
values of temperature and salinity for the 1390 profiles
are distributed at 400 dbar. The inter-quartile ranges in
Fig. 3 are large, because the distributions are multi-
modal. The shapes of the histograms do not necessarily
indicate the frequency with which water having these
properties might be encountered, as the sampling
reflects oceanographers' preferences for studying inter-
esting features. Such bias is difficult to avoid, and
complicates the task of estimating climatological means
of temperature and salinity. Fortunately, the impact of
sampling bias on estimates of salinity from temperature
should be relatively minor, as such estimates are based
on curves fitted to scatter plots of temperature vs.
salinity, and sampling bias manifests as increased data
for some portions of the TS curve.

Fig. 5 shows such scatter plots for the data at four
pressure levels. The peaks in the histograms of Fig. 4
appear here in the scatter plot for 400 dbar as local
increases in the density of points. These variations in
density do not detract from the fact that the points fall
into a long thin cluster that can be well described by a
smooth curve. Note that there are a few isolated points,
which would be the most distant from the curve; only
those that are at the extremes of the ranges of tem-
perature or salinity would be flagged by box-and-
whisker plots or by histograms as possibly bad data.

In these scatter plots colors are used to indicate
whether the data are from the northwest (magenta) or
southeast (cyan) sub-regions that are indicated in Fig. 2.
The ranges of variability of temperature and salinity are
less in the southeast away from the Gulf Stream front.
While the data from both regions appear to have the same
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Fig. 3. Box-and-whisker plots of temperature (left) and salinity (right) for data from the 1390 stations of Fig. 2 interpolated to standard pressure levels
at 25 dbar intervals.

6 The random partition was made using the R software function
sample (RDevelopment Core Team, 2004; Venables and Ripley, 2002).
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TS relationship at 400 dbar, this is not the case for the
other levels. At 100 dbar the secondary cluster of warm-
salty data is seen to come from the southeast region.
While the cyan points for warmer and saltier values
merge with magenta points, they do suggest that at
100 dbar the TS relationship for the southeastern data
differs from that for the northwestern data. At 800 dbar
and 1200 dbar the southeastern water is again seen to be
more salty than the northwestern. Similar plots for the
other levels, which are not shown, indicate a gradual
transition from a near-surface behaviour similar to what
is shown for 100 dbar, to a thermocline behaviour like
that for 400 dbar, to a fresher bulge like for 800 dbar, to
separation of warm-salty from cold-fresh like 1200 dbar.
The division between northwest and southeast was quite
arbitrary; a different partition might correspond to a
better separation of clusters at some levels and worse at
others. Nevertheless, it is clear that the relationship
between salinity and temperature is not homogeneous
over the entire region.

The CTD data for the stations indicated in Fig. 2
were divided into two groups, one for the northwestern
sub-region and the other for the southeastern sub-
region. As the latter is likely to belong to a larger
Sargasso Sea region and our primary focus is on the
Gulf Stream front, most of our attention will be devoted
to the northwestern part. To avoid redundant informa-
tion, stations within each sub-region were thinned; they
were ordered by date, time, then by latitude, and then by
longitude as in Part I (Thacker, 2007-this issue), and all
stations were discarded that were within 0.3 degrees
latitude or longitude or within 2 days of the previous in
the sequence, retaining the first of each sub-sequence of
close stations without making an effort to choose the
best within the subsequence. The remaining data in
each sub-region were randomly partitioned6 (Fig. 6)
with one half to be used for fitting regression models
and the other, for gauging performance.

3. Northwestern sub-region

The S-shape of the distributions of the northwestern
data in the TS plots of Fig. 5 suggest that salinity might
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Fig. 4. Histograms of temperature (left) and salinity (right) for data at 400 dbar. Bin widths are 0.25 °C for temperature and 0.05 psu for salinity.
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be modelled by polynomials of temperature of 3rd or
higher degree, and that proved to be the case.
Polynomials of temperature 4th degree and less were
fitted to the training data at each pressure level. For
example, in fitting the 4th-degree polynomial,

Ŝ ¼ P4ðTÞ ¼ a0 þ a1T þ a2T
2 þ a3T

3 þ a4T
4; ð1Þ

the coefficients7 a0( p), …, a4( p) were adjusted to give
the best possible robust agreement with the training
data.8

Two empirical models, which are not regression
models, were also considered. The first estimates the
salinity at each pressure level by the climatological mean
salinity at that level,

Ŝ ¼ hSip; ð2Þ
7 For notational simplicity the same symbol is used for the
coefficient at the different pressure levels and for polynomials of
different degrees. The value of a0, for example, is different at each
pressure level and changes with the degree of the polynomial.
8 Computations were made using the R software (R Development

Core Team, 2004) function rlm for robust least-squares regression
with the M-estimation method (Venables and Ripley, 2002).
where 〈〉p indicates the mean for fixed pressure. In this
case the mean has been computed from the training data,
but it could have been derived from published climatol-
ogies (Conkright et al., 2002a), circumventing the need to
work with the CTD data.9 The second estimates salinity
by its climatological mean on temperature surfaces:

Ŝ ¼ hSiT ; ð3Þ

a method that dates back to Stommel (1947). The training
data were interpolated to standard temperatures at 0.1 °C
intervals to compute the means, and then the means were
interpolated to get estimates of salinity at the standard
pressure levels. This method can also be implemented, at
least approximately, without the effort ofworkingwith the
CTD data by using the mean temperature and salinity
profiles to approximate 〈S〉T.

Fig. 7 shows the root-mean-square errors when these
models are used to estimate the independent verification
data. Errors for estimates based on the climatological
9 Thacker et al. (2004) have discussed the disadvantages of using
this method within the context of assimilating XBT data into
numberical models of oceanic circulation.



Fig. 5. Scatter plots at four pressure levels with colors indicating region.
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mean salinity on pressure surfaces were so large that it is
not competitive at any pressure level. The climatological
mean on temperature surfaces provides more accurate
estimates,10 but those errors are roughly twice as large
as for the 4th-degree polynomials of temperature. Errors
10 For the warmest observed temperatures, only a small number of
training profiles contribute to the estimation of average salinity and,
similarly, near the surface not all verification profiles contribute to the
computation of rms errors.
for lower-degree polynomials11 were also smaller than
those for Stommel's method. If plotted at the same
scales used in Fig. 7 no differences between the rms
verification errors for 3rd-degree and 4th-degree poly-
nomials could be seen, even though those for the 4th-
degree polynomials are a bit smaller. Errors for the 2nd-
degree polynomials are noticeably larger between
75 dbar and 375 dbar than those for polynomials of
11 Those curves were omitted from Fig. 7 to make it easier to read
.



Fig. 6. Locations of stations contributing training data o (467 in NW, 114 in SE) and verification data + (468 in NW, 114 in SE).
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3rd and 4th degree, but still substantially smaller than
those for Stommel's method. Even the straight line (1st-
degree polynomial) performs better substantially than
Stommel's method everywhere except between
500 dbar and 725 dbar, and it performs as well as the
other polynomial models for pressures greater than
900 dbar.

Fig. 8 shows the verification data at 200 dbar
overlaid with the estimates from the three models.
Horizontal distances from the points to each curve is the
error for that point using that model. The vertical red
line, which is the temperature-independent estimate
based on the mean salinity at 200 dbar, totally ignores
the strong TS co-variability and thus has a large rms
error. The green curve representing the pressure-
independent estimate based on the mean salinity on
temperature surfaces does much better at representing
the co-variability, so its errors are smaller; still, it is
systematically too fresh for temperatures above 13 °C
and too salty below 11 °C. The 4th-degree polynomial
of temperature, on the other hand, lies near the center of
the data at all temperatures12 and consequently has the
12 The blue curve is not the best-fit to these data but to the training
data.
smallest rms error. If the curve for the 3rd-degree
polynomial of temperature were added, it too would
provide an excellent approximation of the data; it would
be very nearly the same as the blue curve over much of
the temperature range, with noticeable differences only
at the extremes. Similarly, if curves for 1st- and 2nd-
degree polynomials were added, while not as good an
approximation to the data as those of 3rd- and 4th-
degree, they would nevertheless be considerably better
than the green curve.

For pressures greater than 300 dbar temperature alone
provides sufficient information to estimate salinity to an
accuracy of 0.05 psu, but the rms errors increase to more
than 0.6 psu at 25 dbar.When residuals of the near-surface
P4(T ) models were plotted vs. the day of the year and vs.
longitude, some systematic behaviour was observed,
suggesting that seasonal or locational effects might be
exploited to improve the accuracy of near-surface salinity
estimates. However, there appeared to be little systematic
variation with latitude.

Fig. 9 shows that the residuals for the robustly fitted
4th-degree polynomial model for 25 dbar do not vary
uniformly across the seasonal cycle. Moreover, their beha-
viour is not sinusoidal. Instead, the model underestimates
more andmore data as the year progresses throughOctober



Fig. 7. Root-mean-square differences between verification data from the northwestern sub-region and their estimated counterparts. Blue curve corresponds to
4th-degree polynomials of temperature. Green and red curves correspond to means of training salinity on temperature and pressure surfaces, respectively.

13 The tilde is used to indicate that the constant term is absent from
P̃ (d ) as only one constant term is needed.
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followed by a rapid transition at the end of the year, with
both mean and standard deviation varying as a function of
day-of-year d. While supplementing P4(T ) with a polyno-
mial function of d does not address the heteroscadisticity
directly, it should improve the estimates of near-surface
salinity. The lack of long profiles during the winter months
further complicates matters, and a better treatment would
involve the use of some of the shorter profiles. Neverthe-
less, it is interesting to see what these data reveal.

The residuals of the P4(T ) model also exhibited
systematic near-surface behaviour when plotted vs.
longitude λ and vs. surface salinity S0. Consequently a
variety of other models were examined. Here, we report
the results of three of these:

Ŝ ¼ P4ðTÞ þ Pe4ðdÞ ¼ a0 þ a1T þ a2T
2 þ a3T

3

þ a4T
4 þ b1d þ b2d

2 þ b3d
3 þ b4d

4;
ð4Þ
which adds to (1) terms proportional to the first four
powers of the day of the year,

13

Ŝ ¼ P4ðTÞ þ Pe4ðdÞ þ Pe1ðkÞ; ð5Þ
which adds to (4) a term proportional to the longitude of
the station, and

Ŝ ¼ P4ðTÞ þ Pe4ðdÞ þ Pe1ðkÞ þ Pe1ðS0Þ; ð6Þ
which adds to (5) a term proportional to the surface
salinity.

While the training and verification data used for the
models of Fig. 7 could be used for models (4) and (5)
involving d and λ, only the subset of profiles measuring
4



Fig. 8. Points represent verification data from northwestern sub-region at 200 dbar and the curves represent estimates based on the training data for the
same region: blue curve, 4th-degree polynomials of temperature; green curve, climatological mean salinity on temperature surfaces; vertical red line,
mean salinity at 200 dbar.
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salinity close to the surface can be used for model (6). In
order to judge fairly how much impact satellite-based
measurements of sea-surface salinity might have beyond
what is provided by d and λ, all of these models were
fitted to and scored against profiles providing data for
pressures less than or equal to 2 dbar, using the data
nearest the surface as proxies for satellite-based
observations of surface salinity.14 Fig. 10 shows the
rms errors for these models together with those for the
4th-degree polynomial of temperature, which have been
recomputed using this subset of profiles.15 Only errors
for the upper 300 dbar are shown, as these models all had
essentially the same rms errors below this level. The day
14 These models were fitted to 176 training profiles and verified with
194 profiles.
15 The results for the models not involving surface salinity, when
fitted to the full training set and scored for the full verification set,
were similar.
of the year d clearly provides addition information for
pressures less than 100 dbar. Linear, quadratic, and cubic
dependence on d gave increasingly better results with
those for the 3rd-degree polynomials performing almost
as well as 4th-degree, modelling seasonal effects with
sinusoids was not successful. Longitude provides
additional information about the near-surface salinity
beyond what is contributed by temperature and day-of-
year. Including a term proportional to longitude reduced
the rms error at 25 dbar to 0.35 psu, but quadratic or
higher function of longitude offered no further improve-
ment. Unlike longitude, latitude did not prove to be
useful in this sub-region.

It is interesting to note the effect of the different
samples on the rms errors of model (1). Fig. 7 indicates
the rms error at 25 dbar to be 0.62 psu when coefficients
are determined from the full set of training profiles and
predictions are scored against the full set of verification
profiles, while Fig. 10 indicates the smaller value of



Fig. 9. Residuals for the robustly fitted 4th-degree polynomial of temperature at 25 dbar for the northwestern sub-region vs. day-of-year.
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0.57 psu when the subsets of profiles that provide
surface measurements are used. Similarly, the errors at
50 dbar, in the same order, are 0.35 psu and 0.30 psu.
Such large changes are confined to the upper 100 m, all
corresponding to smaller errors when using fewer pro-
files. On the other hand, for pressures greater than
200 dbar the errors for the subset are generally larger
than those for the full set by about 0.01 psu. The rms
fractional difference between the two error profiles over
the 64 pressure levels of 0.11% might be taken as a
measure of the accuracy of the error estimates.

Fig. 11 compares 28 randomly selected16 verification
profiles from the northwestern sub-region with their
counterparts estimated using longitude and the first four
powers of temperature and of day-of-year as predictors
(Eq. (5)) with its nine coefficients determined by fitting to
the full set of 466 training profiles. As surface salinity is
not available for most of the archivedXBT data, this is the
16 The random selection was made using the R function sample.
best model considered here. While there are some large
differences near the surface, the agreement is quite
remarkable overall. The principal problem below the
surface is the failure to capture the strength of the fresh
intrusions seen for profiles 3280759 and 3345297. The
systematic offset for profile 3364059 over its entire length
suggests that the salinity measurements for this profile
might not have been properly calibrated. While a
motivation for these estimates, beyond providing a basis
for correcting salinity when assimilating XBT data into
numerical models, was their use for checking the calibra-
tion of salinity profiles in the CTD archives in a manner
similar to that used by Wong et al. (2003) for profiling
floats, another application might be checking for possibly
miscalibrated salinity profiles in the CTD archives.

Fig. 12 shows the accuracy of potential density based
on salinity estimated using the same model (Eq. (5)) as
used for the profiles in Fig. 11. The equation of state of sea
water (Fofonoff, 1977) was used at each pressure level to
compute potential density first from observed temperature



Fig. 10. Root-mean-square errors for salinity models for the northwestern sub-region with increasing numbers of regressors. The blue curve
corresponds to a 4th-degree polynomial of temperature; green, to a 4th-degree polynomial of temperature plus a 4th-degree polynomial of day-of-
year; purple, longitude in addition to the regressors for the green curve; red, surface salinity in addition to the regressors for the purple curve.

17 The same curve appears in Fig. 7.
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and salinity and then from the observed temperature and
estimated salinity, and the resulting rms differences at
each pressure level are shown. Due to the greater
variability in this region, estimates of potential density,
like those of salinity, are less accurate than their counter-
parts for the Gulf of Mexico (Thacker, 2007-this issue).
Nevertheless, they should still be useful for correcting a
numerical ocean circulation model's density when XBT
data are being assimilated.

4. Southeastern sub-region

As the plots of Fig. 5 indicate differences in the TS
relationship for the two sub-regions, it is interesting to
check how well salinity in the southeast can be esti-
mated using a model designed for the northwest. Fig. 13
shows the southeastern performance for three such
models. Their coefficients were determined by fitting to
the northwestern training data, and the rms errors are
computed over the combined training and verification
data from the southeast, as all were independent of the
training data from the northwest. The three models that
were evaluated for these data were (1), (4), and (5)
determined from all training profiles from the north-
west. Also shown for comparison are the rms errors for
the fourth-degree polynomial of temperature scored for
the northwestern verification data.17 Perhaps surpris-
ingly, in the interval from 200 dbar to 450 dbar the data
from the southeast were better estimated than those from
the models' native region. This result might have been
anticipated from the scatter plot for 400 dbar in Fig. 5,
which shows the southeastern data to lie within the
northwestern data and to have less spread. Except for
this pressure interval, all three models had larger errors
when estimating southeastern data, just as had been
expected when the region was sub-divided. Errors for

http://dx.doi.org/10.1016/j.jmarsys.2005.06.008


Fig. 11. Comparison of observed (red) and estimated (blue) salinity profiles for 28 randomly selected stations. Estimates were made with P4(T )+ P̃4(d )+
P̃1(λ) fitted to the entire set of northwestern training data. Profile identification numbers are indicated on the panel labels.
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Fig. 12. Root-mean square differences between verification data for potential density and their counterparts estimated using salinity values from P4(T )+
P̃4(d )+ P̃1(λ) together with the observed temperatures.

18 Other models were also explored. In particular when (10) was ex-
panded to include unneeded 3rd and 4th powers of T, Ŝ=P4(T)+ P̃1(λ)+
P̃1(φ)+ P̃1(d ), overfitting was found to be a problem at some pressure
levels with the more parsimonious model giving better results.
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the southeastern data increase beyond 450 dbar until the
interval from 950 dbar to 1075 dbar where they are four
times larger than those for the northwestern data; they
decrease again with further increases in depth but
remain at least twice as large as northwestern errors.
Fortunately, the large errors for levels deeper than
500 dbar are a problem only for the relatively few long
XBT profiles. Models fitted to data in this sub-region
should be expected to provide greater accuracy in the
upper 200 dbar and below 450 dbar.

Fig. 13 shows that, even with a foreign model,
longitude has a beneficial effect for the southeastern
data down to 200 dbar, whereas Fig. 10 shows a reduction
of rms errors for the native northwestern data only to
100 dbar. This indication of stronger spatial dependence
was confirmed when salinity was modelled specifically
for the southeastern sub-region. Avariety of models were
examined. The absence of the S-shapedTS plots indicated
that high-degree polynomials of temperature were not
needed, and 2nd-degree proved to be sufficient. Both
longitude λ and latitude φ carried information about
salinity, but there was no improvement shown when
powers of λ orφwere used as regressors. Little additional
information was also provided by the day-of-year d.

Fig. 14 shows rms errors for four models:18 a 2nd-
degree polynomial of temperature

Ŝ ¼ P2ðTÞ; ð7Þ



Fig. 13. Root-mean-square differences between data in the southeastern sub-region and their estimated counterparts using models determined by the
northwestern training data. Blue curve corresponds to 4th-degree polynomials of temperature; red, to 4th-degree polynomials of temperature and day-
of-year; green, to 4th-degree polynomials of temperature and day of year plus longitude. For reference, the black curve indicates the rms errors for the
northwestern verification data using 4th-degree polynomials of temperature. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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which is expanded to include a term proportional to
longitude

Ŝ ¼ P2ðTÞ þ Pe1ðkÞ; ð8Þ
which in turn is expanded to include a term proportional
to latitude

Ŝ ¼ P2ðTÞ þ Pe1ðkÞ þ Pe1ð/Þ; ð9Þ
and once more to include a term proportional to day-of-
year

Ŝ ¼ P2ðTÞ þ Pe1ðkÞ þ Pe1ð/Þ þ Pe1ðdÞ: ð10Þ
These models were fitted to the 114 southeastern

training profiles and the rms errors reflect their ability to
reproduce the salinity of the remaining 114 southeastern
profiles, which were set aside for independent verifica-
tion. At all levels these errors are considerably smaller
than those shown in Fig. 13 for the northwestern models
scored against the southeastern data.

Usingmodels native to the subregion, estimates of near-
surface salinity are much more accurate for the southeast-
ern sub-region than for the northwestern. Near the surface
temperature provides more information about salinity for
this sub-region than it did in the northwest, but longitude
was less help. However, longitude provided more infor-
mation about salinity at depth than it did in the northwest.
While latitude was not useful in the northwest, here it is
responsible for much of this improved near-surface skill,



Fig. 14. Root-mean-square differences between verification data in the southeastern sub-region and their estimated counterparts using models
determined by the southeastern training data. Blue curve corresponds to 2nd-degree polynomials of temperature; red, to 2nd-degree polynomial of
temperature plus longitude; black, to 2nd-degree polynomial of temperature plus longitude and latitude; green, to 2nd-degree polynomial of
temperature plus longitude, latitude, and day-of-year. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

264 W.C. Thacker, L. Sindlinger / Journal of Marine Systems 65 (2007) 249–267
and it substantially increases skill for the deeper levels. The
error maximum around 1000 dbar is similar to that seen in
Fig. 13, but with these models it is much smaller; latitude,
especially, and also longitude are responsible for increased
skill in the interval from 500 dbar to 1400 dbar centring on
the error maximum. Including day of the year as an addi-
tional regressor (model 10) gave noticeable improvement
only at 50 dbar and 75 dbar, as the green curve was
essentially the same as the black everywhere else, and
polynomials of d did no better, perhaps because the
sampling provided by the training data did not capture the
seasonal cycle. More generally, salinity can be estimated
more accurately in the southeastern sub-region than in the
northwestern where variability is greater. In the important
interval from400 dbar to 600 dbar, rms errors are seen to be
half as large as those shown in Fig. 7 for the northwestern
sub-region.

5. Performance at the boundary between sub-regions

While the question of how to partition the region into a
southeastern Sargasso Sea region and a northwestern Gulf
Stream region certainly deserves more attention, the
question of continuity of estimates from one sub-region to
the next is also important. To examine this issue salinity
profiles for stations close to the arbitrary partition line of
Fig. 2 were estimated using models from either side of the
partition. The boundary stations were the verification



Fig. 15. Estimates for border stations in northwestern (upper 7 panels) and in southeastern (lower 12 panels) sub-regions.Black, observed;magenta,NWmodel
(Eq. (5)); cyan, SEmodel (Eq. (10)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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stations within the band swept out by sliding the partition
line 1° north (7 stations) and 1° south (12 stations), and the
models were those that performed best in each region, i.e.,
Eq. (5) fitted to the northwestern training data and Eq. (10)
fitted to the southeastern training data. The results are
shown in Fig. 15.

The seven profiles in the top row of panels of Fig. 15 are
from the northwestern side of the partition line. For three,
namely profiles 3291224, 8076811, and 8079536, the
northwestern model (magenta curves) more closely ap-
proximates the observed salinity (black curves), while the
southeastern model (cyan curves) approximates the other
four profiles better. Formost of the twelve profiles from the
southeastern side of the partition the southeastern model
clearly outperforms the northwestern, for a few their per-
formance is similar, but there is no case where the north-
western model is clearly best. For both sets of profiles the
differences are generally largest for the pressure range
corresponding to the error maxima of Figs. 13 and 14
where latitude gives an advantage to the southeastern
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model. The southeasternmodel's better performance in this
boundary zone suggests that the partition should be moved
north and/or east. However, the partition need not be a
straight line and might be different at different depths.

As the salinity estimates are intended for assimilation
into numerical models, the possibility of introducing
spurious density gradients in the vicinity of artificial
regional boundaries is a concern. If the boundaries are
chosen so that the models from opposite sides have
similar skill in the vicinity of the boundary, then av-
eraging the estimates might insure continuity. For ex-
ample, at the boundary the estimates can be equally
weighted, with weights shifting in favour of the region's
native model with distance from the boundary.

6. Conclusion

For the purposes of estimating salinity profiles to
complement XBT data, the 30° longitude by 20° latitude
study region, after excluding the continental shelf, should
be divided into two sub-regions: a northwestern sub-
region that is more closely associatedwith theGulf Stream
and its recirculation and a southeastern sub-region that is
more characteristic of the central North Atlantic. The co-
variability of salinity with temperature differs in the two
sub-regions especially in the upper 200 m and below
500 m, as does its co-variability with longitude, latitude,
and day-of-year. Consequently, different empirical models
are needed for each sub-region. The partition of the region,
like the location of the rectangle, was arbitrary and
exploratory, and the question of determining optimal
regions for salinity estimation certainly deserves more
attention. Still, the variability within each of the two sub-
regions is sufficiently homogeneous that salinity can be
estimated with reasonable accuracy.

Within each sub-region salinity was modelled in-
dependently at 64 different levels ranging from 25 dbar
to 1600 dbar, spaced at 25 dbar intervals. While the best
model at one pressure level is not necessarily the best at
another, the problem of overfitting is not serious and the
best models for each region could be used at all levels.
Nevertheless, it is not wise to seek a model with many
terms that might be appropriate in all regions. Adding
two unneeded powers of temperature to the best model
for the southeastern sub-region gave noticeably worse
results for some levels, and similar problems can be
expected whenever the principal of parsimony is
violated.

For the northwestern sub-region 4th-degree poly-
nomials of temperature were found to work well at all
levels, while 3rd-degree polynomials did not perform
significantly worse and at some levels straight lines or
parabolas were sufficient. For most levels there was no
need to account for time of year or for the position
within the sub-region where the estimate was needed;
near the surface, however, this was not the case. In the
upper 100 dbar where temperature provides relatively
little information about salinity, using the first four
powers of day-of-year as additional predictors was able
to reduce the rms estimation error by about 25%. In the
upper 50 dbar, longitude provided an additional
reduction of about the same amount. If surface salinity
were available, it too would give another additional
error reduction of this magnitude, with the cumulative
effect bringing the error at 25 dbar from about 0.58 psu
to 0.30 psu. The accuracy for deeper levels is much
better with rms errors decreasing from about 0.05 psu at
300 dbar to 0.02 psu at 1600 dbar.

Two alternative methods for estimating salinity were
examined for the northwestern sub-region and were
found to be inferior. The first, which approximates
salinity by its climatological mean on pressure surfaces,
is attractive because it can be easily implemented using
published climatologies. Unfortunately, its failure to
exploit the strong TS co-variability cause it to have much
larger errors; its rms errors at 400 dbar are more than an
order of magnitude larger than those for the regression
model and at 1600 dbar, double. The second approx-
imates salinity by its climatological mean on temperature
surfaces; as such means can be approximated using data
for the climatological mean profiles, it also offers the
possibility of easy implementation. While better than the
first alternative, this method also had larger errors than
the regression models, roughly double for all depths.

While the models fitted to the northwestern data
provided quite good estimates for the southeastern sub-
region in the interval between 200 dbar and 450 dbar,
better in fact than they provided for the northwestern sub-
region, their performance was poor at other levels, so
native southeastern models were needed. In the south-
eastern sub-region a 2nd-degree polynomial of tempera-
ture served well at all depths and the unneeded higher
powers used in the northwest proved to be a liability.
Another remarkable result was that here more information
was provided by the location of the station than was the
case for the northwestern sub-region. Longitude proved
useful from the surface to 300 dbar and again from
550 dbar to 1050 dbar; and latitude, whichwas not helpful
in the northwest, provided evenmore information from the
surface to 100 dbar and again from 350 dbar to 1350 dbar.
Day-of-year was less useful than in the northwest, but this
may be an artificial result of the sample of stations that
were used. In both regions the seasonal cycle for the upper
levels deserves a more careful treatment.
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The case in Fig. 11 (profile 3364059) with a sys-
tematic difference between estimated and measured
salinity over a wide range of pressures is remarkable
because it can be interpreted as a problem with that
profile's calibration. It should not be difficult to search
the CTD archives for similar deep offsets using cruise
information to check whether this interpretation is cor-
rect. If it is, a profile's mean offset at depth could be used
to correct its miscalibrated salinity data.

The major conclusions are (1) that salinity can be
accurately estimated in the vicinity of the Gulf Stream
and (2) that estimates improve if the region of the Gulf
Stream is separated from that of the Sargasso Sea. The
question of how best to set regional boundaries remains,
as does the related question of how to guarantee
continuity of estimates at regional boundaries. As the
project progresses and more regions are examined, these
question should be answered.
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