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New community strategies to improve understanding and modeling of El Niño in state-of-

the-art climate models provide opportunities for more accurate tropical climate predictions.

The term El Niño was originally used to denote the 
annual occurrence of a warm ocean current that 
flows southward along the west coast of Peru and 

Ecuador around Christmas. The term is now used to 

refer to the basin-scale warming in the tropical Pacific 
Ocean that takes place at intervals of 2–7 yr and alter-
nates with an opposite cold phase, called La Niña. The 
atmospheric manifestation of El Niño is the Southern 
Oscillation—a large-scale tropical east–west seesaw in 
southern Pacific sea level surface pressure. Hence, the 
phenomenon is now often called El Niño–Southern 
Oscillation (ENSO). Although ENSO originates in the 
tropical Pacific, it affects global climate and weather 
events such as drought/flooding and tropical storms. 
Therefore, understanding and predicting ENSO are 
crucial to both the scientific community and the 
public (McPhaden et al. 2006).

The theoretical explanations of ENSO can 
be loosely grouped into two frameworks (Wang 
and Picaut 2004). In one framework, ENSO is a 
self-sustained and naturally oscillatory mode of the 
coupled ocean–atmosphere system. In the second, 
ENSO is a damped mode externally sustained by 
atmospheric random “noise” forcing. There are 
arguments to support both perspectives, and there 
are studies that suggest that the system may alter-
nate between multidecadal epochs of more damped 
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versus more freely oscillating dynamics (Fedorov 
and Philander 2000). In addition, El Niño involves 
interactions extending through different time scales 
with various climate phenomena, such as the sea-
sonal cycle, intraseasonal oscillations, or decadal 
oscillations. For example, ENSO is more sensitive to 
wind perturbations in spring and autumn but less so 
in summer and winter (Burgers et al. 2005). Despite 
past efforts at reconciling early coarse-grid coupled 
model simulations of ENSO phenomena with theory 
and observations (Neelin 1991), as well as a number 
of recent theoretical, observational, and modeling 
efforts to more fully understand ENSO, many inter-
twined issues regarding its dynamics, impacts, and 
predictability remain unresolved.

We here report on advances made in recent years 
in modeling ENSO in coupled general circulation 
models (CGCMs), the challenges that lie ahead, and 
the related current scientific debate. The material 
presented draws on chapters 8 and 10 of the fourth 

assessment report (AR4) of the Intergovernmental 
Panel on Climate Change (IPCC; Meehl et al. 2007b), 
as well as on community discussions initiated during 
the ENSO in IPCC AR4 meeting held in May 2006 in 
Paris, France (http://ncas-climate.nerc.ac.uk/~ericg/
Projects/ipcc_enso_06.html), and continued at the 
Third Working Group on Numerical Experimenta-
tion (WGNE) Workshop on Systematic Errors in 
Climate and Numerical Weather Prediction Models 
held in San Francisco, California, in February 2007 
(http://www-pcmdi.llnl.gov/wgne2007).

Current model performance. During 
the last decades, there has been steady progress in 
the simulation and seasonal prediction of ENSO and 
its global impacts using CGCMs (Delecluse et al. 
1998; Latif et al. 2001; Davey et al. 2001; AchutaRao 
and Sperber 2002; Randall et al. 2007). More re-
cently, the parameterized physics have become 
more comprehensive, the horizontal and vertical 

Tropical Pacific mean state and annual cycle performance in CGCMs

S imulating the time-mean properties in the tropics has con-
tinually been a challenge for coupled GCMs. Though most 

models can internally generate the fundamental mechanisms 
that drive El Niño properties, most models simulate a mean 
zonal equatorial wind stress that is too strong and that has 
an annual amplitude that is also too strong (Fig. 1; see also 
Guilyardi 2006; Lin 2007a). This has profound effects on ENSO 
behavior in that it limits the regimes in which 
interannual anomalies can develop. Indeed, 
several studies have shown that a large am-
plitude of the seasonal cycle usually implies 
a weak El Niño, and vice versa (Fedorov and 
Philander 2001; Guilyardi 2006). Similarly, 
the meridional extent of the wind variability, 
of importance for ENSO phase change, is too 
confined near the equator (Zelle et al. 2005; 
Capotondi et al. 2006; Capotondi 2008). 
The “double Intertropical Convergence 
Zone (ITCZ)” problem, in which a symmetri-
zation of the circulation across the equator 
leads to a spurious Southern Hemisphere 
ITCZ and is associated with excessive pre-
cipitation over much of the tropics, remains 
a major source of model error in simulating 
the annual cycle in the tropics (Lin 2007a), 
and it can ultimately impact the fidelity of 
the simulated El Niño (Guilyardi et al. 2003; 
Sun et al. 2009). Similarly, there are still large 
differences in how the models reproduce the 
mean state of the tropical ocean, including 
the mean thermocline depth and slope along 
the equator (Fig. 2) and the structure of the 

equatorial currents (Brown and Fedorov 2008). Along the 
equator in the Pacific, the models have difficulty capturing the 
correct intensity and spatial structure of the East Pacific cold 
tongue. Often, the simulated cold tongue is too equatorially 
confined, extends too far to the west and is too cold (see 
Fig. 4 of Reichler and Kim 2008). These recurrent biases, 
already present in CMIP1 15 yr ago, arise from numerous fac-

Fig. 1. Mean zonal wind stress (squares) and annual cycle amplitude 
(bars) in the central-western Pacific (Niño-4 region; see Fig. 4) for the 
20th-century simulations of the IPCC AR4. (left) Observations are taken 
from the 40-yr European Centre for Medium-Range Weather Forecasts 
(ECWMF) Re-Anlaysis (ERA40) [1950–2000 average is –0.03 N m–2].  
Units are N m–2.
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resolutions have increased (Guilyardi et al. 2004; 
Roberts et al. 2009), and the application of ocean 
observations in initializing seasonal forecasts has 
become more sophisticated (Alves et al. 2004). These 
improvements in model formulation have led to a 
better representation of the spatial pattern of the sea 
surface temperature (SST) anomalies in the eastern 
Pacific and of ENSO’s periodicity (AchutaRao and 
Sperber 2006). Compared to previous generation 
models, some of the third coupled model intercom-
parison project (CMIP3) models used for the fourth 
assessment report (AR4) of the IPCC (Randall et al. 
2007; Meehl et al. 2007a) can now simulate not only 
the mean state and the annual cycle with some 
degree of fidelity but also the tropical interannual 
variability, without the use of the flux corrections—
an artificial adjustment to correct model biases and 
used in earlier generations of CGCMs. Indeed, many 
CGCMs now exhibit a behavior that is qualitatively 
similar to that of the real-world ENSO, which is a 

considerable achievement given the complexity of 
the interactions involved.

Despite this progress, recent multimodel analyses 
show that serious systematic errors in the simulated 
background climate (time mean and annual cycle; see 
the sidebar “Tropical Pacific mean state and annual 
cycle performance in CGCMs” below for more infor-
mation) as well as in the simulated natural variability 
persist (van Oldenborgh et al. 2005; Guilyardi 2006; 
Capotondi et al. 2006; Wittenberg et al. 2006). Several 
studies pointed out that these coupled model errors 
can often be traced to the atmosphere component 
(Braconnot et al. 2007; L’Ecuyer and Stephens 2007; 
Sun et al. 2009).

Coupled GCMs produce a variety of El Niño vari-
ability time scales (Fig. 3): model spectra range from 
very regular near-biennial oscillations to spectra 
that are close to the observed 2–7 yr. The observed 
seasonal phase locking—El Niño and La Niña anoma-
lies tend to peak in boreal winter and are weakest 

Fig. 2. Mean depth of the equatorial thermocline and mean 
thermocline slope along the equator as simulated in a num-
ber of ocean-only models (blue), data assimilation models 
(black), and coupled models (red). The thermocline slope is 
defined as the normalized difference between thermocline 
depth at 180° and 100°W, where an appropriate isopycnal 
surface was chosen for each individual model. The ther-
mocline depth corresponds to maximum vertical density 
gradient along the equator. Note the large differences in the 
mean thermocline depth and, especially, thermocline slope 
in the models. After Brown and Fedorov (2008).

tors including overly strong trade winds, leading to increased 
cooling via oceanic upwelling, mixing, and latent heat flux to 
the atmosphere; a diffuse thermocline structure, leading to 
improper sensitivity of SST to anomalous upwelling and vertical 
mixing; insufficient surface and penetrating solar radiation, and 
weak ocean vertical mixing in the subtropics, leading to subsur-
face temperature errors along the equator; and weak tropical 
instability waves, resulting in too little meridional spreading 
of SST anomalies during cold events (Meehl et al. 2001; Luo 
et al. 2005; Wittenberg et al. 2006; Lin 2007a). There are also 
errors in the tropical Pacific seasonal cycle, both in SST and 
wind: many models exhibit an overly strong seasonal cycle in 
the east Pacific (Fig. 1) and/or a spurious semiannual cycle, 
possibly tied to the lack of sufficient meridional asymmetry in 
the background state (Li and Philander 1996; Guilyardi 2006; 
Timmermann et al. 2007) and/or errors in the water vapor 
feedbacks (Wu et al. 2008). The lack of marine stratocumulus 
clouds in the eastern part of the tropical Pacific is still a major 
issue in CGCMs (Lin 2007a) and, associated with a too weak 
coastal upwelling along the coast of Peru and Chili, leads to a 

warm bias in these regions. Nevertheless, the CMIP3 models 
show a clear improvement over previous generation models, 
as shown in AchutaRao and Sperber (2006) and Reichler and 
Kim (2008).

327march 2009AMERICAN METEOROLOGICAL SOCIETY |



in boreal spring—is often not captured by models, 
which either show little seasonal modulation or a 
phase locking to the wrong part of the annual cycle, 
although some models do show some tendency to 
have ENSO peaking in boreal winter (not shown). All 
of these biases combine to generate errors in ENSO 
amplitude, period, irregularity, skewness, or spatial 
patterns (Fig. 4).

Even though CGCMs have common biases, they 
still exhibit a diversity of El Niño behavior that is 
well beyond the observed diversity of events. For 
instance, the modeled amplitude of El Niño ranges 
from less than half to more than double the ob-

served amplitude (van Oldenborgh 
et al. 2005; AchutaRao and Sperber 
2006; Guilyardi 2006; Fig. 5). The 
complex interactions of the main 
biases described above (and with 
a number of likely others as dis-
cussed below) together with model 
structural diversity still make it dif-
ficult to clearly identify the origin 
of deficiencies in simulated ENSO. 
Nevertheless, it is likely that progress 
can be made. CGCMs do appear now 
to exhibit many of the key processes 
and interactions thought to control 
ENSO in the real world.

ENSO feedbacks. Theory 
has established that ENSO results 
from the interaction of a number 
of feedbacks, either amplifying or 
damping the associated interannual 
anomalies (Wang and Picaut 2004). 
ENSO involves the positive ocean–
atmosphere feedback of Bjerknes 
(1969) that culminates with warm 
or cold SST anomalies in the equa-
torial eastern and central Pacific. 
Once an event is under way, negative 
feedbacks are also required to ter-
minate the growth of warm or cold 
SST anomalies. Theoretical work 
on ENSO during the past decades 
has proposed four major negative 
feedbacks: wave ref lection at the 
ocean western boundary (Suarez 
and Schopf 1988; Battisti and Hirst 
1989), a discharge process resulting 
from Sverdrup transport (Jin 1997), 
a western Pacific wind-forced Kelvin 
wave of opposite sign (Weisberg 

and Wang 1997), and anomalous zonal advection 
(Picaut et al. 1997). These negative feedbacks may 
work in varying combinations to terminate El Niño 
or La Niña (Wang 2001).

Starting from the linearized SST equation, Jin et al. 
(2006) derived a coupled stability index (referred to 
the BJ index) that details ocean–atmosphere feed-
backs. They identified five different feedbacks: the 
mean advection and upwelling feedback (always 
negative), the thermal damping rate (resulting from 
surface heat f luxes and also negative), the zonal 
advection feedback (positive), the Ekman pumping 
feedback (positive), and the thermocline feedback 

Fig. 3. Niño-3 SST anomaly spectra for IPCC AR4 models in prein-
dustrial conditions. (a) Original figure from AchutaRao and Sperber 
(2006); (b) “eye-ball” selection of six closest to observed (note that 
MRI is the only flux-adjusted of the six).
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(positive) (for details, see 
Burgers et al. 2005; Jin et al. 
2006). Hence, El Niño and 
La Niña will develop only if 
the sum of these feedbacks 
is positive or if the system 
is constantly forced by ex-
ternal perturbations. To 
the extent that this theo-
retical framework also ap-
plies to complex models, 
evaluating these feedbacks 
in CGCMs may help to 
illuminate the sources of 
errors. For instance, most 
models underestimate the 
thermocline feedback, that 
is, the effect of thermo-
cline depth variations on 
SST (van Oldenborgh et al. 
2005), as well as the air–sea 
coupling strength (involved in the Bjerknes feedback), 
which measures the wind response to SST anomalies 
(Guilyardi 2006) and is a main contributor to the last 
three positive feedbacks of the BJ index. This is com-
pensated for by too little thermal damping, mainly re-
sulting from reduced cloud-shading feedback (Philip 
and van Oldenborgh 2006; Sun et al. 2009).

Nonlinearities and the role of 
tropical multiscale interactions. 
ENSO cannot be viewed in isolation of other space 
and time scales in the tropical Pacific. A body of 
recent studies strongly suggests 
that El Niño also interacts with 
higher-frequency processes (like 
intraseasonal oscillations; Kessler 
2002; Fedorov 2002; Fedorov et al. 
2003; Lengaigne et al. 2004a,b) and 
with the mean state and seasonal 
cycle of the tropical Pacific (Jin et al. 
1994; Tziperman et al. 1994, 1997; 
Guilyardi 2006). CGCMs have a 
number of biases in these other space 
and time scales that can impede on 
the fidelity of the modeled ENSO 
(see Lin et al. 2006). Nonlinear 
processes are required to transfer 
energy between fluctuations at dif-
ferent space and time scales. The 
main nonlinear processes relevant 
to ENSO and highlighted by the 
above studies include atmospheric 

convection, evaporation and cloud feedbacks, wind 
response to SST anomalies, zonal advection, and 
thermocline–surface coupling. Nonlinearity can also 
arise from the small-scale coupling between the ocean 
and the atmosphere, like tropical instability waves 
(TIW) in the east Pacific (Pezzi et al. 2004; Jochum 
and Murtugudde 2006; An 2008a; Norton et al. 2009). 
In models with high enough ocean resolution to 
permit such waves (and other small ocean structures, 
like equatorial and eastern boundary upwelling or 
western boundary currents) there is evidence that 
the resolution of the atmosphere numerical grid also 

Fig. 4. SST std dev (°C) for 100 yr of monthly data for models in Fig. 3b. 
Observations are taken from HadISST1.1 (1900–99). The location of the Niño 
regions discussed in the text is also shown.

Fig. 5. ENSO amplitude in 23 coupled CGCMs, including those used 
for the IPCC AR4, as measured by the Niño-3 SST anomaly std dev 
in preindustrial simulations (blue bars) and equilibrated 2 × CO2 
scenarios (red bars).
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needs to be increased to resolve the coupling of these 
small ocean features, which have sizes typically less 
than 100 km (i.e., 1°). This may partly explain the 
improved simulation of ENSO when the atmosphere 
numerical grid reaches this resolution (Guilyardi et al. 
2004; Roberts et al. 2009).

Nonlinear interactions have further been pro-
posed to explain the observed positive skewness 
of ENSO, that is, the fact the El Niño events have a 
larger amplitude than La Niña situations (Burgers 
and Stephenson 1999; Hannachi et al. 2003; An and 
Jin 2004; Monahan and Dai 2004), a property that 
can also evolve at decadal time scales (An 2008b). 
Several studies have looked into reproducing the 
observed skewness in simple ENSO models (Lin 
and Derome 2004; An et al. 2005a,b; Philip and 
van Oldenborgh 2009) and analyzing it in CGCMs 
(Hannachi et al. 2003; van Oldenborgh et al. 2005; 
Yeh and Kirtman 2007). Unlike observations, most 
GCMs exhibit a linear ENSO, with SST skewness 
near zero in the tropical Pacific (Hannachi et al. 
2001; van Oldenborgh et al. 2005). This could con-
ceivably render them less sensitive than the real 
world to changes in climate, even though other 
studies attribute the positive skewness of ENSO 
to sources other than nonlinearity such as the 
superposition of ENSO, decadal variations, or global 
warming trends (Lau and Weng 1999).

Atmosphere model biases versus 
ocean model biases. A common theme 
emerging from CGCM studies is the role of atmo-
spheric dynamics and feedbacks in determining 
model El Niño characteristics. Mechanistic models 
tend to parameterize the atmospheric component 
of El Niño in terms of simple concepts, such as a 
constant value for the coupling strength or for the 
surface heat f lux damping of SST anomalies. Yet, 
studies such as Schneider (2002), Guilyardi et al. 
(2004), and Toniazzo et al. (2008) have revealed a 
strong diversity of behavior in models in which either 
atmospheric models or even just the parameters in 
a single atmospheric model are varied. The ocean 
GCMs typically used in IPCC-class CGCMs also play 
a role in ENSO systematic errors (e.g., the representa-
tion of turbulent mixing remains a major challenge 
and strongly influences thermocline properties) but 
appear to play a lesser role than atmospheric GCMs 
(Guilyardi et al. 2004). Nevertheless, simulations 
similar to those reported in Toniazzo et al. (2008), but 
in which ocean rather than atmosphere parameters 
are varied in the HadCM3 model, do show variations 
in ENSO behavior.

Whether further improvements in ENSO simula-
tion with CGCMs depends more on improving the 
atmospheric or the oceanic component of CGCMs 
will be answered over time. Properties of atmospheric 
GCMs appear to be critical, perhaps because their 
sensitivity, complexity, and nonlinearity can pro-
duce larger biases that impose limitations on ENSO 
properties and feedbacks. For example, Lin (2007a) 
has shown that several shortcomings of the coupled 
CMIP3 models stemmed from the atmosphere com-
ponent of these models. In view of the high sensitivity 
of CGCMs to the atmospheric convection scheme 
(Kim et al. 2008; Neale et al. 2008, Guilyardi et al. 
2009, manuscript submitted to J. Climate), more 
research is needed on the role of thermodynamical 
processes and feedbacks. Bony and Dufresne (2005) 
also analyzed the cloud radiative feedbacks in con-
vection/subsidence dynamical regimes in the CMIP3 
models and concluded that the simulation of marine 
boundary layer clouds is at the heart of tropical cloud 
feedback uncertainties in current CGCMs. These 
marine boundary layer clouds occur in the eastern 
tropical Pacific, a key region for El Niño amplifica-
tion, and biases in their representation can also con-
tribute to the simulated ENSO diversity.

ENSO in a changing climate. Most (but 
not all) IPCC AR4 models are qualitatively consistent 
in their projections of mean changes over the tropical 
Pacific. The SST warms more along the equator than 
off the equator, and a reduced east–west SST gradient 
(Fig. 6) is associated with a weakened Walker circu-
lation and reduced trade winds (Hansen et al. 2006; 
Fedorov et al. 2006; Vecchi et al. 2006, 2008). Such 
changes in the mean state can influence the ENSO-
related processes and feedbacks and have the potential 
to modify ENSO properties. For example, studies 
show that a more stable ENSO is less sensitive to 
changes in the background state than when it is closer 
to instability (Zelle et al. 2005). Atmosphere deep-
convection triggering is also highly dependent on 
the mean SST distribution, and associated heat flux 
feedbacks may change. Nevertheless, van Oldenborgh 
et al. (2005) noted that if only the six “best” models 
for ENSO are considered, the tendency for a reduced 
mean east–west gradient is much less obvious than 
if all models are considered.

However, and as seen from Fig. 6 (Fig. 10.16 of the 
IPCC AR4 report), which displays the ratio of ENSO 
variability between the current climate and the last 
50 yr of the SRES A2 experiments (2051–2100) as a 
function of the background change, models are in-
consistent with respect to their projections of change 
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in ENSO amplitude (see also van Oldenborgh et al. 
2005; Merryfield 2006; Guilyardi 2006), even in 
very high CO2 scenarios (Fig. 5). While some models 
show an increase in ENSO variability in response to 
greenhouse gas increases, others do not exhibit any 
detectable change, and still others show a decrease 
in variability.

Discerning whether any future changes in ENSO 
amplitude are due to external forcing or are simply 
due to internal longer-term variation is complicated 
by significant decadal fluctuations both in observa-
tions and in long control integrations (Knutson et al. 
1997; AchutaRao and Sperber 2002; Yukimoto and 
Kitamura 2003; Yeh et al. 2004; Yeh and Kirtman 
2004; An et al. 2005; Meehl et al. 2006; Lin 2007b). 
Nevertheless, changes of ENSO variability, where 
they can be detected above these large natural varia-
tions, are highly model dependent, even if extreme 
scenarios are analyzed (4 × CO2). Hence, even though 
all models show continued ENSO variability in the 
future no matter what the change of average back-
ground conditions, there is no consistent indication 
at this time of discernible changes in amplitude or 
frequency for the twenty-first century (Meehl et al. 
2007b). Similarly, large model differences in the skew-
ness of the variability limits the assessment of the 
future relative strength of El Niño and La Niña events 
(van Oldenborgh et al. 2005). Because ENSO is the 
dominant mode of climate variability at interannual 
time scales, the lack of consistency in the model pre-
dictions of the response of ENSO to global warming 
currently limits our confidence in using these pre-
dictions to address adaptive societal concerns, such 
as regional impacts or extremes (Joseph and Nigam 
2006; Power et al. 2006). Nevertheless, paleoevidence 
that ENSO may have been quite different in the past 
(e.g., Tudhope et al. 2001; Cobb et al. 2003) indicates 
the risk that ENSO and the associated teleconnec-
tions [see, e.g., Meehl and Teng (2007) on the shift of 
ENSO teleconnections in North America] might be 
quite different in the future, a fact also available to 
those assessing mitigation options.

A better understanding of the sensitivity of ENSO 
to changes in processes and feedbacks will help 
explain these differences, possibly leading to more 
confident projections. For instance, the disagree-
ment among the various IPCC AR4 models regarding 
future changes in ENSO does not rule out that a sub-
set of models can show a common ENSO response to 
climate change. Guilyardi (2006) showed that among 
those models that best reproduced the diversity of the 
observed ENSO, there was a significant trend toward 
increased El Niño amplitude in high-CO2 scenarios. 

Hence, to improve decadal-to-centennial projec-
tions, process and feedback diagnostics are needed 
to limit the subset of models to those that are more 
consistent with the real world. Even if models do not 
predict significant changes in El Niño statistics in 
the future (e.g., either amplitude or frequency), the 
relative balance of feedbacks and teleconnections (and 
the associated impacts) during ENSO could evolve 
(Philip and van Oldenborgh 2006), perhaps altering 
ENSO predictability.

The characteristics of ENSO in past climates, as 
provided by paleoclimate records and coupled model 
simulations, can also help constrain models for future 
climate changes [see Chen et al. (2004), Zheng et al. 
(2008), and Brown et al. (2007), who address the 
mid-Holocene ENSO weakening as a test of a coupled 
model]. For instance, recently obtained temperature 
records (derived from tropical deep-sea cores) suggest 
that in the early Pliocene, approximately 3–5 million 
years ago, the tropics were characterized by a per-
sistent warm state similar to the peak of El Niño 
(Fedorov et al. 2006). During this time interval, and 
possibly before, the proxy data may be interpreted 
as showing a significantly reduced or virtually non-
existent zonal SST gradient along the equator with 

Fig. 6. Mean state change in average tropical Pacific 
SSTs and change in El Niño variability simulated by 
AOGCMs (adapted from Meehl et al. 2007b). The mean 
state change (horizontal axis) is computed over the 
area 10°S to 10°N, 120°E to 80°W (reproduced from 
Yamaguchi and Noda 2006). The change in El Niño 
variability (vertical axis) is denoted by the ratio of the 
ENSO amplitude between the current climate and the 
last 50 yr of the SRES A2 experiments (2051–2100), 
except for FGOALS-g1.0 and MIROC3.2(hires), for 
which the SRES A1B was used, and UKMO-HadGEM1, 
for which the 1% yr–1 CO2 increase climate change ex-
periment was used, in the region 30°S to 30°N, 30°E to 
60°W (reproduced from van Oldenborgh et al. 2005). 
Error bars indicate the 95% confidence interval.
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therefore no possibility for ENSO development. The 
climate of the early Pliocene can be considered as a 
partial analog to the contemporary global warming, 
because external factors that control climate were 
similar to what they are today. The current generation 
of climate models do not simulate a persistent warm 
state even when forced with concentrations of carbon 
dioxide an order of magnitude larger than the current 
values (e.g., Haywood et al. 2007). If the paleodata 
available at present are indeed representative of such 
a state, then problems in the ability of models to 
simulate perennial warm conditions could indicate 
deficiencies in the models. More study is needed on 
both the modeling and observational aspects.

Finally, there are additional new questions on the 
horizon as full Earth system models mature: How 
might ENSO’s impact on fires, dust, ecosystems, 
agriculture, and fisheries change in the future? How 
might evolving ocean chlorophyll concentrations 
affect oceanic solar penetration (Timmerman and 
Jin 2002; Lengaigne et al. 2007), the equatorial ther-
mocline, and SST through the ENSO cycle and in 
response to climate change? Might the ENSO–CO2 
cycle help to constrain global carbon-cycle feedbacks? 
Making progress on these issues first requires a better 
understanding of the physical and dynamical proper-
ties of ENSO in CGCMs.

W hat  obser    vations    do  E N S O 
modelers need? Until the observed relation-
ships describing the ENSO feedbacks are better 
constrained, modelers will continue to struggle to 
get the right balance of processes for ENSO. This 
points to a key need of the modeling community: a 
sustained, multidecadal global climate observing sys-
tem for both the upper ocean and lower atmosphere, 
with attention given to maintaining continuity and 
diversity of observations. The key variables that 
must be constrained include the SST, precipitation 
and atmospheric convection, surface f luxes (wind 
stress, air–sea heat f lux), subsurface thermal and 
haline structure of the upper ocean, and upper ocean 
currents. A sample of some leading ENSO-relevant 
observational products is given in Wittenberg et al. 
(2006). In addition, observations of chemical and 
biological variables will be required as Earth system 
models mature.

Investment in the future observing system is 
essential for continued progress in modeling for 
coming decades. However, to address the deficiencies 
of today’s models, we cannot afford to wait for future 
observations. To sample the real-world natural vari-
ability of ENSO and its response to slow changes in 

climate, it is also essential to 1) continually reanalyze 
existing observations using state-of-the-art atmo-
spheric, oceanic, and coupled models, to ensure that 
the best observational guidance is available to model-
ers in a convenient form; 2) recover missing historical 
observations, as in the Global Oceanographic Data 
Archaeology and Rescue Project (GODAR; www.
nodc.noaa.gov/General/NODC-dataexch/NODC-
godar.html); and 3) develop merged paleoclimate 
records, based on corals and other proxies, which 
have been verified against the historical record and 
extended as far as possible into the deep past. For all of 
these efforts, it is essential to produce not only the best 
estimate of the observed quantity but also a realistic 
representation of the associated uncertainty.

Process-oriented, regional-scale observational 
field campaigns (such as SPICE; www.ird.nc/UR65/
SPICE/, or VOCALS; www.eol.ucar.edu/projects/
vocals/) are needed because they will undoubtedly 
fuel model improvements in the long term. But the 
lack of historical long-term, sustained, basin-scale, 
high-quality observations [in contrast to today’s 
Tropical Atmosphere Ocean Triangle Trans-Ocean 
Buoy Network (TAO/TRITON) Project (www.pmel.
noaa.gov/toa/; McPhaden et al. (1998) and Research 
Moored Array for African–Asian–Australian 
Monsoon (RAMA) moorings (McPhaden et al. 2009), 
Argo automatic f loats (www.argo.ucsd.edu), Jason 
altimetry (http://topex-www.jpl.nasa.gov/), and the 
A-Train constellation of satellites (Stephens et al. 
2002)] to constrain models is perhaps the biggest 
impediment to winnowing the wide variety of ENSO 
simulations among today’s CGCMs.

The case for new ENSO modeling 
strategies. How good do ENSO models need to 
be? Indeed, the question that scientists face in making 
climate projections or predictions is one of model 
credibility (see, e.g., Räisänen 2007). In many predic-
tion problems, seasonal climate forecasting of El Niño 
being a prime example, it is possible to verify predic-
tions after the fact. This becomes practically very 
difficult in the case of the ENSO response to climate 
change, as the signal-to-noise ratio is very small be-
cause of strong interannual (and decadal) variability. 
Nor can scientists and policymakers wait until the 
climate change has already occurred for verification 
scores. Thus, an “expert assessment” is usually re-
quired, based on a model’s ability to reproduce aspects 
of present-day and/or past conditions. New modeling 
strategies to provide such assessments can now be en-
visioned, thanks to the rise of multimodel ensembles 
and the use of seasonal forecast techniques.
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A multimodel ensemble allows both an assess-
ment of the consistency of the predictions of different 
models and an overall (probabilistic) forecast to be 
made, taking into account the spread of the model 
predictions. Multimodel ensembles of seasonal fore-
casts or projections almost always outperform the 
best models’ skill (Palmer et al. 2004; Rahmstorf et al. 
2007). A major factor in this is that the multimodel 
ensemble samples some of the model formulation 
uncertainty, which as described above is quite large for 
ENSO. When it comes to predicting the evolution of 
ENSO for a specific year, this “averaging out” of model 
error can be quite effective, perhaps because the im-
pact of a particular model’s errors is in many situations 
equally likely to lead to an over- or underestimate of 
the actual SST. For statements on the expected future 
increase/decrease of ENSO variability, however, there 
seems no reason to trust the “average” answer as being 
close to the truth. Indeed, given the evident sensitivity 
of the results and the imperfections of even the best 
models, we cannot be confident that the outcome 
will even lie within the range predicted by today’s 
models. Coordinated multimodel experiments [using 
several CGCMs as for the CMIP3 database or the same 
model with varying parameters as in Toniazzo et al. 
(2008)] do however allow the exploration of common 
sensitivities—or lack thereof. For this reason, main-
taining a diversity of models (both within the IPCC 
class and through the complexity hierarchy of toy 
models, intermediate models, and hybrid statistical/
dynamical models) is very important.

Seasonal forecasts can also provide a powerful 
test for IPCC-class CGCMs (Palmer et al. 2008). 
The classical analysis of ENSO in IPCC integrations 
(either basic statistics or more advanced evaluation of 
feedbacks) usually concentrates on the long (at least 
multidecadal) time series statistics needed to compute 
robust signals. Yet, this strategy cannot fully explain 
how the model’s errors (in the mean state but also in 
the feedbacks) were generated in the first place. This 
is an issue because the initial model errors result in 
a balance (a new mean state and annual cycle) that 
then becomes difficult to link to particular model 
deficiencies (such as arising from model parameter-
izations). Hence, there is a need for an experimental 
framework that would focus on the initial adjustment 
of these models. Such a framework can be provided 
by the seasonal forecast approach.

We here encourage the use of such an approach 
to initialize the ocean and atmosphere state of a 
coupled model as close as possible to the observed 
state and launch “forecasts” of several months (up 
to a year) at regular intervals during the recent 

“well-observed” decades. These simulations can 
provide rich diagnostic possibilities, to see how 
(and sometimes why) coupled errors develop in the 
tropics, in the context of detailed observations. For 
instance, they provide a good configuration to look 
at cloud–convection–radiation–SST interactions, in 
conditions specific to a given year, allowing detailed 
comparison with observations such as satellite data. 
In an era in which model errors are very large, then 
comparison of any short-term integration with an 
observed “climatology” would show the large errors 
adequately, regardless of which years were chosen for 
comparison. However, as short-term coupled model 
errors become comparable to observed interannual 
variability, proper referencing of the model integra-
tions to specific observed years becomes important 
to make further progress.

By carefully analyzing the models’ departure from 
the observed state, one should be able to more precisely 
identify the parameterization(s) responsible for any 
drift. For example, if a forecast is launched before an 
observed El Niño event and the model fails to repro-
duce the event, a careful analysis might show that the 
surface heat flux damping feedbacks were too strong 
in the model to allow the event to develop, or if the 
event has a too weak amplitude, that the wind response 
to the SST anomaly was too confined near the equator 
or that the ocean dissipation was too strong to sustain 
intraseasonal signals (Woolnough et al. 2007).

Such simulations are computationally cheap to 
perform and allow more possibilities for testing 
than do multicentury simulations. For instance, an 
experiment using 6-month hindcasts with two starts 
per year, looking at five different situations (e.g., 
1993/1995/1997/1999/2001) and using five-member 
ensembles requires only 25 yr of integration. A more 
comprehensive assessment of the seasonal forecast 
skill of a climate model can be made via participation 
in the Climate-system Historical Forecast Project 
(CHFP; www.clivar.org/organization/wgsip/chfp/
chfp.php) organized by the CLIVAR Working Group 
on Seasonal to Interannual Prediction (WGSIP) for 
the World Climate Research Program (WCRP).

There are still several questions in the setup of 
these simulations that will need to be addressed, like 
initialization or drift interpretation. A simple initial-
ization has to be proposed for the IPCC groups that do 
not have an ocean data assimilation system in place. 
One possibility is to “nudge” a coupled simulation 
with observed wind stress and/or SST (Keenlyside 
et al. 2005; Luo et al. 2008). Recent work has shown 
that just nudging the wind stress in a coupled model 
allows a good representation of the interannual SST 
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(Fig. 7; Joly et al. 2009). Nevertheless, even if a model 
could produce a completely accurate prediction 
of ENSO (within the constraints of chaotic error 
growth), this is not a sufficient condition for a model 
to accurately simulate ENSO under climate change. 
Even if the processes and feedbacks that occur on 
seasonal time scales do not necessarily form the com-
plete set of climate change processes and feedbacks, 
improving them in models will reap many benefits.

Devising a suite of ENSO metrics 
and diagnostics. It is important to assess 
ENSO characteristics in terms of theoretical/
mechanistic understanding of the phenomena, 
not just looking at local statistics (e.g., Niño-3 SST 
anomalies)1, which may have the correct value for the 
wrong reasons (i.e., as a result of bias compensation). 
Moreover, multimodel analyses should rely on com-
mon diagnostics. The definition of a set of “metrics” 
to assess a phenomenon can have great value to the 
wider community engaged in model development 
and/or analysis. Metrics are now under discussion  
in preparation for future CMIPs (Gleckler et al.  
2008), and the CLIVAR Pacific Panel (www.clivar.
org/organization/pacific/pacific.php) is charged with 
devising metrics for ENSO and for the wider tropical 
Pacific climate. Here we use the term “metric” as a 
measure of the “distance” of the model to some obser-
vational reference, usually computed as a single scalar 

value (Gleckler et al. 2008) while 
other more complex or qualitative 
analyses where observations do not 
provide an easy reference are called 
“diagnostics.” The intent is not to 
reduce evaluation of models to single 
numbers, except in the specif ic 
example of producing likelihood 
weights in probabilistic prediction 
[in which case such metrics should 
test all the relevant physical process 
involved in the prediction problem, 
e.g., Collins (2005, 2007)]. Rather, 
a suite of metrics and diagnostics, 
which addresses a range of physical 
processes and impacts of interest to 
various experts and stakeholders, 
should be applied.

A first step is to distinguish the 
metrics from the diagnostics. Metrics 
require a set of well-observed refer-

ences and should be concise, physically informa-
tive, societally relevant, and easy to understand, 
compute, and compare. A few examples are given 
in the “Examples of ENSO-related metrics” sidebar. 
When summarized by a single scalar, the metrics 
are amenable to intermodel Taylor (2001) diagrams. 
The more sophisticated theory-based diagnostics are 
less easily constrained by observations. Nevertheless, 
by helping to bridge the gap between our theoretical 
understanding of ENSO and its representation in 
CGCMs (Fedorov et al. 2003; Held 2005), this second 
category holds the most promise in helping scien-
tists to understand the modeled errors in CGCMs, 
as already demonstrated by several recent studies 
(Mechoso et al. 2003; Capotondi et al. 2006; Philip and 
van Oldenborgh 2006; Jin et al. 2006; Fedorov 2007; 
Dewitte et al. 2007; Brown and Fedorov 2008).

Among the key metrics to measure and constrain 
with observations are the feedbacks between the 
ocean and atmosphere, which give rise to ENSO and 
help govern its behavior. A list of leading concepts 
from ENSO theory that have guided recent studies 
could include the wind response to SST anoma-
lies, thermocline and zonal adjective feedbacks, 
wind-coupling strength and pattern, surface heat flux 
damping, oceanic adjustment delay time, and sto-
chastic forcing. For instance, the coupling strength, 
which measures the intensity of the Bjerknes (1969) 
feedback, can be quantified using a linear regression 
of the wind stress anomaly field onto the Niño-3 
SST anomaly index (Guilyardi 2006). Similary, the 
damping of SST anomalies by surface heat fluxes can 

1	The Niño-3 region spans 5°S–5°N and 150°–90°W in the East 
Pacific; see Fig. 4.

Fig. 7. Evolution of the Niño-3.4 (170°W–110°W, 5°N–5°S) interannual 
SST anomaly for the HadISST1.1 observations (black), a simulation 
in which the tropical ERA-40 wind stress has been nudged into the 
CNRM-CM3 IPCC coupled model (pink), a similar simulation with a 
global nudging of the wind stress (orange) and a simulation with im-
posed ERA-40 climatology (blue). After Joly and Voldoire (2009).
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be assessed by regressing the net heat flux onto the 
Niño-3 SST anomaly index or, alternatively, onto the 
colocated SST anomaly (Lin 2007a; Sun et al. 2006, 
2009). These can further be assembled in the com-
mon framework of the BJ index, which measures the 
amplification/damping rate of ENSO (Jin et al. 2006). 
The efficiency of the energy transfer from the winds 
to the thermocline is another important parameter 
that can affect the properties of ENSO.

There are two key challenges in devising the right 
blend of metrics and diagnostics. First, the theoretical 
understanding of all aspects of ENSO evolution is still 
incomplete—ENSO is a multimechanism phenom-
enon and different mechanisms may work in varying 
combinations to produce and terminate a particular 
El Niño event (Wang 2001). Second, the difficulty of 
constraining all the relevant feedbacks with obser-
vations, due to the brief, nonstationary, and partial 
observations of the real world, still exists, despite con-
siderable recent achievements in observational pro-
grams. For example, there is large uncertainty among 
satellite data, in situ measurements, and reanalysis 
products for feedbacks as basic to ENSO as the ocean–
atmosphere coupling strength (Wittenberg 2004) or 
the cloud radiative feedbacks (Cronin et al. 2006). Nor 
is it clear how long we must run models and observe 
nature to get robust statistics for comparison (due to 
large decadal variations as discussed above), or what 
metrics are most robust. Hence, an evaluation of the 

uncertainties in these metrics and diagnostics has 
to be included, to prevent assigning large weights 
to small differences in the performance of models. 
Nevertheless, given the large errors still exhibited by 
most current CGCMs, process- and feedback-based 
metrics and diagnostics do provide an objective way 
to downweight the results from obviously unrealistic 
models, and they could help focus modeling effort in 
improving the realism of ENSO while maintaining a 
healthy model diversity.

As CGCM developers and users, we envision the 
ENSO metrics and diagnostics to be presented on 
a CLIVAR Web site, including pathways to recom-
mended observational datsets [in an easy-to-use 
gridded format like OPeNDAP (http://opendap.
org) and following community agreed-upon meta-
data standards like NetCDF (www.unidata.ucar.
edu/software/netcdf) and those developed for the 
next IPCC, e.g., http://metaforclimate.eu or www.
earthsystemcurator.org/] and a repository of scripts 
to generate the diagnostics for the observations and 
model data as well as “distance” metrics between 
those diagnostics.

Conclusions. The IPCC AR4 projections offer 
a wide range of possibilities regarding what will hap-
pen to ENSO in the future. However, there is neither 
an indication of a complete disappearance of ENSO 
variability over the next century nor an explosion of 

Examples of ENSO-related metrics

The following are a few examples of ENSO metrics:

•	 Mean and seasonal spatial root-mean-square errors, computed in specific regions (e.g., in the entire tropics, east Pacific, 
warm pool, equatorial wave guide, etc.) and for key fields: SST, precipitation, wind stress, cloudiness, etc. (see Gleckler et al. 
2008).

•	 For the classical ENSO-related SST time series, averaged in specific regions (Niño-3, Niño-4, . . . the corresponding metrics 
(in order of increasing sophistication) can be
•	 climatological annual mean (a single scalar);
•	 climatological annual cycle (12 months), leading to the climatological standard deviation;
•	 time series statistics of anomaly standard deviation, skewness, phase locking, and autocorrelation;
•	 wavelet decomposition leading to time-mean spectrum and ENSO modulation; and
•	 correlation with other time series (e.g., Niño-4 zonal wind stress).

•	 Warm water volume, which measures the state of the heat recharge in the equatorial Pacific (see Meinem and McPhaden 
2001; www.pmel.noaa.gov/tao/elnino/wwv/).

•	 Trans-Niño index, lag correlated with Niño-3 SST anomalies, which provides information about the type of El Niño event 
(Trenberth and Stepaniak 2001).

•	 Intraseasonal activity as proposed by the MJO CLIVAR Working Group (http://climate.snu.ac.kr/mjo_metrics/index.htm).

The definition of a more complete set of metrics is under way in the CLIVAR Pacific Panel.
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large ENSO events. Most of the CMIP3 models can 
now produce a reasonable climatology and ENSO 
without flux adjustments, enhancing their physical 
credibility for simulating ENSO and its response to 
climate changes. The credibility of these models could 
be further enhanced by improving the simulations of 
twentieth-century ENSO statistics and by subjecting 
the models both to seasonal forecast and paleoclimate 
tests to assess their ENSO sensitivities. To constrain 
the physics and behavior of ENSO models, the climate 
community must

•	 improve the quality and utility of historical and 
paleoclimate records;

•	 maintain the present ENSO observing system into 
the future;

•	 continue to freely exchange model output using 
common formats so that intercomparison studies 
can be easily performed;

•	 isolate the main sources of error for the models, 
guided by theory, observations, and rigorous 
evaluation of the models, including tests in sea-
sonal forecast mode;

•	 better understand the physical processes involved 
in the response of ENSO to climate change and 
link those to the main sources of model error; 
and

•	 better represent unresolved processes and coupled 
feedbacks.

Defining a set of metrics will help scientists assess 
the quality of ENSO simulations and easily intercom-
pare different models in a way that integrates both ob-
servations and theory. This will also allow non-ENSO 
specialists and the wider impacts community using 
CGCM outputs to better evaluate the ENSO processes 
and feedbacks relevant for their own particular study. 
Finally, this definition should also help decide how to 
best invest limited computer and model-development 
resources. As the models are improved, there is hope 
for better ENSO simulations and more reliable sea-
sonal forecasts and climate projections.
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