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ABSTRACT

The empirical relationship between salinity and temperature in the South Atlantic is quantified with the
aid of local regression. To capture the spatial character of the TS relationship, models are fitted to data for
each point on a three-dimensional grid with spacing of 1° in latitude, 2° in longitude, and 25 dbar in the
vertical. To ensure sufficient data for statistical reliability each fit is to data from a region extending over
several grid points weighted so that more remote data exert less influence than those closer to the target grid
point. Both temperature and its square are used as regressors to capture the curvature seen in TS plots, and
latitude and longitude are used to capture systematic spatial variations over the fitting regions. In addition
to using statistics of residuals to characterize how well the models fit the data, errors for data not used in
fitting are examined to verify the models’ abilities to simulate independent data. The best model overall for
the entire region at all depths is quadratic in temperature and linear in longitude and latitude.

1. Introduction

The Argo project (Argo Science Team 1999) has in-
creased the data coverage of the South Atlantic sub-
stantially (Fig. 1). These data, when combined with
those from conductivity–temperature–depth (CTD)
probes, are sufficient to provide an empirical basis for
estimating salinity from measurements of temperature.
Such estimates allow temperature-only expendable
bathythermograph (XBT) data to characterize density
and dynamics. As the Argo project continues and the
coverage further improves, the estimates can be re-
fined. Even now, confidence intervals for the estimates
provide a useful tool for flagging suspect measure-
ments, and the estimates are sufficiently accurate for
computing geostrophic transports from XBT sections
and for preserving water-mass properties when XBT
data are assimilated into numerical models.

Efforts to estimate salinity from temperature date
back to the work of Stommel (1947), which suggested
that salinity might be estimated from previous measure-
ments at the same temperature. This idea has often

been implemented using climatological mean profiles
of salinity and temperature (Conkright et al. 2002a): for
the observed value of temperature the estimate for sa-
linity can be read from the TS curve plotted from the
climatological means. For some situations this works
fairly well, but for others such a curve provides a poor
fit to data from individual profiles Thacker (2006). Al-
though fitting regression models to the profile data is
considerably more work than using published clima-
tologies, it offers greater flexibility and provides more
accurate results (Thacker 2006).

The need for assimilating XBT data into numerical
models of oceanic circulation has motivated much of
the research on salinity estimation. Haines et al. (2006),
building on the work of Troccoli and Haines (1999),
implement Stommel’s idea using the TS relationship of
the model, which initially might reflect that of the cli-
matology used for the spinup and subsequently should
reflect corrections from the assimilation of observed
salinity. This is quite practical for data assimilation but
not for other applications where there is no model to
provide the TS relationship. Other approaches try to
capture the TS relationship using joint temperature–
salinity empirical orthogonal functions (EOFs) inferred
from profile data (Carnes et al. 1994; Maes and Be-
hringer 2000; Maes et al. 2000; Fujii and Kamachi 2003;
Sparmocchia et al. 2003). For example, Sparmocchia et
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al. (2003) approximate the error covariance matrix
needed for data assimilation with a reduced-order rep-
resentation based on multivariate EOFs characterizing
vertical variability around a seasonal climatology.
While EOF approaches favor the use of a few modes to
characterize coherent vertical structure, linear regres-
sion (Hansen and Thacker 1999; Fox et al. 2002a;
Thacker 2006; Thacker and Sindlinger 2006) can exploit
high-density vertical sampling to focus on the variabil-
ity at specific depths, which can be chosen as desired
throughout the water column. Furthermore, regression
models can capture systematic local spatial variability
by including longitude and latitude among the regres-
sors. For these reasons, the regression approach is pur-
sued here.

While previous studies (Hansen and Thacker 1999;
Thacker 2006; Thacker and Sindlinger 2006) have fo-
cused on relatively small regions, giving considerable
attention to finding the model most appropriate to the
locale, the focus here is on treating a considerably
larger area (Fig. 1) in a more automatic way. As this
study was motivated by the monitoring of the meridi-
onal heat flux across 35°S using data from the AX18
high-density XBT line1 (Garzoli and Baringer 2007;
Baringer and Garzoli 2007), the boundaries were rather
arbitrarily set to 25° and 45°S to ensure there would be
sufficient CTD and Argo data to characterize the TS
relationship everywhere along that line. Because that
relationship varies across the region, it was clear that a
method was needed for capturing this variability in a
systematic way.

Much of the South Atlantic between 25° and 45°S

composes the subtropical gyre, but there are significant
smaller-scale features (Reid 1989; Peterson and
Stramma 1991). On the western boundary of the region,
the cold, fresh Malvinas Current branches off from the
Antarctic Circumpolar Current in the south; flows
northward along the Argentine shelf; meets the
warmer, saltier, southward flowing Brazil Current
around 38°S offshore from the Rio de la Plata; and
together they flow eastward as the South Atlantic Cur-
rent (Stramma and Peterson 1990; Garzoli 1993; Goñi
et al. 1996). At the southeastern boundary Agulhas ed-
dies bring warm salty water from the Indian Ocean into
the region (Gordon 1985; Schmid et al. 2003), and the
Benguela Current carries water northward along the
northeastern boundary (Garzoli and Gordon 1996;
Garzoli et al. 1997). The subtropical front extends along
roughly the 40°S parallel into the Indian Ocean and
separates the South Atlantic’s subtropical gyre from the
colder water north of the Antarctic Circumpolar Cur-
rent (Hofmann 1985; Stramma and Peterson 1990).
While better results might be obtained by more careful
attention to the oceanography of these features, the
objective here is to find a common framework that can
provide salinity estimating capability everywhere
within this relatively large area without having to cater
to the individual features. The relatively slow evolution
of the TS relationship across the region makes this pos-
sible. In some places it will be clear that more local
attention is warranted, but results for the region as a
whole are quite useful. Consequently, this serves as a
prototype for an approach that might be used for other
parts of the World Ocean.

To accommodate the spatially varying TS relation-
ship, distance-weighted regression models are defined
at regularly spaced points covering the South Atlantic
region (Fig. 1). At each grid point models are con-
structed at 25-dbar intervals by fitting to data from a
relatively large neighborhood that extends well beyond
the closest neighboring grid points. The size of the
neighborhoods allows sufficient data for fitting, their

1 Four times a year voluntary observing ships traveling between
Cape Town, South Africa; and Buenos Aires, Argentina; launch
XBT probes every 10–50 km to measure temperature to depths of
about 800 m. Preliminary results show that the difference in the
meridional heat transport was about 0.03 PW (i.e., about 6%)
when using salinity estimated using the type-2 models described
below compared to when salinity was estimated based on clima-
tological profiles.

FIG. 1. Cyan indicates locations of CTD stations; magenta, Argo. Black indicates grid for modeling
salinity; brown, coastline and political boundaries.
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overlap promotes spatial smoothness, and the weight-
ing ensures that the more local data dominate. This
approach differs from that of Fox et al. (2002b) in the
details determining the distance from each grid point
over which data are gathered and the weighting that
limits the influence of remote data, but more impor-
tantly it differs in the nature of the regression models.
Rather than restricting the regression models to be sim-
ply linear functions of temperature, here models are
considered that are quadratic in temperature and also
in longitude and latitude, thereby capturing the curva-
ture of the TS relationship at any point as well as the
spatial tendency of the relationship across the fitting
region.

The approach taken here is quite similar to local re-
gression as described by Cleveland et al. (1994), which
fits regression models locally while allowing nearby
data to exert a greater influence,2 differing principally
in where the local models are centered and in the de-
termination of the extent of the region providing the
data. Here, the models are centered on a uniform grid,
while their method uses as so-called k-d tree to deter-
mine the locations.3 These differences are relatively mi-
nor, so similar results should be expected using their
method. In fact, excellent free software implementing
their approach is available,4 which could have been
used for this application. The approach taken here has
the advantage of providing regression coefficients on a
regular grid.

Ridgway et al. (2002) have used a similar local re-
gression approach to constructing climatologies, fitting
models at points on a regular grid to the 400 data clos-
est to each grid point. Viewed from that perspective the
results presented here can be regarded as conditional
climatologies (i.e., the local climatological mean salinity
for a given temperature). In somewhat different words,
the method used here holds the same relationship to
cokriging (Cressie 1991) as that of Ridgway et al. (2002)
does to simple kriging or optimal interpolation (Gandin
1965; Bretherton et al. 1976). Whereas Fox et al.
(2002a) include no spatial variables in their local re-
gression models and Ridgway et al. (2002) omit depen-

dence on temperature from their estimates of salinity,
here both spatial and thermal covariability are in-
cluded.

2. Data

The local regression models for the South Atlantic
are based on two datasets: CTD profiles from the Na-
tional Ocean Data Center’s World Ocean Database
2001 (Conkright et al. 2002b) together with the Argo
Global Data Assembly Center’s profiles from the Glob-
al Ocean Data Assimilation Experiment (GODAE)
Monterey Server (Carval et al. 2006). Both come with
flags indicating which data are considered to be reli-
able, and only those flagged as the most reliable have
been included in this study. Figure 1 shows the loca-
tions of these 2579 CTD profiles and the 5164 Argo
profiles. Although the coverage is sparse in some
places, especially the south-central part of the region,
the gradual change in the TS relationship with latitude
and longitude permits reaching far enough to gather
sufficient data for stable estimates everywhere.

These profiles were interpolated to standard levels
spaced at 25-dbar intervals, and data interpolated over
large vertical gaps were discarded. The left panel of Fig.
2 indicates the number of data for each pressure level.
Because the salinity estimates are to complement XBT
temperature profiles, there was no need to consider
levels deeper than 1000 dbar. The dips in the Argo
histogram reflect gaps in the profiles. The right panel
shows that the CTD and Argo data are from different
periods.

Figures 3–6 show TS plots at 25, 100, 500, and 800
dbar, respectively, for sixteen 20° � 5° subregions
laid out with columns corresponding to longitude pro-
gressing from west (left) to east (right) and with rows
corresponding to latitude progressing from south
(bottom) to north (top). The CTD and Argo data are
distinguished by color with the CTD data plotted on
top.5 Such plots were examined for each standard level,
and a few obvious outliers were detected and removed.
Most of the Argo data were found to be consis-
tent with the CTD data; however, some of the Argo
profiles with higher cycle numbers appeared to exhibit
salinity drift, and those data were also removed.6

The fact that the CTD and Argo data cannot be dis-
2 Their suggestion of the tricube function for distance weighting

is adopted here.
3 The region is sequentially partitioned by either longitude or

latitude, whichever has the greater spread of data stations, until a
further partitioning would reduce the number of data below a
specified threshold.

4 This functionality is provided by the loess package (Venables
and Ripley 2002) for the R software (R Development Core Team
2005). Software written in C and FORTRAN is also available
(Cleveland et al. 1992).

5 While some Argo points are obscured, this seemed better than
obscuring the less numerous CTD points by plotting Argo points
on top.

6 At the time of this study, none of these Argo profiles had
undergone the delayed-mode quality control to detect and to cor-
rect salinity drift (Wong et al. 2003).
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tinguished without the aid of color on these plots
together with the fact that they come from different
years (Fig. 2, right panel) indicates that the TS relation-
ship is stationary over the interval for which data are
available.

The spread in salinity values at 25 dbar (Fig. 3) is
significantly greater than at deeper levels (Figs. 4–6)
and is particularly great in the west. Nevertheless,
even at 25 dbar, the knowledge of temperature re-
duces the spread, especially in the east. The reduction
of spread by knowing temperature is quite dramatic
at 100 and 500 dbar, and is still evident at 800 dbar
where the spread of salinity values without regard
for temperature is less than that conditioned on
temperature at 25 dbar. At each level and for each
panel, the spread remaining after accounting for tem-
perature might be attributed to spatial variations, which
are evident in the differences between the TS relation-
ships for the different panels, manifesting at a smaller
scale.

The cluster of relatively salty points at 500 dbar in the
subregion (30°–35°S, 0°–20°E) in Fig. 5 is suspect. Per-
haps those points should have been discarded as bad
data during the preliminary cleaning. Nevertheless,
they have been included, as subregions immediately to
the north and to the south have similar salty clusters,
and they will influence the regression models. As more
data become available, especially those for which salin-
ity drift has been corrected, deciding which to use will
be less problematic. However, it is worth noting that
deviations from a smooth fit to the data can be used for
detecting possibly problematic profiles in an automated
quality-control procedure.

The salinity minimum seen at 100 dbar for the
subregion (35°–40°S, 60°–40°W) in Fig. 4 resembles
that seen at 500 and 800 dbar (Figs. 5, 6) for the
same subregion, except that it is much sharper and a
bit warmer.7 The kink in the 100-dbar TS plot suggests
that separate models should be used for the two sides of
the minimum. However, the goal here is to treat the
region as a whole without special attention to such de-
tails.

The cluster of cold, salty Argo points at 800 dbar in
the subregion (25°–30°S, 40°–20°W) in Fig. 6, which is
not seen in the CTD data, appears to be an indication
of increasing salinity below the minimum, which is
more apparent at this depth in the data from farther
southwest or northeast. Between the salinity minimum
and the deeper salinity maximum, which is beyond the
reach of most XBT probes, the increased variability of
salinity exhibits little covariability with temperature, so
observations of temperature are not particularly helpful
for estimating salinity. However, deeper still below the
salinity maximum, salinity again shows a strong corre-
lation with temperature. Separate treatment for esti-
mating salinity is indicated for three depth ranges:
above the salinity minimum, between the minimum and
maximum, and below the salinity maximum. As men-

7 These data reflect the salinity minimum throughout the South
Atlantic associated with the Antarctic Intermediate Water, which
is generally found between 800 and 1000 dbar but is considerably
shallower in the southwest and somewhat shallower in the north-
east, and the surface associated with the salinity minimum forming
a trough running from the southeast to northwest (Schmid et al.
2000).

FIG. 2. (left) Number of data for each standard level. (right) Number of profiles contributing data for each year. Cyan, CTD;
magenta, Argo.
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tioned above, such special attention is beyond the scope
of this project.

3. Models

The strategy used here to characterize the TS rela-
tionship required fitting local regression models at
points spaced 2° in longitude from 60°W to 20°E and 1°

in latitude from 25° to 45°S (Fig. 1) for each level from
25 to 1000 dbar at 25-dbar increments.8 Each local

8 Because of the high variability of both salinity and tempera-
ture and their weak covariability near the sea surface, the mod-
eling of salinity for pressures less than 25 dbar deserves a separate
study that would examine the predictive utility of seasonality.

FIG. 3. Data at 25 dbar for sixteen 20° � 5° subregions. Cyan indicates CTD data; magenta, Argo. Dark green indicates contours of
constant potential density.
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model was fitted to data from its own depth level in a
neighborhood large enough to encompass at least 100
profiles.9 However, because not all profiles contribute
data at all levels, some models were fitted to fewer than
100 samples. Once fitted to its supporting data, each

model provides a prescription for estimating salinity
within its grid cell for its depth level. This design yields
smooth cell-to-cell and level-to-level variation of the
salinity estimates.

Four types of regression models were used at each
grid point for each level corresponding to the four com-
binations of temperature and latitude/longitude enter-
ing either linearly or quadratically:

9 Better results might have been obtained by using more pro-
files for fitting, but this was not explored.

FIG. 4. Same as in Fig. 3, but for 100 dbar.
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Ŝ � a � bT � dx � ey, �1�

Ŝ � a � bT � cT2 � dx � ey, �2�

Ŝ � a � bT � dx � ey � fx2 � gy2 � hxy and,

�3�

Ŝ � a � bT � cT2 � dx � ey � fx2 � gy2 � hxy,

�4�

where Ŝ denotes the estimate for salinity; T, x, and y
denote observed temperature, longitude, and latitude,
respectively; and where the coefficients a, b, . . . , h
were determined for each model by fitting to the local
training data.10 Thus, for each grid point at each level,
type-1 models require determining four coefficients by

10 The R function lm was used for fitting the models to the data.

FIG. 5. Same as in Fig. 3, but for 500 dbar.
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fitting to local data, just as type-2, type-3, and type-4
models require determining five, seven, and eight coef-
ficients, respectively.

The models were fitted to their local data using
weighted least squares with the tricube function of dis-
tance w(d) � [1 � (d/dmax)3]3 controlling the weights.
Distance is measured so that adjacent grid points are
equally distant whether separated in longitude or lati-

tude: d � �(x � x0)2⁄4 � (y � y0)2, where x0 and y0

are the longitude and latitude of the model grid point
and x and y are those for the observation. Dividing by
the distance to the most remote point dmax allows the
weights to scale so that more distance points have
greater influence in sparsely sampled regions.

The data were partitioned into two groups—one for
fitting the local regression models and the other for

FIG. 6. Same as in Fig. 3, but for 800 dbar.
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verifying their performance. While the models were to
be fitted to data from overlapping regions, each was
intended to be used to characterize the salinity within
its own grid cell, so the verification data should be com-
pared to models associated with the closest grid point.
The verification data were chosen randomly by taking
every third profile from each of the 2° � 1° cells cen-
tered on each grid point, leaving two-thirds of the clos-
est data for fitting. Of the 7743 profiles, 2379 were cho-
sen to be used for verification; even then, not all grid
cells had sufficient data for verification (Fig. 7). Be-
cause models were fitted to data within overlapping
regions, data used to verify models at one grid point
were used to train models at other grid points. Even for
highly sampled grid cells there is an advantage of reach-
ing into the neighboring cell to get additional data for
fitting, as this helps to guarantee smooth variations of
estimates across cell boundaries. So all data within an
ellipse with a longitudinal radius of 2° and latitudinal
radius of 1° were used. Consequently, for grid points in
highly sampled regions, most of which are near the
northeastern limit of the domain, more than 100 data
were used. Generally, the data were gathered from a
larger ellipse of the same aspect ratio. Figure 8 indicates
the maximum reach dmax used for each grid cell.

Figures 9–12 illustrate how well each model fits the
local data at 25, 100, 500, and 800 dbar, respectively.
Color is used to indicate ranges of residual standard
error,11 a conventional measure of the model accuracy,

and each panel corresponds to one of the four model
types. The smallest fitting errors are expected for the
type-4 models (bottom panel), as they have the most
parameters.12 The generally small differences between
the errors for the four model types indicate that the
simplest type-1 model captures most of the variability.
Models of types 2 and 4 with quadratic dependence on
temperature definitely do better near the western
boundary at 500 dbar (Fig. 11) where there is a pro-
nounced salinity minimum; similar but less dramatic
improvements due to quadratic temperature depen-
dence are evident in the eastern quarter of the domain.
To a lesser extent the same is seen at 800 dbar (Fig. 12).

As expected the residuals are largest at 25 dbar
where the variability is greatest and temperature is least
helpful. Nevertheless, the residual standard error at 25
dbar is less than 0.45 psu everywhere, which is consid-
erably smaller than the ranges of salinity seen in Fig. 3.
Those for 100 dbar are smaller by one-third, and those
at 500 and 800 dbar are again one-third smaller.

It is reassuring that the regions of sparse sampling
seen in Fig. 1 and reflected in Fig. 8 do not stand out on
the plots of residual standard errors. In fact, quadratic
spatial variability of type-3 and type-4 models does not
seem to offer a dramatic advantage for handling data
voids over the linear spatial variability of type-1 and
type-2 models. At 500 dbar, quadratic temperature de-

11 Residual standard error �N�1�nwn(Sn � Ŝn)2 is the square
root of the sum of weighted squared residuals divided by the
number of degrees of freedom N (i.e., one less than the difference
between the number of data determining the fit and the number
of parameters determined by the fit). The sum is over all local
training data with weights wn reflecting their distance from the
model grid point; the residual is the difference between the ob-

served Sn and estimated Ŝn salinity. If N were the number of data
rather than the number of degrees of freedom, the expression for
residual standard error would be that for the minimized root-
weighted-mean-square residual.

12 For the root-weighted-mean-square error this would defi-
nitely be the case. Because the residual standard error takes into
account the number of parameters, ineffective additional param-
eters can actually increase this measure of error a bit. Such small
differences are generally less than the contouring intervals and
thus unlikely to be seen in these figures.

FIG. 7. Color indicates the number of verification profiles for each 2° � 1° grid cell. Of the 774 cells, 269 have no verification profiles
and 285 have more than 2. Not all profiles provide data for all levels, so the number of verification data vary slightly with level.
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FIG. 8. Distance from grid point to most remote training station indicated by color. Distance is measured in elliptical increments
with one unit indicating 1° latitude and 2° longitude.

FIG. 9. Residual standard error for each model fitted to local data at 25 dbar. Panel labels indicate model type.
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pendence is clearly more important in the data-sparse
areas than is quadratic spatial dependence.

The data composing the salty cluster of subregion
(30°–35°S, 0°–20°E) seen at 500 dbar in Fig. 5 present
the large residuals contributing to the local increase in
standard error near 2°E and 32°S in Fig. 11. This sug-
gests that questionable data, which survived the initial
flag-based and visual screening, might be identified via
their large residuals. Perhaps the time-consuming visual
screening might even be eliminated in favor of an au-
tomated screening of residuals from a preliminary fit to
type-1 models or even to models without spatial regres-
sors.

While the residual standard errors are available for
each model at each grid point and each pressure level
and thus provide useful information about its perfor-
mance, such assessments based entirely on training data

can paint an optimistic picture. Whenever possible, it is
best to judge performance by seeing how well the mod-
els can reproduce independent data. For this reason not
all data were used for fitting; some were held back for
independent verification. Unfortunately, as Fig. 7 illus-
trates, there are insufficient data to score each of the
many models individually. Still, because the models
vary slowly from point to point, average verification
scores for subregions can be used to characterize the
different model types.

Figure 13 gives an idea of how well each type of
model can be expected to perform within sixteen 20° �
5° subregions. Each panel corresponds to a different
subregion, some with more verification data than oth-
ers. Each curve corresponds to one of the four model
types: at each pressure level 90% of the measurements
differed from the corresponding estimates by less than

FIG. 10. Same as in Fig. 9, but at 100 dbar.
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the value indicated by the curve. In many cases the four
types of models have only small differences in perfor-
mance, so with the scale set by the problematic near-
surface levels, some curves occasionally overlay oth-
ers.13 Those that are quadratic in temperature have the
smallest 90th percentile error for almost all levels and
subregions; when the black curve obscures the blue, the
more parsimonious type-2 models score as well as type
4. Type-1 models, linear in temperature, longitude, and
latitude, score best by a tiny margin at midlevels in
subregion (30°–35°S, 0°–20°E).

Similar curves can be drawn for the root-mean-
square errors. Generally they look quite similar to 90th

percentile curves except that values are about two-
thirds as large. The notable exception is the occurrence
of large midlevel spikes in subregion (35°–40°S, 0°–
20°E) for models of types 2 and 4, which are quadratic
in longitude and latitude. This suggests that these mod-
els, while generally providing reasonable estimates, are
more sensitive to unexpected inputs than are models
with linear spatial variations.

As expected, the largest errors occur close to the
surface. In subregions (35°–40°S, 60°–40°W) and (40°–
45°S, 60°–40°W) in the southwest, the 90th percentile
values are off scale: the smallest values in both regions
are for type-2 models (0.77 and 0.61, respectively) and
the largest are for type-3 models (0.79 and 0.65). These
large errors reflect the scatter observed in the TS plots
(Fig. 3) for these subregions. For most of the other
subregions, the 90th percentile absolute verification er-

13 The curves are drawn in the order of model types of Eqs.
(1)–(4) with the curves for the fully quadratic models on top and
for the entirely linear models on the bottom.

FIG. 11. Same as in Fig. 9, but at 500 dbar.
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rors at 25 dbar are smaller by half. Deeper than 100
dbar, 95% of the plotted 90th percentile values are
smaller than 0.1 psu, 75% are less than 0.06 psu, and
half are less than 0.044 psu. The greatest accuracy is
around 400–600 dbar. The decline in accuracy with in-
creasing depth is most pronounced for subregion (35°–
40°S, 0°–20°E).

If, for convenience, estimates are to be restricted to
those from a single model type for the entire South
Atlantic region under consideration, the best choice
would be type-2 models, which are quadratic in tem-
perature and linear in longitude and latitude. The small
advantage occasionally offered by the fully quadratic
type-4 models is countered by their propensity to occa-
sional large errors. On the other hand, a different
model type can be chosen depending on the longitude,
latitude, and depth at which the estimate is needed.

While such a choice might be based on verification
summaries within the sixteen 20° � 5° subregions, it
may be desirable to choose different model types within
a subregion. As the verification scores within each of
the 16 subregions are generally consistent with the re-
sidual standard errors for that region’s grid points, the
choice of which model to use can be guided by the
residual statistics. Fortunately, the Argo program
should be providing data regularly, and those profiles
can be used as additional verification data to guide the
local choice of model type.

It is interesting to compare the estimates from the
type-2 models with those based on readily available
climatological profiles. The World Ocean Atlas 2001
(WOA01; Conkright et al. 2002a) has climatological
mean profiles of temperature and salinity for the indi-
vidual months and also without regard for seasonal

FIG. 12. Same as in Fig. 9, but at 800 dbar.
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variations; the latter are referred to as the annual cli-
matological means. This offers four possibilities for es-
timating salinity: a choice of using either annual or
monthly mean profiles combined with a choice of using
estimates based on the climatological salinity profiles or
based on the TS relationship inferred from climatologi-
cal profiles of both temperature and salinity. Figure 14
compares the root-mean-square errors of these four ap-
proaches with those from the type-2 regression models.
The errors for the regression models are scored for the
verification profiles only (including the training profiles
would give smaller errors); errors for climatological es-

timates were based on all profiles. At all pressure levels
the regression approach gives substantially better esti-
mates than do the methods that exploit the climatologi-
cal profiles. Except near the surface where there is no
strong relationship between salinity and temperature, it
is clear that using the climatologically inferred TS rela-
tion is better than using only the mean salinity profile.
And for both types of climatological estimates, the an-
nual climatology gives better results than the monthly.

While errors in the geopotential height at 25 dbar
relative to 1000 dbar are relatively small for all four
WOA01-based methods for estimating salinity, Fig. 15

FIG. 13. The 90th percentile of absolute value of verification errors by model type over sixteen 20° � 5° subregions. Cyan, model 1;
blue, 2; red, 3; black, 4. Note that all curves at 25 dbar are off scale for both western subregions south of 35°S.
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indicates that type-2 regression estimates are consider-
ably smaller.

4. Conclusions

The local regression approach to characterizing the
spatially varying TS relationship has been shown to be
feasible for the South Atlantic Ocean between 25° and
45°S, and it can be considered for use throughout the
world’s oceans. While the results found here might not
apply everywhere, they do suggest a starting point for
other regions.

An obstacle hindering the implementation of this or
any other approach that deals with data from the CTD
and Argo archives is detecting and avoiding bad data.
Even when only data flagged as the most reliable are
used, among them will be data that behave quite dif-
ferently from the majority. As the delayed-mode Argo
data become available, this will be less of a concern.
Until then, it is recommended that TS plots be exam-
ined for outliers, which can be excluded when fitting
the regression models. An objective approach to ac-

complish the same without the need for as intense a
visual inspection might be developed based on the iden-
tification of large residuals from smooth fits to TS
plots.

A principal conclusion is that the systematic change
in the TS relationship with longitude and latitude in this
part of the South Atlantic is sufficiently gradual that
they can be modeled as linear terms and still have the
capability for relatively accurate estimates in areas for
which few TS profiles are available. In fact, quadratic
spatial dependence in a few instances produced esti-
mates with unusually large errors. However, in other
parts of the world where the horizontal evolution of the
TS relationship is more rapid, such quadratic terms
might prove necessary. Quadratic dependence on tem-
perature, on the other hand, proved valuable and did
not substantially degrade salinity estimates in situations
where it was not needed.

Fronts associated with near-surface currents were not
an obstacle to the basinwide characterization of the TS
relationship, as at any given level all data fell nicely into

FIG. 14. RMSE for five different methods for estimating salinity. Blue curve corresponds to
type-2 regression models. Red (green) indicates estimates based on annual (monthly) clima-
tology; circles indicate the climatological salinity and the curves indicate the results of using
a TS relationship obtained by combining temperature and salinity climatologies.
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a coherent pattern on TS plots. On the other hand, the
basinwide salinity minimum marked a change in the
nature of the TS relationship, as did the deeper salinity
maximum. Above the salinity minimum and below the
salinity maximum, temperature accounts for a substan-
tial part of salinity variability. However, between the
minimum and maximum temperature is not of much
help. In this depth range the climatology of salinity
conditioned on temperature reverts to an uncondi-
tioned climatology and the methodology reverts to
something quite similar to the local regression tech-
nique of Ridgway et al. (2002).

This study did not address the problem of modeling
near-surface salinity, because of its large range of vari-
ability and its weak covariability with temperature. Sea-
sonality, which might account for much of salinity’s
near-surface variability, could be incorporated by using
the sine and cosine of the day of the year as regressors.
However, this would require relatively uniform sam-
pling throughout the seasonal cycle. As the Argo data
accumulate and coverage becomes more uniform, such
models should be feasible for much of the World
Ocean. Soon, satellites should be providing measure-
ments of surface salinity, and these data may prove
useful not only for improving our knowledge of surface
salinity but also for sharpening our estimates at 25 and
50 dbar via salinity’s vertical autocorrelations. While
waiting for these developments, the models found here
for 25 dbar can be used to estimate salinity between 25
dbar and the surface.

These models can be distributed as sets of model
coefficients associated with each grid point and each
level. To estimate salinity, choose the model coeffi-
cients for the closest grid point to the target location for
the levels that bracket the target depth, evaluate the
salinity from the target temperature, longitude, and
latitude, and interpolate to the target depth. When us-
ing these models to estimate salinity, care should be
taken when the target temperature is outside the range
of values usually encountered at the target level. When
the temperature is extremely warm, it might be better
to base the estimate on a model for the same grid point
but for a shallower level, where that temperature is
more frequently encountered, as the observed value is
likely to reflect a large downward displacement. Simi-
larly, unusually cold values suggest the use of a model
for deeper levels.

The best type of model for the region as a whole
was type 2, with linear spatial and quadratic depen-
dence on temperature, which requires five coefficients
to be determined from the data in a neighborhood
around each grid point at each depth. In this study the
extent of the neighborhood from which the data were
drawn was controlled by the target of 100 profiles,
which seemed sufficient for determining the five coef-
ficients while limiting the size of the neighborhoods in
data-sparse areas. As predictive skill might improve if
more data were used, a future study examining the
sensitivity of the estimates to sample size would be use-
ful.

FIG. 15. Box-and-whisker plots of errors in geopotential height at 25 dbar relative to 1000 dbar
associated with five approaches for estimating salinity. Central dot indicates median; box, interquartile
range; dots beyond whiskers, outliers.
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