Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

Nanotechnology Notable Papers and Advances

NIEHS is working to understand the health effects of human exposure to nanomaterials.

Below is a searchable list of Nanotechnology papers supported by NIEHS and the American Recovery and Reinvestment Act of 2009 (ARRA) grants from 2010 – December 18, 2019.

More information about nanomaterials is also available on our Health Topic page.

Citation by Author Funding Year
Abukabda AB, Bowdridge EC, McBride CR, Batchelor TP, Goldsmith WT, Garner KL, Friend S, Nurkiewicz TR. 2019. Maternal titanium dioxide nanomaterial inhalation exposure compromises placental hemodynamics. Toxicol Appl Pharmacol 367:51-61. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30711534)] NIEHS 2019
Abukabda AB, McBride CR, Batchelor TP, Goldsmith WT, Bowdridge EC, Garner KL, Friend S, Nurkiewicz TR. 2018. Group II innate lymphoid cells and microvascular dysfunction from pulmonary titanium dioxide nanoparticle exposure. Part Fibre Toxicol 15(1):43. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30413212)] NIEHS 2018
Abukabda AB, Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. 2017. Heterogeneous vascular bed responses to pulmonary titanium dioxide nanoparticle exposure. Front Cardiovasc Med 4:33. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28596957)] NIEHS 2017
Abukabda AB, Stapleton PA, Nurkiewicz TR. 2016. Metal nanomaterial toxicity variations within the vascular system. Curr Environ Health Rep 3(4):379-391. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27686080)] NIEHS 2016
Adamson SX, Lin Z, Chen R, Kobos L, Shannahan J. 2018. Experimental challenges regarding the in vitro investigation of the nanoparticle-biocorona in disease states. Toxicol In Vitro 51:40-49. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29738787)] NIEHS 2018
Adamson SX, Wang R, Wu W, Cooper B, Shannahan J. 2018. Metabolomic insights of macrophage responses to graphene nanoplatelets: role of scavenger receptor CD36. PLoS One 13(11):e0207042. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30403754)] NIEHS 2018
Ahn S, Ardona HAM, Lind JU, Eweje F, Kim SL, Gonzalez GM, Liu Q, Zimmerman JF, Pyrgiotakis G, Zhang Z, Beltran-Huarac J, Carpinone P, Moudgil BM, Demokritou P, Parker KK. 2018. Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials. Anal Bioanal Chem 410(24):6141-6154. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29744562)] ARRA-NIEHS 2018
Aldossari AA, Shannahan JH, Podila R, Brown JM. 2014. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro 29(1):195-203. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25458489)] NIEHS 2014
Aldossari AA, Shannahan JH, Podila R, Brown JM. 2015. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro 29(1):195-203. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25458489)] NIEHS 2015
Aldossari AA, Shannahan JH, Podila R, Brown JM. 2015. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation. J Nanopart Res 17:313. [Abstract(http://dx.doi.org/10.1007/s11051-015-3116-0)] NIEHS 2015
Alsaleh NB, Brown JM. 2018. Immune responses to engineered nanomaterials: current understanding and challenges. Curr Opin Toxicol 10:8-14. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29577105)] NIEHS 2018
Alsaleh NB, Mendoza RP, Brown JM. 2019. Exposure to silver nanoparticles primes mast cells for enhanced activation through the high-affinity IgE receptor. Toxicol Appl Pharm 382:114746. [Abstract(https://www.sciencedirect.com/science/article/pii/S0041008X19303540)] NIEHS 2019
Alsaleh NB, Minarchick VC, Mendoza RP, Sharma B, Podila R, Brown JM. 2019. Silver nanoparticle immunomodulatory potential in absence of direct cytotoxicity in RAW 264.7 macrophages and MPRO 2.1 neutrophils. J Immunotoxicol 16(1):63-73. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31282784)] NIEHS 2019
Alsaleh NB, Persaud I, Brown JM. 2016. Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One 11(12):e0167366. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27907088)] NIEHS 2016
Anderson DS, Patchin ES, Silva RM, Uyeminami DL, Sharmah A, Guo T, et al. 2015. Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicol Sci 144(2):366-381. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25577195)] NIEHS 2015
Anderson DS, Silva RM, Lee D, Edwards PC, Sharmah A, Guo T, et al. 2015. Persistence of silver nanoparticles in the rat lung: influence of dose, size, and chemical composition. Nanotoxicology 9:591-602. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25231189)] NIEHS 2015
Armstead AL, Minarchick VC, Porter DW, Nurkiewicz TR, Li B. 2015. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLoS One 10(3):e0118778. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25738830)] NIEHS 2015
Asgharian B, Price OT, Oldham M, Chen LC, Saunders EL, Gordon T, et al. 2014. Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract. Inhal Toxicol 26(14):829-842. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25373829)] NIEHS 2014
Ashley CE, Carnes EC, Epler KE, Padilla DP, Phillips GK, Castillo RE, et al. 2012. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano 6(3):2174-2188. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22309035)] NIEHS 2012
Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, et al. 2011. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10(5):389-397 [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21499315)] NIEHS 2011
Ault AP, Stark DI, Axson JL, Keeney JN, Maynard AD, Bergin IL, et al. 2016. Protein corona-induced modification of silver nanoparticle aggregation in simulated gastric fluid. Environ Sci Nano 3(6):1510-1520. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28357114)] NIEHS 2016
Axson JL, Stark DI, Bondy AL, Capracotta SS, Maynard AD, Philbert MA, et al. 2015. Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C 119(35):20632-20641. [Abstract(http://dx.doi.org/10.1021/acs.jpcc.5b03634)] NIEHS 2015
Azizighannad S, Mitra S. 2018. Stepwise reduction of graphene oxide (GO) and its effects on chemical and colloidal properties. Sci Rep 8(1):10083. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29973609)] NIEHS 2018
Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, et al. 2013. Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A 31(5):050820. [Abstract(http://dx.doi.org/10.1116/1.4818423)] NIEHS 2012
Baer DR. 2018. The chameleon effect: characterization challenges due to the variability of nanoparticles and their surfaces. Front Chem 6:145. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29868553)] ARRA-NIEHS 2018
Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdorster G, et al. 2014. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol 11:5. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24456852)] ARRA-NIEHS 2014
Banga A, Witzmann FA, Petrache HI, Blazer-Yost BL. 2012. Functional effects of nanoparticle exposure on Calu-3 airway epithelial cells. Cell Physiol Biochem 29(1-2):197-212. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22415089)] ARRA-NIEHS 2012
Beamer CA, Girtsman TA, Seaver BP, Finsaas KJ, Migliaccio CT, Perry VK, et al. 2013. IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung. Nanotoxicology 7(6):1070-1081. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22686327)] ARRA-NIEHS 2012
Begum AN, Aguilar JS, Elias L, Hong Y. 2016. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology 57:45-53. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27593553)] NIEHS 2016
Beltran-Huarac J, Zhang Z, Pyrgiotakis G, DeLoid G, Vaze N, Demokritou P. 2018. Development of reference metal and metal oxide engineered nanomaterials for nanotoxicology research using high throughput and precision flame spray synthesis approaches. NanoImpact 10:26-37. [Abstract(https://doi.org/10.1016/j.impact.2017.11.007)] 2018
Benn TM, Pycke BF, Herckes P, Westerhoff P, Halden RU. 2011. Evaluation of extraction methods for quantification of aqueous fullerenes in urine. Anal Bioanal Chem 399(4):1631-1639. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21153587)] ARRA-NIEHS 2011
Benn TM, Westerhoff P, Herckes P. 2011. Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut 159(5):1334-1342. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21300421)] ARRA-NIEHS 2011
Bergin IL, Wilding LA, Morishita M, Walacavage K, Ault AP, Axson JL, et al. 2016. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. Nanotoxicology 10(3):352-360. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26305411)] NIEHS 2016
Bhattacharya K, El-Sayed R, Andon FT, Mukherjee SP, Gregory J, Li H, et al. 2015. Lactoperoxidase-mediated degradation of single-walled carbon nanotubes in the presence of pulmonary surfactant. Carbon 91:506-517. [Abstract(http://dx.doi.org/10.1016/j.carbon.2015.05.022)] NIEHS 2015
Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S, et al. 2016. Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine 12(2):333-351. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26707820)] NIEHS 2016
Bitounis D, Pyrgiotakis G, Bousfield D, Demokritou P. 2019. Dispersion preparation, characterization, and dosimetric analysis of cellulose nano-fibrils and nano-crystals: implications for cellular toxicological studies. Nanoimpact 15:100171. [Abstract(https://dx.doi.org/10.1016/j.impact.2019.100171)] NIEHS 2019
Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, et al. 2011. Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 5(3):354-371.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21067278)] ARRA-NIEHS 2011
Blum JL, Edwards JR, Prozialeck WC, Xiong JQ, Zelikoff JT. 2015. Effects of maternal exposure to cadmium oxide nanoparticles during pregnancy on maternal and offspring kidney injury markers using a murine model. J Toxicol Environ Health A 78(12):711-724. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26090557)] ARRA-NIEHS 2015
Blum JL, Rosenblum LK, Grunig G, Beasley MB, Xiong JQ, Zelikoff JT. 2014. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal Toxicol 26(1):48-58. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24417406)] ARRA-NIEHS 2014
Blum JL, Xiong JQ, Hoffman C, Zelikoff JT. 2012. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci 126(2):478-486. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22240978)] ARRA-NIEHS 2012
Bonner JC, Silva RM, Taylor AJ, Brown JM, Hilderbrand SC, Castranova V, et al. 2013. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect 121(6):676-682. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23649427)] ARRA-NIEHS 2013
Bonner JC. 2010. Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc 7(2):138-141. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20427587)] ARRA-NIEHS 2010
Bonner JC. 2011. Carbon nanotubes as delivery systems for respiratory disease: do the dangers outweigh the potential benefits? Expert Rev Respir Med 5(6):779-787. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22082164)] ARRA-NIEHS 2011
Bonventre JA, Pryor JB, Harper BJ, Harper SL. 2014. The impact of aminated surface ligands and silica shells on the stability, uptake, and toxicity of engineered silver nanoparticles. J Nanopart Res 16(12):2761. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25484618)] NIEHS 2014
Botelho D, Leo BF, Massa C, Sarkar S, Tetley T, Chung KF, Chen S, Ryan MP, Porter A, Atochina-Vasserman EN, Zhang J, Schwander S, Gow AJ. 2018. Exposure to silver nanospheres leads to altered respiratory mechanics and delayed immune response in an in vivo murine model. Front Pharmacol 9:213. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29632485)] NIEHS 2018
Botelho DJ, Leo BF, Massa CB, Sarkar S, Tetley TD, Chung KF, et al. 2016. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity. Nanotoxicology 10(1):118-127. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26152688)] NIEHS 2016
Bowdridge EC, Abukabda AB, Engles KJ, McBride CR, Batchelor TP, Goldsmith WT, Garner KL, Friend S, Nurkiewicz TR. 2019. Maternal engineered nanomaterial inhalation during gestation disrupts vascular kisspeptin reactivity. Toxicol Sci 169(2):524-533. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30843041)] NIEHS 2019
Broaddus VC, Everitt JI, Black B, Kane AB. 2011. Non-neoplastic and neoplastic pleural endpoints following fiber exposure. J Toxicol Environ Health B Crit Rev 14(1-4):153-178. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21534088)] ARRA-NIEHS 2011
Brown TA, Lee JW, Holian A, Porter V, Fredriksen H, Kim M, et al. 2016. Alterations in DNA methylation corresponding with lung inflammation and as a biomarker for disease development after MWCNT exposure. Nanotoxicology 10(4):453-461. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26375518)] NIEHS 2016
Cai X, Lee A, Ji Z, Huang C, Chang CH, Wang X, Liao YP, Xia T, Li R. 2017. Erratum to: reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part Fibre Toxicol 14(1):33. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28851387)] NIEHS 2017
Cao XQ, DeLoid GM, Bitounis D, De La Torre-Roche R, White JC, Zhang ZY, Ho CG, Ng KW, Eitzer BD, Demokritou P. 2019. Co-exposure to the food additives SiO2 (E551) or TiO2 (E171) and the pesticide boscalid increases cytotoxicity and bioavailability of the pesticide in a tri-culture small intestinal epithelium model: potential health implications. Environ Sci-Nano 6(9):2786-2800. [Abstract(https://dx.doi.org/10.1039/c9en00676a)] NIEHS 2019
Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, et al. 2010. Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol 43(2):142-151. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/19738159)] ARRA-NIEHS 2010
Chao TC, Song G, Hansmeier N, Westerhoff P, Herckes P, Halden RU. 2011. Characterization and liquid chromatography-MS/MS based quantification of hydroxylated fullerenes. Anal Chem 83(5):1777-1783.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21294534)] ARRA-NIEHS 2011
Chen DQ, Stueckle T, Luanpitpong S, Rojanasakul Y, Lu YJ, Wang LY. 2015. Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes. Nanoscale Res Lett 10:12. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25852310)] NIEHS 2015
Chen R, Choudhary P, Schurr RN, Bhattacharya P, Brown JM, Chun Ke P. 2012. Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona. Appl Phys Lett 100(1):013703. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22271932)] NIEHS 2012
Chen R, Radic S, Choudhary P, Ledwell KG, Huang G, Brown JM, et al. 2012. Formation and cell translocation of carbon nanotube-fibrinogen protein corona. Appl Phys Lett 101(13):133702. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23093808)] NIEHS 2012
Chen S, Goode AE, Skepper JN, Thorley AJ, Seiffert JM, Chung KF, et al. 2016. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. J Microsc 261(2):157-166. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25606708)] NIEHS 2016
Chen S, Goode AE, Sweeney S, Theodorou IG, Thorley AJ, Ruenraroengsak P, et al. 2013. Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale 5(20):9839-9847. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23970174)] NIEHS 2012
Chen S, Hu S, Smith EF, Ruenraroengsak P, Thorley AJ, Menzel R, et al. 2014. Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application. Biomaterials 35(17):4729-4738. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24631251)] NIEHS 2014
Chen S, Theodorou IG, Goode AE, Gow A, Schwander S, Zhang JF, et al. 2013. High-resolution analytical electron microscopy reveals cell culture media-induced changes to the chemistry of silver nanowires. Environ Sci Technol 47(23):13813-13821. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24160871)] NIEHS 2013
Chen S, Theodorou IG, Goode AE, Gow A, Schwander S, Zhang JJ, et al. 2013. High-resolution analytical electron microscopy reveals cell culture media-induced changes to the chemistry of silver nanowires. Environ Sci Technol 47(23):13813-13821. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24160871)] NIEHS 2012
Chen WM, Zhang QX, Kaplan BLF, Baker GL, Kaminski NE. 2014. Induced T cell cytokine production is enhanced by engineered nanoparticles. Nanotoxicology 8 (S1):11-23. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24256152)] ARRA-NIEHS 2014
Chen Y, Guo F, Jachak A, Kim SP, Datta D, Liu J, et al. 2012. Aerosol synthesis of cargo-filled graphene nanosacks. Nano Lett 12(4):1996-2002. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22429091)] ARRA-NIEHS 2012
Chen Y, Wang Z, Xu M, Wang X, Liu R, Liu Q, et al. 2014. Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS Nano 8(6):5813-5825. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24810997)] NIEHS 2014
Chetwynd AJ, Wheeler KE, Lynch I. 2019. Best practice in reporting corona studies: Minimum Information about Nanomaterial Biocorona Experiments (MINBE). Nano Today 28:100758. [Abstract(https://dx.doi.org/10.1016/j.nantod.2019.06.004)] NIEHS 2019
Chiu CF, Dar HH, Kapralov AA, Robinson RAS, Kagan VE, Star A. 2017. Nanoemitters and innate immunity: the role of surfactants and bio-coronas in myeloperoxidase-catalyzed oxidation of pristine single-walled carbon nanotubes. Nanoscale 9(18):5948-5956. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28440832)] NIEHS 2017
Chiu CF, Saidi WA, Kagan VE, Star A. 2017. Defect-induced near-infrared photoluminescence of single-walled carbon nanotubes treated with polyunsaturated fatty acids. J Am Chem Soc 139(13):4859-4865. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28288512)] NIEHS 2017
Chiu D, Zhou W, Kitayaporn S, Schwartz DT, Murali-Krishna K, Kavanagh TJ, et al. 2012. Biomineralization and size control of stable calcium phosphate core-protein shell nanoparticles: potential for vaccine applications. Bioconjug Chem 23(3):610-617. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22263898)] NIEHS 2012
Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ. 2015. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 7(2):736-746. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25517690)] NIEHS 2015
Chung KF, Seiffert J, Chen S, Theodorou IG, Goode AE, Leo BF, et al. 2017. Inactivation, clearance, and functional effects of lung-instilled short and long silver nanowires in rats. ACS Nano 11(3):2652-2664. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28221763)] NIEHS 2017
Cohen JM, Beltran-Huarac J, Pyrgiotakis G, Demokritou P. 2018. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: implications for stability, particle kinetics, dosimetry and toxicity. NanoImpact 10:81-86. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29479575)] NIEHS 2018
Cohen JM, Teeguarden JG, Demokritou P. 2014. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol 11:20. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24885440)] NIEHS 2014
Cole E, Ray JL, Bolten S, Hamilton RF, Shaw PK, Postma B, Buford M, Holian A, Cho YH. 2019. Multiwalled carbon nanotubes of varying size lead to DNA methylation changes that correspond to lung inflammation and injury in a mouse model. Chem Res Toxicol 32(8):1545-1553. [Abstract(https://dx.doi.org/10.1021/acs.chemrestox.9b00075)] NIEHS 2019
Coyle BL, Rolandi M, Baneyx F. 2013. Carbon-binding designer proteins that discriminate between sp2- and sp3-hybridized carbon surfaces. Langmuir 29(15):4839-4846. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23510486)] NIEHS 2013
Creighton MA, Rangel-Mendez JR, Huang J, Kane AB, Hurt RH. 2013. Graphene-induced adsorptive and optical artifacts during in vitro toxicology assays. Small 9(11):1921-1927. [Abstract(http://dx.doi.org/10.1002/smll.201202625)] ARRA-NIEHS 2013
D’Errico JN, Doherty C, Fournier SB, Renkel N, Kallontzi S, Goedken M, Fabris L, Buckley B, Stapleton PA. 2019. Identification and quantification of gold engineered nanomaterials and impaired fluid transfer across the rat placenta via ex vivo perfusion. Biomed Pharmacother 117:109148. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31347503)] NIEHS 2019
Damoiseaux R, George S, Li M, Pokhrel S, Ji Z, France B, et al. 2011. No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale 3(4):1345-1360. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21301704)] ARRA-NIEHS 2011
Dandley EC, Taylor AJ, Duke KS, Ihrie MD, Shipkowski KA, Parsons GN, et al. 2016. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure. Part Fibre Toxicol 13(1):29. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27278808)] NIEHS 2016
Das BK, Tlili C, Badhulika S, Cella LN, Chen W, Mulchandani A. 2011. Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: picomolar level detection of adenosine triphosphate. Chem Commun (Camb) 47(13):3793-3795. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21286623)] ARRA-NIEHS 2011
Das GK, Anderson DS, Wallis CD, Carratt SA, Kennedy IM, Van Winkle LS. 2016. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung. Nanoscale 8(22):11518-11530. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27198643)] NIEHS 2016
Davidson RA, Anderson DS, Van Winkle LS, Pinkerton KE, Guo T. 2015. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy. J Phys Chem A 119(2):281-289. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25517690)] NIEHS 2015
DeLoid GM, Cao XQ, Molina RM, Silva DI, Bhattacharya K, Ng KW, Loo SCJ, Brain JD, Demokritou P. 2019. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environ Sci-Nano 6(7):2105-2115. [Abstract(https://dx.doi.org/10.1039/c9en00184k)] NIEHS 2019
DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P. 2017. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 12(2):355-371. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28102836)] ARRA-NIEHS 2017
DeLoid GM, Sohal IS, Lorente LR, Molina RM, Pyrgiotakis G, Stevanovic A, Zhang R, McClements DJ, Geitner NK, Bousfield DW, Ng KW, Loo SCJ, Bell DC, Brain J, Demokritou P. 2018. Reducing intestinal digestion and absorption of fat using a nature-derived biopolymer: interference of triglyceride hydrolysis by nanocellulose. ACS Nano 12(7):6469-6479. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29874029)] ARRA-NIEHS 2018
DeLoid GM, Wang Y, Kapronezai K, Lorente LR, Zhang R, Pyrgiotakis G, Konduru NV, Ericsson M, White JC, De La Torre-Roche R, Xiao H, McClements DJ, Demokritou P. 2017. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Part Fibre Toxicol 14(1):40. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29029643)] NIEHS 2017
DeMaio L, Buckley ST, Krishnaveni MS, Flodby P, Dubourd M, Banfalvi A, et al. 2012. Ligand-independent transforming growth factor-beta type I receptor signaling mediates type I collagen-induced epithelial-mesenchymal transition. J Pathol 226(4):633-644. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21984393)] ARRA-NIEHS 2012
Dellinger A, Olson J, Link K, Vance S, Sandros MG, Yang J, et al. 2013. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:7. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23324435)] ARRA-NIEHS 2013
Dellinger A, Zhou Z, Connor J, Madhankumar AB, Pamujula S, Sayes CM, et al. 2013. Application of fullerenes in nanomedicine: an update. Nanomedicine (Lond) 8(7):1191-1208. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23837857)] ARRA-NIEHS 2012
Dellinger A, Zhou Z, Norton SK, Lenk R, Conrad D, Kepley CL. 2010. Uptake and distribution of fullerenes in human mast cells. Nanomedicine 6(4):575-582. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20138243)] ARRA-NIEHS 2010
Dellinger AL, Zhou Z, Kepley CL. 2014. A steroid-mimicking nanomaterial that mediates inhibition of human lung mast cell responses. Nanomedicine 10(6):1185-1193. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24566277)] NIEHS 2014
Denluck L, Wu F, Crandon LE, Harper BJ, Harper SL. 2018. Reactive oxygen species generation is likely a driver of copper based nanomaterial toxicity. Environ Sci Nano 5(6):1473-1481. [Abstract(http://dx.doi.org/10.1039/c8en00055g)] ARRA-NIEHS 2018
Desai C, Chen K, Mitra S. 2014. Aggregation behavior of nanodiamonds and their functionalized analogs in an aqueous environment. Environ Sci Process Impacts 16(3):518-523. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24352711)] ARRA-NIEHS 2014
Desai C, Mitra S. 2013. Microwave induced carboxylation of nanodiamonds. Diam Relat Mater 34:65-69.  [Abstract(http://dx.doi.org/10.1016/j.diamond.2013.02.005)] ARRA-NIEHS 2013
Desai C, Ntim SA, Mitra S. 2012. Antisolvent precipitation of hydrophobic functionalized multiwall carbon nanotubes in an aqueous environment. J Colloid Interface Sci 368(1):115-120. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22142999)] ARRA-NIEHS 2012
Devine CK, Oldham CJ, Jur JS, Gong B, Parsons GN. 2011. Fiber containment for improved laboratory handling and uniform nanocoating of milligram quantities of carbon nanotubes by atomic layer deposition. Langmuir 27(23):14497-14507. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22070742)] ARRA-NIEHS 2011
Ding F, Radic S, Chen R, Chen P, Geitner NK, Brown JM, et al. 2013. Direct observation of a single nanoparticle-ubiquitin corona formation. Nanoscale 5(19):9162-9169. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23921560)] NIEHS 2013
Dong C, Eldawud R, Sargent LM, Kashon ML, Lowry D, Rojanasakul Y, et al. 2014. Towards elucidating the effects of purified MWCNTs on human lung epithelial cells. Environmental Science-Nano 1(6):595-603. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25485116)] NIEHS 2014
Dong C, Eldawud R, Sargent LM, Kashon ML, Lowry D, Rojanasakul Y, et al. 2015. Carbon nanotube uptake changes the biomechanical properties of human lung epithelial cells in a time-dependent manner. J Mater Chem B Mater Biol Med 3:3983-3992. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26146559)] NIEHS 2015
Doudrick K, Corson N, Oberdorster G, Eder AC, Herckes P, Halden RU, et al. 2013. Extraction and quantification of carbon nanotubes in biological matrices with application to rat lung tissue. ACS Nano 7(10):8849-8856. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23992048)] ARRA-NIEHS 2012
Drew NM, Kuempel ED, Pei Y, Yang F. 2017. A quantitative framework to group nanoscale and microscale particles by hazard potency to derive occupational exposure limits: proof of concept evaluation. Regul Toxicol Pharmacol 89:253-267. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28789940)] ARRA-NIEHS 2017
Duan J, Kodali VK, Gaffrey MJ, Guo J, Chu RK, Camp DG, et al. 2016. Quantitative profiling of protein S-glutathionylation reveals redox-dependent regulation of macrophage function during nanoparticle-induced oxidative stress. ACS Nano 10(1):524-538. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26700264)] NIEHS 2016
Duan Y, Liu Y, Coreas R, Zhong W. 2019. Mapping molecular structure of protein locating on nanoparticles with limited proteolysis. Anal Chem 91(6):4204-4212. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30798594)] NIEHS 2019
Duan Y, Liu Y, Shen W, Zhong W. 2017. Fluorescamine labeling for assessment of protein conformational change and binding affinity in protein-nanoparticle interaction. Anal Chem 89(22):12160-12167. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29083159)] NIEHS 2017
Duke KS, Bonner JC. 2018. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(3):e1498. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28984415)] ARRA-NIEHS 2018
Duke KS, Taylor AJ, Ihrie MD, Shipkowski KA, Needham EC, Bonner JC. 2018. Signal transducer and activator of transcription 1 regulates multiwalled carbon nanotube-induced pulmonary fibrosis in mice via suppression of transforming growth factor-beta1 production and signaling. Ann Am Thorac Soc 15(Supplement_2):S129-S130. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29676624)] ARRA-NIEHS 2018
Duke KS, Taylor-Just AJ, Ihrie MD, Shipkowski KA, Thompson EA, Dandley EC, Parsons GN, Bonner JC. 2017. STAT1-dependent and -independent pulmonary allergic and fibrogenic responses in mice after exposure to tangled versus rod-like multi-walled carbon nanotubes. Part Fibre Toxicol 14(1):26. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28716119)] NIEHS 2017
Duke KS, Thompson EA, Ihrie MD, Taylor-Just AJ, Ash EA, Shipkowski KA, Hall JR, Tokarz DA, Cesta MF, Hubbs AF, Porter DW, Sargent LM, Bonner JC. 2018. Role of p53 in the chronic pulmonary immune response to tangled or rod-like multi-walled carbon nanotubes. Nanotoxicology 12(9):975-991. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30317900)] NIEHS 2018
Dymacek J, Snyder-Talkington BN, Porter DW, Mercer RR, Wolfarth MG, Castranova V, et al. 2015. mRNA and miRNA regulatory networks reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic pathologies in mice. Toxicol Sci 144(1):51-64. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25527334)] NIEHS 2015
Dymacek JM, Snyder-Talkington BN, Raese R, Dong C, Singh S, Porter DW, Ducatman B, Wolfarth MG, Andrew ME, Battelli L, Castranova V, Qian Y, Guo NL. 2018. Similar and differential canonical pathways and biological processes associated with multiwalled carbon nanotube and asbestos-induced pulmonary fibrosis: a 1-year postexposure study. Int J Toxicol 37(4):276-284. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29916280)] NIEHS 2018
Eldawud R, Wagner A, Dong C, Rojanasakul Y, Zoica Dinu C. 2015. Electronic platform for real-time multi-parametric analysis of cellular behavior post-exposure to single-walled carbon nanotubes. Biosens Bioelectron 71:269-277. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25913448)] NIEHS 2015
Eldawud R, Wagner A, Dong C, Stueckle TA, Rojanasakul Y, Dinu CZ. 2018. Carbon nanotubes physicochemical properties influence the overall cellular behavior and fate. NanoImpact 9:72-84. [Abstract(http://dx.doi.org/10.1016/j.impact.2017.10.006)] NIEHS 2018
Eleftheriadou M, Pyrgiotakis G, Demokritou P. 2017. Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Curr Opin Biotechnol 44:87-93. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27992831)] NIEHS 2017
Engler-Chiurazzi EB, Stapleton PA, Stalnaker JJ, Ren X, Hu H, Nurkiewicz TR, et al. 2016. Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition. J Toxicol Environ Health A 79(11):447-452. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27092594)] NIEHS 2016
Eweje F, Ardona HAM, Zimmerman JF, O’Connor BB, Ahn S, Grevesse T, Rivera KN, Bitounis D, Demokritou P, Parker KK. 2019. Quantifying the effects of engineered nanomaterials on endothelial cell architecture and vascular barrier integrity using a cell pair model. Nanoscale 11(38):17878-17893. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31553035)] NIEHS 2019
Farcas MT, Kisin ER, Menas AL, Gutkin DW, Star A, Reiner RS, et al. 2016. Pulmonary exposure to cellulose nanocrystals caused deleterious effects to reproductive system in male mice. J Toxicol Environ Health A 79(21):984-997. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27558875)] NIEHS 2016
Fazlollahi F, Angelow S, Yacobi NR, Marchelletta R, Yu AS, Hamm-Alvarez SF, et al. 2011. Polystyrene nanoparticle trafficking across MDCK-II. Nanomedicine 7(5):588-594. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21310266)] ARRA-NIEHS 2011
Fazlollahi F, Kim YH, Sipos A, Hamm-Alvarez SF, Borok Z, Kim KJ, et al. 2013. Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms. Nanomedicine 9(6):786-794. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23454523)] ARRA-NIEHS 2013
Fazlollahi F, Sipos A, Kim YH, Hamm-Alvarez SF, Borok Z, Kim KJ, et al. 2011. Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers. Int J Nanomedicine 6:2849-2857.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22131830)] ARRA-NIEHS 2011
Fennell TR, Mortensen NP, Black SR, Snyder RW, Levine KE, Poitras E, et al. 2017. Disposition of intravenously or orally administered silver nanoparticles in pregnant rats and the effect on the biochemical profile in urine. J Appl Toxicol 37(5):530-544. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27696470)] NIEHS 2017
Findlay MR, Freitas DN, Mobed-Miremadi M, Wheeler KE. 2018. Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties. Environ Sci Nano 5(1):64-71. [Abstract(http://dx.doi.org/10.1039/c7en00466d)] NIEHS 2018
Fournier SB, D'Errico JN, Stapleton PA. 2018. Engineered nanomaterial applications in perinatal therapeutics. Pharmacol Res 130:36-43. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29477479)] ARRA-NIEHS 2018
Fournier SB, Kallontzi S, Fabris L, Love C, Stapleton PA. 2019. Effect of gestational age on maternofetal vascular function following single maternal engineered nanoparticle exposure. Cardiovasc Toxicol 19(4):321-333. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30734150)] NIEHS 2019
Geary SM, Morris AS, Salem AK. 2016. Assessing the effect of engineered nanomaterials on the environment and human health. J Allergy Clin Immunol 138(2):405-408. [Abstract(http://dx.doi.org/10.1007/s11434-016-1069-z)] NIEHS 2016
George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, et al. 2012. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6(5):3745-3759. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22482460)] ARRA-NIEHS 2012
George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, et al. 2011. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133(29):11270-11278.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21678906)] ARRA-NIEHS 2011
George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, et al. 2010. Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1):15-29.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20043640)] ARRA-NIEHS 2010
George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, et al. 2011. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3):1805-1817. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21323332)] ARRA-NIEHS 2011
Gilbert B, Fakra SC, Xia T, Pokhrel S, Madler L, Nel AE. 2012. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 6(6):4921-4930. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22646753)] NIEHS 2012
Girtsman TA, Beamer CA, Wu N, Buford M, Holian A. 2014. IL-1R signaling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation in C57Bl/6 mice. Nanotoxicology 8(1):17-27. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23094697)] ARRA-NIEHS 2014
Glista-Baker EE, Taylor AJ, Sayers BC, Thompson EA, Bonner JC. 2012. Nickel nanoparticles enhance platelet-derived growth factor-induced chemokine expression by mesothelial cells via prolonged mitogen-activated protein kinase activation. Am J Respir Cell Mol Biol 47(4):552-561. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22700867)] ARRA-NIEHS 2012
Glista-Baker EE, Taylor AJ, Sayers BC, Thompson EA, Bonner JC. 2014. Nickel nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21 (T-bet). Part Fibre Toxicol 11:7. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24499286)] ARRA-NIEHS 2014
Gonzalez-Pech NI, Stebounova LV, Ustunol IB, Park JH, Renee Anthony T, Peters TM, Grassian VH. 2019. Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles. J Occup Environ Hyg 16(6):387-399. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30570411)] NIEHS 2019
Goode AE, Gonzalez Carter DA, Motskin M, Pienaar IS, Chen S, Hu S, et al. 2015. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells. Biomaterials 70:57-70. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26298523)] NIEHS 2015
Gray EP, Browning CL, Wang M, Gion KD, Chao EY, Koski KJ, Kane AB, Hurt RH. 2018. Biodissolution and cellular response to MoO3 nanoribbons and a new framework for early hazard screening for 2D materials. Environ Sci Nano 5(11):2545-2559. [Abstract(http://dx.doi.org/10.1039/c8en00362a)] NIEHS 2018
Griffith AS, Zhang TD, Burkert SC, Adiguzel Z, Acilan C, Star A, Saunders WS. 2019. Characterizing the cellular response to nitrogen-doped carbon nanocups. Nanomaterials 9(6):887. [Abstract(https://dx.doi.org/10.3390/nano9060887)] NIEHS 2019
Guiney LM, Wang X, Xia T, Nel AE, Hersam MC. 2018. Assessing and mitigating the hazard potential of two-dimensional materials. ACS Nano 12(7):6360-6377. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29889491)] NIEHS 2018
Guo C, Buckley A, Marczylo T, Seiffert J, Romer I, Warren J, Hodgson A, Chung KF, Gant TW, Smith R, Leonard MO. 2018. The small airway epithelium as a target for the adverse pulmonary effects of silver nanoparticle inhalation. Nanotoxicology 12(6):539-553. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29750584)] NIEHS 2018
Guo Z, Martucci NJ, Liu Y, Yoo E, Tako E, Mahler GJ. 2018. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model. Nanotoxicology 12(5):485-508. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29668341)] NIEHS 2018
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. 2015. Nanoparticle uptake: the phagocyte problem. Nano Today 10(4):487-510. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26640510)] NIEHS 2015
Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H. 2019. In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release 311-312:1-15. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31465825)] NIEHS 2019
Hamilton RF Jr, Buford M, Xiang C, Wu N, Holian A. 2012. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol 24(14):995-1008. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23216160)] ARRA-NIEHS 2012
Hamilton RF Jr, Wu Z, Mitra S, Shaw PK, Holian A. 2013. Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol 10(1):57. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24225053)] ARRA-NIEHS 2012
Hamilton RF Jr, Wu ZQ, Mitra S, Shaw PK, Holian A. 2013. Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol 10(1):57. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24225053)] ARRA-NIEHS 2013
Hamilton RF, Buckingham S, Holian A. 2014. The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution. Int J Mol Sci 15(4):6815-6830. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24758926)] ARRA-NIEHS 2014
Hamilton RF, Wu N, Xiang C, Li M, Yang F, Wolfarth M, et al. 2014. Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts. Part Fibre Toxicol 11:43. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25179214)] ARRA-NIEHS 2014
Hamilton RF, Wu Z, Mitra S, Holian A. 2018. The effects of varying degree of MWCNT carboxylation on bioactivity in various in vivo and in vitro exposure models. Int J Mol Sci 19(2). [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29370073)] NIEHS 2018
Hamilton RF, Wu Z, Thakkar M, Holian A, Mitra S. 2018. Modification of nano-silver bioactivity by adsorption on carbon nanotubes and graphene oxide. Inhal Toxicol 30(11-12):429-438. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30618316)] NIEHS 2018
Harper B, Thomas D, Chikkagoudar S, Baker N, Tang K, Heredia-Langner A, et al. 2015. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity. J Nanopart Res 17(6):250. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26069453)] NIEHS 2015
Harper BJ, Clendaniel A, Sinche F, Way D, Hughes M, Schardt J, et al. 2016. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose (Lond) 23(3):1763-1775. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27468180)] NIEHS 2016
Hathaway QA, Durr AJ, Shepherd DL, Pinti MV, Brandebura AN, Nichols CE, Kunovac A, Goldsmith WT, Friend SA, Abukabda AB, Fink GK, Nurkiewicz TR, Hollander JM. 2019. miRNA-378a as a key regulator of cardiovascular health following engineered nanomaterial inhalation exposure. Nanotoxicology 13(5):644-663. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30704319)] NIEHS 2019
Hathaway QA, Nichols CE, Shepherd DL, Stapleton PA, McLaughlin SL, Stricker JC, et al. 2017. Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. Am J Physiol Heart Circ Physiol 312(3):H446-H458 [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28011589)] NIEHS 2017
He X, Despeaux E, Stueckle TA, Chi A, Castranova V, Dinu CZ, et al. 2016. Role of mesothelin in carbon nanotube-induced carcinogenic transformation of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 311(3):L538-L549. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27422997)] NIEHS 2016
He X, Kiratipaiboon C, Porter DW, Rojanasakul LW, Dinu CZ, Wang K, Yang Y, Rojanasakul Y. 2018. Predicting nanotube fibrogenicity through stem cell-mediated fibroblast focus and spheroid formation. Nano Lett 18(10):6500-6508. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30211561)] NIEHS 2018
Hendren CO, Powers CM, Hoover MD, Harper SL. 2015. The Nanomaterial Data Curation Initiative: a collaborative approach to assessing, evaluating, and advancing the state of the field. Beilstein J Nanotechnol 6:1752-1762. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26425427)] NIEHS 2015
Herd HL, Bartlett KT, Gustafson JA, McGill LD, Ghandehari H. 2015. Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials 53:574-582. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25890753)] NIEHS 2015
Hilton GM, Taylor AJ, Hussain S, Dandley EC, Griffith EH, Garantziotis S, Parsons GN, Bonner JC, Bereman MS. 2017. Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating. Nanotoxicology 11(3):313-326. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28277982)] NIEHS 2017
Hilton GM, Taylor AJ, McClure CD, Parsons GN, Bonner JC, Bereman MS. 2015. Toxicoproteomic analysis of pulmonary carbon nanotube exposure using LC-MS/MS. Toxicology 329:80-87. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25598225)] ARRA-NIEHS 2015
Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, et al. 2010. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7(1):36. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21118529)] ARRA-NIEHS 2010
Holian A, Hamilton RF Jr, Wu Z, Deb S, Trout KL, Wang Z, Bhargava R, Mitra S. 2019. Lung deposition patterns of MWCNT vary with degree of carboxylation. Nanotoxicology 13(2):143-159. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31111787)] NIEHS 2019
Holland NA, Thompson LC, Vidanapathirana AK, Urankar RN, Lust RM, Fennell TR, et al. 2016. Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury. Part Fibre Toxicol 13(1):48. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27558113)] NIEHS 2016
Holmila RJ, Vance SA, King SB, Tsang AW, Singh R, Furdui CM. 2019. Silver nanoparticles induce mitochondrial protein oxidation in lung cells impacting cell cycle and proliferation. Antioxidants (Basel) 8(11):e552. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31739476)] NIEHS 2019
Hopkins LE, Patchin ES, Chiu PL, Brandenberger C, Smiley-Jewell S, Pinkerton KE. 2014. Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology 8(8):885-893. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24040866)] NIEHS 2014
Hu X, Gao X. 2011. Multilayer coating of gold nanorods for combined stability and biocompatibility. Phys Chem Chem Phys 13(21):10028-10035. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21387063)] NIEHS 2011
Hu X, Wei CW, Xia J, Pelivanov I, O’Donnell M, Gao X. 2013. Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto-optical coupled nanoparticles. Small 9(12):2046-2052.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23203788)] NIEHS 2013
Hubbard D, Enda M, Bond T, Moghaddam SP, Conarton J, Scaife C, et al. 2015. Transepithelial transport of PAMAM dendrimers across isolated human intestinal tissue. Mol Pharm 12(11):4099-4107. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26414679)] NIEHS 2015
Hubbs AF, Mercer RR, Benkovic SA, Harkema J, Sriram K, Schwegler-Berry D, et al. 2011. Nanotoxicology—a pathologist’s perspective. Toxicol Pathol 39(2):301-324. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21422259)] ARRA-NIEHS 2011
Hussain S, Garantziotis S, Rodrigues-Lima F, Dupret JM, Baeza-Squiban A, Boland S. Intracellular signal modulation by nanomaterials. Adv Exp Med Biol. 2014; 811:111-34. PMID: 24683030 [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24683030)] NIEHS-DIR 2014
Hussain S, Sangtian S, Anderson SM, Snyder RJ, Marshburn JD, Rice AB, Bonner J and Garantziotis S. Inflammasome Activation in Airway Epithelial Cells after Multi-Walled Carbon Nanotube Exposure Mediates a Profibrotic Response in Lung Fibroblasts. Part Fibre Toxicol. 2014 Jun 10;11:28 [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24915862)] NIEHS-DIR 2014
Hwang R, Mirshafiee V, Zhu Y, Xia T. 2018. Current approaches for safer design of engineered nanomaterials. Ecotoxicol Environ Saf 166:294-300. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30273853)] NIEHS 2018
Ihrie MD, Bonner JC. 2018. The toxicology of engineered nanomaterials in asthma. Curr Environ Health Rep 5(1):100-109. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29441464)] NIEHS 2018
Ihrie MD, Taylor-Just AJ, Walker NJ, Stout MD, Gupta A, Richey JS, Hayden BK, Baker GL, Sparrow BR, Duke KS, Bonner JC. 2019. Inhalation exposure to multi-walled carbon nanotubes alters the pulmonary allergic response of mice to house dust mite allergen. Inhal Toxicol 31(5):192-202. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31345048)] NIEHS 2019
Intrchom W, Thakkar M, Hamilton RF Jr, Holian A, Mitra S. 2018. Effect of carbon nanotube-metal hybrid particle exposure to freshwater algae Chlamydomonas reinhardtii. Sci Rep 8(1):15301. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30333573)] NIEHS 2018
Jatana S, Palmer BC, Phelan SJ, DeLouise LA. 2017. Immunomodulatory effects of nanoparticles on skin allergy. Sci Rep 7(1):3979. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28638049)] NIEHS 2017
Jatana S, Palmer BC, Phelan SJ, Gelein R, DeLouise LA. 2017. In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation. Part Fibre Toxicol 14(1):12. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28410606)] NIEHS 2017
Jessop F, Hamilton RF Jr, Rhoderick JF, Fletcher P, Holian A. 2017. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol Appl Pharmacol 318:58-68. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28126413)] NIEHS 2017
Jessop F, Holian A. 2015. Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo. Nanotoxicology 9(3):365-372. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24983895)] ARRA-NIEHS 2015
Ji Z, Jin X, George S, Xia T, Meng H, Wang X, et al. 2010. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44(19):7309-7314. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20536146)] ARRA-NIEHS 2010
Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, et al. 2012. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6(6):5366-5380.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22564147)] NIEHS 2012
Ji ZX. 2016. Use of compositional and combinatorial nanomaterial libraries for biological studies. Sci Bull 61(10):755-771. [Abstract(http://dx.doi.org/10.1007/s11434-016-1069-z)] NIEHS 2016
Ji ZX. 2016. Use of compositional and combinatorial nanomaterial libraries for biological studies. Sci Bull 61(10):755-771. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27224520)] NIEHS 2016
Jiang W, Wang X, Osborne OJ, Du Y, Chang CH, Liao YP, et al. 2017. Pro-inflammatory and pro-fibrogenic effects of ionic and particulate arsenide and indium-containing semiconductor materials in the murine lung. ACS Nano 11(2):1869-1883. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28177603)] NIEHS 2017
Jiang X, Bao L, Cheng YS, Dunphy DR, Li X, Brinker CJ. 2012. Aerosol-assisted synthesis of monodisperse single-crystalline alpha-cristobalite nanospheres. Chem Commun (Camb) 48(9):1293-1295.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22180855)] NIEHS 2012
Jiang X, Jiang YB, Brinker CJ. 2011. Hydrothermal synthesis of monodisperse single-crystalline alpha-quartz nanospheres. Chem Commun (Camb) 47(26):7524-7526. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21629887)] NIEHS 2011
Jiang XM, Jiang YB, Liu NG, Xu HF, Rathod S, Shah P, et al. 2011. Controlled release from core-shell nanoporous silica particles for corrosion inhibition of aluminum alloys. J Nanomater; doi: 10.1155/2011/760237. [Abstract(http://www.hindawi.com/journals/jnm/2011/760237/)] NIEHS 2011
Jiang XM, Liu NG, Assink RA, Jiang YB, Brinker CJ. 2011. Photoresponsive release from azobenzene-modified single cubic crystal nacl/silica particles. J Nanomater; doi: 10.1155/2011/439756. [Abstract(http://www.hindawi.com/journals/jnm/2011/439756/)] NIEHS 2011
Johnson M, Alsaleh N, Mendoza RP, Persaud I, Bauer AK, Saba L, Brown JM. 2018. Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms. PloS One 13(3):e0193499. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29566008)] NIEHS 2018
Johnson MM, Mendoza R, Raghavendra AJ, Podila R, Brown JM. 2017. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep 7:43570. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28262689)] NIEHS 2017
Jones DE, Ghandehari H, Facelli JC. 2015. Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors. Beilstein J Nanotechnol 6:1886-1896. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26665059)] NIEHS 2015
Jones DE, Ghandehari H, Facelli JC. 2016. A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Comput Methods Programs Biomed 132:93-103. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27282231)] NIEHS 2016
Joshi S, Ghosh I, Pokhrel S, Madler L, Nau WM. 2012. Interactions of amino acids and polypeptides with metal oxide nanoparticles probed by fluorescent indicator adsorption and displacement. ACS Nano 6(6):5668-5679. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22591378)] ARRA-NIEHS 2012
Kabadi PK, Rodd AL, Simmons AE, Messier NJ, Hurt RH, Kane AB. 2019. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations. Part Fibre Toxicol 16(1):15. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30943996)] NIEHS 2019
Kane AB, Hurt RH, Gao H. 2018. The asbestos-carbon nanotube analogy: an update. Toxicol Appl Pharmacol 361:68-80. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29960000)] NIEHS 2018
Kang LS, Nurkiewicz TR, Wu G, Boegehold MA. 2012. Changes in eNOS phosphorylation contribute to increased arteriolar NO release during juvenile growth. Am J Physiol Heart Circ Physiol 302(3):H560-566.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22140037)] ARRA-NIEHS 2012
Karakoti AS, Munusamy P, Hostetler K, Kodali V, Kuchibhatla S, Orr G, et al. 2012. Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles. Surf Interface Anal 44(5):882-889. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23430137)] NIEHS 2012
Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, et al. 2012. A carbon nanotube toxicity paradigm driven by mast cells and the IL-33/ST2 axis. Small 8(18):2904-2912 [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22777948)] NIEHS 2012
Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm-Alvarez SF, Borok Z, et al. 2010. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 182(11):1398-1409.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20639441)] ARRA-NIEHS 2010
Kim YH, Jo MS, Kim JK, Shin JH, Baek JE, Park HS, An HJ, Lee JS, Kim BW, Kim HP, Ahn KH, Jeon K, Oh SM, Lee JH, Workman T, Faustman EM, Yu IJ. 2018. Short-term inhalation study of graphene oxide nanoplates. Nanotoxicology 12(3):224-238. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29385887)] NIEHS 2018
Kiratipaiboon C, Stueckle TA, Ghosh R, Rojanasakul LW, Chen YC, Dinu CZ, Rojanasakul Y. 2019. Acquisition of cancer stem cell-like properties in human small airway epithelial cells after a long-term exposure to carbon nanomaterials. Environ Sci Nano 6(7):2152-2170. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31372228)] NIEHS 2019
Knuckles TL, Yi J, Frazer DG, Leonard HD, Chen BT, Castranova V, et al. 2012. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology 6(7):724-735. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21830860)] ARRA-NIEHS 2012
Kobos L, Shannahan J. 2019. Biocorona-induced modifications in engineered nanomaterial-cellular interactions impacting biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol; doi:10.1002/wnan.1608 [Online 1 December 2019]. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31788989)] NIEHS 2019
Kobos LM, Adamson SX, Evans S, Gavin TP, Shannahan JH. 2018. Altered formation of the iron oxide nanoparticle-biocorona due to individual variability and exercise. Environ Toxicol Pharmacol 62:215-226. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30096581)] NIEHS 2018
Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, et al. 2013. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano 7(8):6997-7010. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23808590)] NIEHS 2012
Konduru NV, Damiani F, Stoilova-McPhie S, Tresback JS, Pyrgiotakis G, Donaghey TC, Demokritou P, Brain JD, Molina RM. 2018. Nanoparticle wettability influences nanoparticle-phospholipid interactions. Langmuir 34(22):6454-6461. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29754486)] ARRA-NIEHS 2018
Konduru NV, Molina RM, Swami A, Damiani F, Pyrgiotakis G, Lin P, Andreozzi P, Donaghey TC, Demokritou P, Krol S, Kreyling W, Brain JD. 2017. Protein corona: implications for nanoparticle interactions with pulmonary cells. Part Fibre Toxicol 14(1):42. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29084556)] NIEHS 2017
Kuchibhatla SV, Karakoti AS, Baer DR, Samudrala S, Engelhard MH, Amonette JE, et al. 2012. Influence of aging and environment on nanoparticle chemistry – implication to confinement effects in nanoceria. J Phys Chem C Nanomater Interfaces 116(26):14108-14114. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23573300)] NIEHS 2012
Kuempel ED, Jaurand MC, Moller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RC, Fubini B, Kane AB. 2017. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 47(1):1-58. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27537422)] NIEHS 2017
Kumar A, Das S, Munusamy P, Self W, Baer DR, Sayle DC, et al. 2014. Behavior of nanoceria in biologically-relevant environments. Environ Sci: Nano 1(6):516-532. [Abstract(http://dx.doi.org/10.1039/c4en00052h)] NIEHS 2014
Kumar LV, Ntim SA, Sae-Khow O, Janardhana C, Lakshminarayanan V, Mitra S. 2012. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells. Electrochim Acta 83:40-46. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23118490)] ARRA-NIEHS 2012
Kunovac A, Hathaway QA, Pinti MV, Goldsmith WT, Durr AJ, Fink GK, Nurkiewicz TR, Hollander JM. 2019. ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. Part Fibre Toxicol 16(1):24. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31215478)] NIEHS 2019
Ladner DA, Steele M, Weir A, Hristovski K, Westerhoff P. 2012. Functionalized nanoparticle interactions with polymeric membranes. J Hazard Mater 211-212:288-295. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22177020)] ARRA-NIEHS 2012
Lai X, Agarwal M, Lvov YM, Pachpande C, Varahramyan K, Witzmann FA. 2013. Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33(11):1316-1329. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23606564)] ARRA-NIEHS 2013
Lai X, Blazer-Yost BL, Clack JW, Fears SL, Mitra S, Ntim SA, et al. 2013. Protein expression profiles of intestinal epithelial co-cultures: effect of functionalised carbon nanotube exposure. Int J Biomed Nanosci Nanotechnol 3(1-2):127-162. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24228069)] ARRA-NIEHS 2012
Lai X, Wang L, Tang H, Witzmann FA. 2011. A novel alignment method and multiple filters for exclusion of unqualified peptides to enhance label-free quantification using peptide intensity in LC-MS/MS. J Proteome Res 10(10):4799-4812. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21888428)] ARRA-NIEHS 2011
Lai X, Wang L, Witzmann FA. 2013. Issues and applications in label-free quantitative mass spectrometry. Int J Proteomics 2013:756039. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23401775)] ARRA-NIEHS 2013
Lai X. 2013. Reproducible method to enrich membrane proteins with high purity and high yield for an LC-MS/MS approach in quantitative membrane proteomics. Electrophoresis 34(6):809-817. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23334993)] ARRA-NIEHS 2013
Larson JK, Carvan MJ 3rd, Teeguarden JG, Watanabe G, Taya K, Krystofiak E, et al. 2014. Low-dose gold nanoparticles exert subtle endocrine-modulating effects on the ovarian steroidogenic pathway ex vivo independent of oxidative stress. Nanotoxicology 8(8):856-866. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23992423)] NIEHS 2014
LeBlanc AJ, Moseley AM, Chen BT, Frazer D, Castranova V, Nurkiewicz TR. 2010. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc Toxicol 10(1):27-36. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20033351)] ARRA-NIEHS 2010
Leavens TL, Monteiro-Riviere NA, Inman AO, Brooks JD, Oldenburg SJ, Riviere JE. 2012. In vitro biodistribution of silver nanoparticles in isolated perfused porcine skin flaps. J Appl Toxicol 32(11):913-919.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22760951)] ARRA-NIEHS 2012
Lee JH, Gulumian M, Faustman EM, Workman T, Jeon K, Yu IJ. 2018. Blood biochemical and hematological study after subacute intravenous injection of gold and silver nanoparticles and coadministered gold and silver nanoparticles of similar sizes. Biomed Res Int 2018:8460910. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30140702)] NIEHS 2018
Lee JH, Sung JH, Ryu HR, Song KS, Song NW, Park HM, Shin BS, Ahn K, Gulumian M, Faustman EM, Yu IJ. 2018. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Arch Toxicol 92(4):1393-1405. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29450565)] NIEHS 2018
Lee JK, Sayers BC, Chun KS, Lao HC, Shipley-Phillips JK, Bonner JC, et al. 2012. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages. Part Fibre Toxicol 9:14. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22571318)] ARRA-NIEHS 2012
Lee JW, Brown TA, Holian A, Schelvan M, Porter V, Cho YH. 2016. Alterations in DNA methylation correlate with a Th17 driven immune response in the lung due to multi-walled carbon nanotube exposure. J Nanosci Nanotechnol 16(8):8787-8795. [Abstract(https://doi.org/10.1166/jnn.2016.12409)] NIEHS 2016
Lee JY, Wang H, Pyrgiotakis G, DeLoid GM, Zhang Z, Beltran-Huarac J, Demokritou P, Zhong W. 2018. Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 410(24):6155-6164. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29845324)] ARRA-NIEHS 2018
Lee V, McMahan RS, Hu X, Gao X, Faustman EM, Griffith WC, et al. 2015. Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages. Nanotoxicology 9(3):336-343. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24983898)] NIEHS 2015
Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, et al. 2013. The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47(19):11232-11240. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23988335)] NIEHS 2012
Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, et al. 2013. The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47(19):11232-11240. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23988335)] NIEHS 2014
Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, et al. 2016. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 138(2):386-396. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27130856)] NIEHS 2016
Li N, Harkema JR, Lewandowski RP, Wang M, Bramble LA, Gookin GR, et al. 2010. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. Am J of Physiol Lung Cell Mol Physiol 299(3):L374-L383. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20562226)] ARRA-NIEHS 2010
Li N, Nel AE. 2011. Feasibility of biomarker studies for engineered nanoparticles: what can be learned from air pollution research. J Occup Environ Med 53(6 Suppl):S74-S79. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21654422)] ARRA-NIEHS 2011
Li R, Guiney LM, Chang CH, Mansukhani ND, Ji Z, Wang X, Liao YP, Jiang W, Sun B, Hersam MC, Nel AE, Xia T. 2018. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano 12(2):1390-1402. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29328670)] NIEHS 2018
Li R, Ji Z, Dong J, Chang CH, Wang X, Sun B, et al. 2015. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano 9(3):3293-3306. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25727446)] NIEHS 2015
Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, et al. 2013. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7(3):2352-2368. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23414138)] NIEHS 2013
Lin S, Zhao Y, Ji Z, Ear J, Chang CH, Zhang H, et al. 2013. Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. Small 9(9-10):1776-1785. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23180726)] NIEHS 2013
Lin S, Zhao Y, Nel AE, Lin S. 2013. Zebrafish: an in vivo model for nano EHS studies. Small 9(9-10):1608-1618. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23208995)] NIEHS 2013
Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, et al. 2011. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 5(9):7284-7295. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21851096)] ARRA-NIEHS 2011
Liu J, Pui DY, Wang J. 2011. Removal of airborne nanoparticles by membrane coated filters. Sci Total Environ 409(22):4868-4874. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21889783)] ARRA-NIEHS 2011
Liu Q, Wang X, Xia T. 2018. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials. Anal Bioanal Chem 410(24):6097-6111. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30066194)] NIEHS 2018
Liu R, Lin S, Rallo R, Zhao Y, Damoiseaux R, Xia T, et al. 2012. Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials. PLoS One 7(4):e35014. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22506062)] NIEHS 2012
Liu R, Rallo R, Cohen Y. 2011. Unsupervised feature selection using incremental least squares. Int J Info Tech Dec Mak 10(6):967-987. [Abstract(http://www.worldscientific.com/doi/abs/10.1142/S0219622011004671)] NIEHS 2011
Liu R, Rallo R, George S, Ji Z, Nair S, Nel AE, et al. 2011. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small 7(8):1118-1126. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21456088)] NIEHS 2011
Liu X, Sen S, Liu J, Kulaots I, Geohegan D, Kane A, et al. 2011. Antioxidant deactivation on graphenic nanocarbon surfaces. Small 7(19):2775-2785. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21818846)] ARRA-NIEHS 2011
Liu XY, Hurt RH, Kane AB. 2010. Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon N Y 48(7):1961-1969. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20352066)] ARRA-NIEHS 2010
Liu Y, Yoo E, Mahler GJ, Doiron AL. 2018. Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via caveolae/raft-regulated calcium signalling. NanoImpact 11:82-91. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30238068)] NIEHS 2018
Liu YX, Karsai A, Anderson DS, Silva RM, Uyeminami DL, Van Winkle LS, et al. 2015. Single-cell mechanics provides an effective means to probe in vivo interactions between alveolar macrophages and silver nanoparticles. J Phys Chem B 119(49):15118-15129. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26562364)] NIEHS 2015
Long G, Mo Y, Zhang Q, Jiang M. 2019. Analysis of nanomaterial toxicity by western blot. Methods Mol Biol 1894:161-169. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30547461)] NIEHS 2019
Low-Kam C, Telesca D, Ji Z, Zhang H, Xia T, Zink JI, et al. 2015. A Bayesian regression tree approach to identify the effect of nanoparticles’ properties on toxicity profiles. Ann Appl Stat 9(1):383-401. [Abstract(http://dx.doi.org/10.1214/14-aoas797)] NIEHS 2015
Luanpitpong S, Li J, Manke A, Brundage K, Ellis E, McLaughlin SL, et al. 2016. SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene 35(22):2824-2833. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26387547)] NIEHS 2015
Luanpitpong S, Li J, Manke A, Brundage K, Ellis E, McLaughlin SL, et al. 2016. SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene 35(22):2824-2833. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27025955)] NIEHS 2016
Luanpitpong S, Wang L, Castranova V, Dinu CZ, Issaragrisil S, Chen YC, et al. 2016. Induction of cancer-associated fibroblast-like cells by carbon nanotubes dictates its tumorigenicity. Sci Rep 6:39558. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27996035)] NIEHS 2016
Luanpitpong S, Wang LY, Davidson DC, Riedel H, Rojanasakul Y. 2016. Carcinogenic potential of high aspect ratio carbon nanomaterials. Environ Sci-Nano 3(3):483-493. [Abstract(http://dx.doi.org/10.1039/c5en00238a)] NIEHS 2016
Lucchini RG, Dorman DC, Elder A, Veronesi B. 2012. Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology 33(4):838-841. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22178536)] ARRA-NIEHS 2012
Madl AK, Teague SV, Qu YQ, Masiel D, Evans JE, Guo T, et al. 2012. Aerosolization system for experimental inhalation studies of carbon-based nanomaterials. Aerosol Sci Technol 46(1):94-107.  [Abstract(http://www.tandfonline.com/doi/abs/10.1080/02786826.2011.605813)] ARRA-NIEHS 2012
Mandler WK, Nurkiewicz TR, Porter DW, Kelley EE, Olfert IM. 2018. Microvascular dysfunction following multiwalled carbon nanotube exposure is mediated by thrombospondin-1 receptor CD47. Toxicol Sci 165(1):90-99. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29788500)] ARRA-NIEHS 2018
Mandler WK, Nurkiewicz TR, Porter DW, Olfert IM. 2017. Thrombospondin-1 mediates multi-walled carbon nanotube induced impairment of arteriolar dilation. Nanotoxicology 11(1):112-122. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28024456)] NIEHS 2017
Manshian BB, Poelmans J, Saini S, Pokhrel S, Grez JJ, Himmelreich U, Madler L, Soenen SJ. 2018. Nanoparticle-induced inflammation can increase tumor malignancy. Acta Biomater 68:99-112. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29274476)] NIEHS 2018
Manshian BB, Pokhrel S, Madler L, Soenen SJ. 2018. The impact of nanoparticle-driven lysosomal alkalinization on cellular functionality. J Nanobiotechnology 16(1):85. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30382919)] NIEHS 2018
Marchetti M, Shaffer MS, Zambianchi M, Chen S, Superti F, Schwander S, et al. 2015. Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size. Philos Trans R Soc Lond B Biol Sci 370(1661):20140038. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25533095)] NIEHS 2015
Martin ME, Reaves DK, Jeffcoat B, Enders JR, Costantini LM, Yeyeodu ST, Botta D, Kavanagh TJ, Fleming JM. 2019. Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression, and TGF-β1 secretion. Nanomedicine 21:102070. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31351238)] NIEHS 2019
Maurer MM, Donohoe GC, Maleki H, Yi J, McBride C, Nurkiewicz TR, et al. 2016. Comparative plasma proteomic studies of pulmonary TiO2 nanoparticle exposure in rats using liquid chromatography tandem mass spectrometry. J Proteomics 130:85-93. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26375203)] NIEHS 2016
McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P. 2016. The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): state of the science and knowledge gaps. NanoImpact 3-4(1):47–57. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29568810)] ARRA-NIEHS 2016
McConnachie LA, Botta D, White CC, Weldy CS, Wilkerson HW, Yu J, et al. 2013. The glutathione synthesis gene Gclm modulates amphiphilic polymer-coated CdSe/ZnS quantum dot-induced lung inflammation in mice. PLoS One 8(5):e64165. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23724032)] NIEHS 2013
McConnachie LA, White CC, Botta D, Zadworny ME, Cox DP, Beyer RP, et al. 2013. Heme oxygenase expression as a biomarker of exposure to amphiphilic polymer-coated CdSe/ZnS quantum dots. Nanotoxicology 7(2):181-191. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22264017)] NIEHS 2013
McDermott JE, Archuleta M, Thrall BD, Adkins JN, Waters KM. 2011. Controlling the response: predictive modeling of a highly central, pathogen-targeted core response module in macrophage activation. PLoS One 6(2):e14673. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21339814)] ARRA-NIEHS 2011
McPeek M, Malur A, Tokarz DA, Lertpiriyapong K, Gowdy KM, Murray G, Wingard CJ, Fessler MB, Barna BP, Thomassen MJ. 2019. Alveolar macrophage ABCG1 deficiency promotes pulmonary granulomatous inflammation. Am J Respir Cell Mol Biol 61(3):332-340. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30848658)] NIEHS 2019
McPeek M, Malur A, Tokarz DA, Murray G, Barna BP, Thomassen MJ. 2018. PPAR-gamma pathways attenuate pulmonary granuloma formation in a carbon nanotube induced murine model of sarcoidosis. Biochem Biophys Res Commun 503(2):684-690. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29908181)] NIEHS 2018
Menas AL, Yanamala N, Farcas MT, Russo M, Friend S, Fournier PM, et al. 2017. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: cytotoxicity or inflammation? Chemosphere 171:671-680. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28061425)] NIEHS 2017
Mendoza RP, Brown JM. 2019. Engineered nanomaterials and oxidative stress: current understanding and future challenges. Curr Opin Toxicol 13:74-80 [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31263794)] NIEHS 2019
Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. 2010. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4(8):4539-4550. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20731437)] ARRA-NIEHS 2010
Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, et al. 2011. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5):4131-4144.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21524062)] NIEHS 2011
Meng H, Xue M, Xia T, Zhao YL, Tamanoi F, Stoddart JF, et al. 2010. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc 132(36):12690-12697. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20718462)] ARRA-NIEHS 2010
Meng H, Yang S, Li Z, Xia T, Chen J, Ji Z, et al. 2011. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 5(6):4434-4447. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21563770)] ARRA-NIEHS 2011
Minarchick VC, Stapleton PA, Fix NR, Leonard SS, Sabolsky EM, Nurkiewicz TR. 2015. Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling. Toxicol Sci 144(1):77-89. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25481005)] NIEHS 2015
Minarchick VC, Stapleton PA, Porter DW, Wolfarth MG, Çiftyurek E, Barger M, et al. 2013. Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovasc Toxicol 13(4):323-337. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23645470)] ARRA-NIEHS 2013
Minarchick VC, Stapleton PA, Sabolsky EM, Nurkiewicz TR. 2015. Cerium dioxide nanoparticle exposure improves microvascular dysfunction and reduces oxidative stress in spontaneously hypertensive rats. Front Physiol 6:339. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26635625)] NIEHS 2015
Minard KR, Littke MH, Wang W, Xiong Y, Teeguarden JG, Thrall BD. 2013. Magnetic particle detection (MPD) for in-vitro dosimetry. Biosens Bioelectron 43:88-93. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23287653)] NIEHS 2013
Mirshafiee V, Jiang W, Sun B, Wang X, Xia T. 2017. Facilitating translational nanomedicine via predictive safety assessment. Mol Ther 25(7):1522-1530. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28412168)] NIEHS 2017
Mirshafiee V, Sun B, Chang CH, Liao YP, Jiang W, Jiang J, Liu X, Wang X, Xia T, Nel AE. 2018. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano 12(4):3836-3852. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29543433)] ARRA-NIEHS 2018
Mo Y, Jiang M, Zhang Y, Wan R, Li J, Zhong CJ, Li H, Tang S, Zhang Q. 2019. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J Nanobiotechnology 17(1):2. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30616599)] NIEHS 2019
Mo Y, Zhang Y, Zhang Q. 2019. Evaluation of pulmonary toxicity of nanoparticles by bronchoalveolar lavage. Methods Mol Biol 1894:313-322. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30547469)] NIEHS 2018
Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. 2019. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev 144:112-132. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31295521)] NIEHS 2019
Mohammadpour R, Yazdimamaghani M, Reilly CA, Ghandehari H. 2019. Transient receptor potential ion channel-dependent toxicity of silica nanoparticles and poly(amido amine) dendrimers. J Pharmacol Exp Ther 370(3):751-760. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30442652)] NIEHS 2019
Molina RM, Konduru NV, Queiroz PM, Figueroa B, Fu D, Ma-Hock L, Groeters S, Schaudien D, Brain JD. 2019. Fate of barium sulfate nanoparticles deposited in the lungs of rats. Sci Rep 9(1):8163. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31160608)] NIEHS 2019
Moller W, Gibson N, Geiser M, Pokhrel S, Wenk A, Takenaka S, et al. 2013. Gold nanoparticle aerosols for rodent inhalation and translocation studies. J Nanopart Res 15(4):1574. [Abstract(http://dx.doi.org/10.1007/s11051-013-1574-9)] ARRA-NIEHS 2013
Monteiro-Riviere NA, Linder KE, Inman AO, Saathoff JG, Xia XR, Riviere JE. 2012. Lack of hydroxylated fullerene toxicity after intravenous administration to female Sprague-Dawley rats. J Toxicol Environ Health A 75(7):367-373. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22524592)] ARRA-NIEHS 2012
Monteiro-Riviere NA, Samberg ME, Oldenburg SJ, Riviere JE. 2013. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations? Toxicol Lett 220(3):286-293. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23660336)] ARRA-NIEHS 2013
Moore TL, Pitzer JE, Podila R, Wang X, Lewis RL, Grimes SW, et al. 2013. Multifunctional polymer-coated carbon nanotubes for safe drug delivery. Part Part Syst Charact 30(4):365-373. [Abstract(http://dx.doi.org/10.1002/ppsc.201200145)] NIEHS 2013
Moreno-Olivas F, Tako E, Mahler GJ. 2019. ZnO nanoparticles affect nutrient transport in an in vitro model of the small intestine. Food Chem Toxicol 124:112-127. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30503572)] NIEHS 2019
Mukherjee D, Botelho D, Gow AJ, Zhang J, Georgopoulos PG. 2013. Computational multiscale toxicodynamic modeling of silver and carbon nanoparticle effects on mouse lung function. PloS One 8(12):e80917. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24312506)] NIEHS 2012
Mukherjee D, Botelho D, Gow AJ, Zhang JF, Georgopoulos PG. 2013. Computational multiscale toxicodynamic modeling of silver and carbon nanoparticle effects on mouse lung function. PLoS One 8(12):e80917. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24312506)] NIEHS 2013
Mukherjee D, Porter A, Ryan M, Schwander S, Chung KF, Tetley T, et al. 2015. Modeling in vivo interactions of engineered nanoparticles in the pulmonary alveolar lining fluid. Nanomaterials (Basel) 5(3):1223-1249. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26240755)] NIEHS 2015
Mukherjee SP, Gliga AR, Lazzaretto B, Brandner B, Fielden M, Vogt C, Newman L, Rodrigues AF, Shao W, Fournier PM, Toprak MS, Star A, Kostarelos K, Bhattacharya K, Fadeel B. 2018. Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale 10(3):1180-1188. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29271441)] NIEHS 2018
Munusamy P, Wang C, Engelhard MH, Baer DR, Smith JN, Liu C, et al. 2015. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: structure, dissolution in cell culture media, and biological impact on macrophages. Biointerphases 10(3):031003. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26178265)] NIEHS 2015
Naatz H, Lin S, Li R, Jiang W, Ji Z, Chang CH, et al. 2017. Safe-by-design CuO nanoparticles via Fe-doping, Cu-O bond length variation, and biological assessment in cells and zebrafish embryos. ACS Nano 11(1):501-515. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28026936)] NIEHS 2017
Nedumpully-Govindan P, Gurzov EN, Chen P, Pilkington EH, Stanley WJ, Litwak SA, et al. 2016. Graphene oxide inhibits hIAPP amyloid fibrillation and toxicity in insulin-producing NIT-1 cells. Phys Chem Chem Phys 18(1):94-100. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26625841)] NIEHS 2016
Negoda A, Kim KJ, Crandall ED, Worden RM. 2013. Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers. Biochim Biophys Acta 1828(9):2215-2222. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23747366)] ARRA-NIEHS 2012
Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, et al. 2013. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46(3):607-621.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22676423)] NIEHS 2013
Nel AE, Nasser E, Godwin H, Avery D, Bahadori T, Bergeson L, et al. 2013. A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment. ACS Nano 7(8):6422-6433. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23924032)] NIEHS 2012
Nel AE. 2013. Implementation of alternative test strategies for the safety assessment of engineered nanomaterials. J Intern Med 274(6):561-577. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23879741)] NIEHS 2012
Nel AE. 2013. Implementation of alternative test strategies for the safety assessment of engineered nanomaterials. J Intern Med 274(6):561-577. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23879741)] NIEHS 2013
Nichols CE, Shepherd DL, Hathaway QA, Durr AJ, Thapa D, Abukabda A, Yi J, Nurkiewicz TR, Hollander JM. 2018. Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology 12(1):32-48. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29243970)] NIEHS 2018
Nigrovic PA, Malbec O, Lu B, Markiewski MM, Kepley C, Gerard N, et al. 2010. C5a receptor enables participation of mast cells in immune complex arthritis independently of Fcgamma receptor modulation. Arthritis Rheum 62(11):3322-3333. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20662064)] ARRA-NIEHS 2010
Nix CE, Harper BJ, Conner CG, Richter AP, Velev OD, Harper SL. 2018. Toxicological assessment of a lignin core nanoparticle doped with silver as an alternative to conventional silver core nanoparticles. Antibiotics (Basel) 7(2):E40. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29734649)] ARRA-NIEHS 2018
Norton SK, Dellinger A, Zhou Z, Lenk R, Macfarland D, Vonakis B, et al. 2010. A new class of human mast cell and peripheral blood basophil stabilizers that differentially control allergic mediator release. Clin Transl Sci 3(4):158-169. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20718816)] ARRA-NIEHS 2010
Norton SK, Wijesinghe DS, Dellinger A, Sturgill J, Zhou Z, Barbour S, et al. 2012. Epoxyeicosatrienoic acids are involved in the C(70) fullerene derivative-induced control of allergic asthma. J Allergy Clin Immunol 130(3):761-769. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22664166)] ARRA-NIEHS 2012
Ntim SA, Mitra S. 2011. Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes. J Chem Eng Data 56(5):2077-2083. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21625394)] ARRA-NIEHS 2011
Ntim SA, Mitra S. 2012. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. J Colloid Interface Sci 375(1):154-159. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22424815)] ARRA-NIEHS 2012
Ntim SA, Sae-Khow O, Desai C, Witzmann FA, Mitra S. 2012. Size dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes. J Environ Monit 14(10):2772-2779. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22972403)] ARRA-NIEHS 2012
Ntim SA, Sae-Khow O, Witzmann FA, Mitra S. 2011. Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J Colloid Interface Sci 355(2):383-388.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21236442)] ARRA-NIEHS 2011
Nurkiewicz TR, Wu G, Li P, Boegehold MA. 2010. Decreased arteriolar tetrahydrobiopterin is linked to superoxide generation from nitric oxide synthase in mice fed high salt. Microcirculation 17(2):147-157.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20163541)] ARRA-NIEHS 2010
Orr GA, Chrisler WB, Cassens KJ, Tan R, Tarasevich BJ, Markillie LM, et al. 2011. Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor A. Nanotoxicology 5(3):296-311. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20849212)] ARRA-NIEHS 2011
Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. 2011. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83(24):9361-9369. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22074486)] ARRA-NIEHS 2011
Palmer BC, Jatana S, Phelan-Dickinson SJ, DeLouise LA. 2019. Amorphous silicon dioxide nanoparticles modulate immune responses in a model of allergic contact dermatitis. Sci Rep 9(1):5085. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30911099)] NIEHS 2019
Palmer BC, Phelan-Dickenson SJ, DeLouise LA. 2019. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation. Part Fibre Toxicol 16(1):3. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30621720)] NIEHS 2019
Park G, Amaris ZN, Eiken MK, Baumgartner KV, Johnston KA, Williams MA, Markwordt JG, Millstone JE, Splan KE, Wheeler KE. 2019. Emerging investigator series: characterization of silver and silver nanoparticle interactions with zinc finger peptides. Environ Sci Nano 6(8):2367-2378. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31528351)] NIEHS 2019
Park JD, Kim JK, Jo MS, Kim YH, Jeon KS, Lee JH, Faustman EM, Lee HK, Ahn K, Gulumian M, Oberdorster G, Yu IJ. 2019. Lobar evenness of deposition/retention in rat lungs of inhaled silver nanoparticles: an approach for reducing animal use while maximizing endpoints. Part Fibre Toxicol 16(1):2. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30616672)] NIEHS 2019
Park M, Salem DP, Parviz D, Gong X, Silmore KS, Lew TTS, Khong DT, Ang MCY, Kwak SY, Chan-Park MB, Strano MS. 2019. Measuring the accessible surface area within the nanoparticle corona using molecular probe adsorption. Nano Lett 19(11):7712-7724. [Abstract(https://dx.doi.org/10.1021/acs.nanolett.9b02647)] NIEHS 2019
Patchin ES, Anderson DS, Silva RM, Uyeminami DL, Scott GM, Guo T, et al. 2016. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ Health Perspect 124(12):1870-1875. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27152509)] NIEHS 2016
Patel T, Telesca D, George S, Nel AE. 2012. Toxicity profiling of engineered nanomaterials via multivariate dose-response surface modeling. Ann Appl Stat 6(4):1707-1729. [Abstract(https://projecteuclid.org/euclid.aoas/1356629057)] NIEHS 2012
Patel T, Telesca D, Low-Kam C, Ji ZX, Zhang HY, Xia T, et al. 2014. Relating nano-particle properties to biological outcomes in exposure escalation experiments. Environmetrics 25(1):57-68. [Abstract(http://onlinelibrary.wiley.com/doi/10.1002/env.2246/abstract;jsessionid=08DE04EA92817ACD1494123A26E585F6.f03t04)] NIEHS 2014
Patel T, Telesca D, Rallo R, George S, Xia T, Nel AE. 2013. Hierarchical rank aggregation with applications to nanotoxicology. J Agric Biol Environ Stat 18(2):159-177. [Abstract(http://dx.doi.org/10.1007/s13253-013-0129-y)] NIEHS 2013
Persaud I, Raghavendra AJ, Paruthi A, Alsaleh NB, Minarchick VC, Roede JR, Podila R, Brown JM. 2019. Defect-induced electronic states amplify the cellular toxicity of ZnO nanoparticles. Nanotoxicology; doi:10.1080/17435390.2019.1668067 [Online 25 September 2019]. [Abstract(https://dx.doi.org/10.1080/17435390.2019.1668067)] NIEHS 2019
Persaud I, Shannahan JH, Raghavendra AJ, Alsaleh NB, Podila R, Brown JM. 2019. Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress. Ecotoxicol Environ Saf 170:77-86. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30529623)] NIEHS 2019
Pietruska JR, Liu X, Smith A, McNeil K, Weston P, Zhitkovich A, et al. 2011. Bioavailability, intracellular mobilization of nickel, and HIF-1alpha activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci 124(1):138-148. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21828359)] NIEHS 2011
Pirela SV, Lu X, Miousse I, Sisler JD, Qian Y, Guo N, et al. 2016. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: a case study of toxicological implications from nanomaterials released during consumer use. NanoImpact 1:1-8. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26989787)] NIEHS 2016
Podila R, Brown JM, Kahru A, Rao AM. 2014. Illuminating nano-bio interactions: a spectroscopic perspective. MRS Bulletin 39(11):990-995. [Abstract(http://dx.doi.org/10.1557/mrs.2014.248)] NIEHS 2014
Podila R, Brown JM. 2013. Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol 27(1):50-55 [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23129019)] NIEHS 2013
Podila R, Chen R, Ke PC, Brown JM, Rao AM. 2012. Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl Phys Lett 101(26):263701. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23341687)] NIEHS 2012
Podila R, Vedantam P, Ke PC, Brown JM, Rao AM. 2012. Evidences for charge transfer-induced conformational changes in carbon nanostructure-protein corona. J Phys Chem C Nanomater Interfaces 116(41):22098-22103. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23243478)] NIEHS 2012
Poitras EP, Levine MA, Harrington JM, Essader AS, Fennell TR, Snyder RW, et al. 2015. Development of an analytical method for assessment of silver nanoparticle content in biological matrices by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 163(1-2):184-192. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25308764)] NIEHS 2015
Pokhrel S, Nel AE, Madler L. 2013. Custom-designed nanomaterial libraries for testing metal oxide toxicity. Acc Chem Res 46(3):632-641. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23194152)] ARRA-NIEHS 2013
Pongrakhananon V, Luanpitpong S, Stueckle TA, Wang L, Nimmannit U, Rojanasakul Y. 2015. Carbon nanotubes induce apoptosis resistance of human lung epithelial cells through FLICE-inhibitory protein. Toxicol Sci 143(2):499-511. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25412619)] NIEHS 2015
Prince KL, Colvin SC, Park S, Lai X, Witzmann FA, Rhodes SJ. 2013. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease. Endocrinology 154(2):738-748. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23288907)] ARRA-NIEHS 2013
Pycke BF, Benn TM, Herckes P, Westerhoff P, Halden RU. 2011. Strategies for quantifying C(60) fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Analyt Chem 30(1):44-57. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21359100)] ARRA-NIEHS 2011
Pycke BF, Chao TC, Herckes P, Westerhoff P, Halden RU. 2012. Beyond nC60: strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples. Anal Bioanal Chem 404(9):2583-2595. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22644149)] ARRA-NIEHS 2012
Pyrgiotakis G, Luu W, Zhang Z, Vaze N, DeLoid G, Rubio L, Graham WAC, Bell DC, Bousfield D, Demokritou P. 2018. Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose (Lond) 25(4):2303-2319. [Abstract(http://dx.doi.org/10.1007/s10570-018-1718-2)] NIEHS 2018
Qin M, Landriscina A, Rosen JM, Wei G, Kao S, Olcott W, et al. 2015. Nitric oxide-releasing nanoparticles prevent propionibacterium acnes-induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response. J Invest Dermatol 135(11):2723-2731 [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26172313)] NIEHS 2015
Qu G, Liu S, Zhang S, Wang L, Wang X, Sun B, et al. 2013. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano 7(7):5732-5745. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23734789)] NIEHS 2012
Radic S, Nedumpully-Govindan P, Chen R, Salonen E, Brown JM, Ke PC, et al. 2014. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding. Nanoscale 6(14):8340-8349. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24934397)] NIEHS 2014
Raghavendra AJ, Alsaleh N, Brown JM, Podila R. 2017. Charge-transfer interactions induce surface dependent conformational changes in apolipoprotein biocorona. Biointerphases 12(2):02D402 [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28269991)] NIEHS 2017
Raghavendra AJ, Fritz K, Fu S, Brown JM, Podila R, Shannahan JH. 2017. Variations in biocorona formation related to defects in the structure of single walled carbon nanotubes and the hyperlipidemic disease state. Sci Rep 7(1):8382. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28814800)] NIEHS 2017
Rallo R, France B, Liu R, Nair S, George S, Damoiseaux R, et al. 2011. Self-organizing map analysis of toxicity-related cell signaling pathways for metal and metal oxide nanoparticles. Environ Sci Technol 45(4):1695-1702. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21250674)] ARRA-NIEHS 2011
Ray JL, Fletcher P, Burmeister R, Holian A. 2019. The role of sex in particle-induced inflammation and injury. Wiley Interdiscip Rev Nanomed Nanobiotechnol; doi:10.1002/wnan.1589 [Online 30 September 2019]. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31566915)] NIEHS 2019
Ray JL, Holian A. 2019. Sex differences in the inflammatory immune response to multi-walled carbon nanotubes and crystalline silica. Inhal Toxicol 31(7):285-297. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31556754)] NIEHS 2019
Repar N, Li H, Aguilar JS, Li QQ, Drobne D, Hong Y. 2018. Silver nanoparticles induce neurotoxicity in a human embryonic stem cell-derived neuron and astrocyte network. Nanotoxicology 12(2):104-116. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29334833)] NIEHS 2018
Richter JW, Shull GM, Fountain JH, Guo Z, Musselman LP, Fiumera AC, Mahler GJ. 2018. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster. Nanotoxicology 12(5):390-406. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29600885)] ARRA-NIEHS 2018
Rithidech KN, Lai X, Honikel L, Reungpatthanaphong P, Witzmann FA. 2012. Identification of proteins secreted into the medium by human lymphocytes irradiated in vitro with or without adaptive environments. Health Phys 102(1):39-53. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22134077)] ARRA-NIEHS 2012
Riviere JE, Leavens TL, Brooks JD, Monteiro-Riviere NA. 2012. Acute vascular effects of nanoparticle infusion in isolated perfused skin. Nanomedicine 8(4):428-431. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22406185)] ARRA-NIEHS 2012
Robinson R, Gerlach W, Ghandehari H. 2015. Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia. J Control Release 220(Pt A):245-252. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26526969)] NIEHS 2015
Robinson RLM, Lynch I, Peijnenburg W, Rumble J, Klaessig F, Marquardt C, et al. 2016. How should the completeness and quality of curated nanomaterial data be evaluated? Nanoscale 8(19):9919-9943. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27143028)] NIEHS 2016
Roebben G, Ramirez-Garcia S, Hackley VA, Roesslein M, Klaessig F, Kestens V, et al. 2011. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J Nanopart Res 13(7):2675-2687. [Abstract(http://link.springer.com/article/10.1007%2Fs11051-011-0423-y)] ARRA-NIEHS 2011
Rubio L, Pyrgiotakis G, Beltran-Huarac J, Zhang Y, Gaurav J, Deloid G, Spyrogianni A, Sarosiek KA, Bello D, Demokritou P. 2019. Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity. Part Fibre Toxicol 16(1):40. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31665028)] NIEHS 2019
Ruenraromgsak P, Chen S, Hu S, Melbourne J, Sweeney S, Thorley AJ, et al. 2016. Translocation of functionalized multi-walled carbon nanotubes across human pulmonary alveolar epithelium: dominant role of epithelial type 1 cells. ACS Nano 10(5):5070-5085. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27035850)] NIEHS 2016
Saathoff JG, Inman AO, Xia XR, Riviere JE, Monteiro-Riviere NA. 2011. In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol In Vitro 25(8):2105-2112. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21964474)] ARRA-NIEHS 2011
Sager T, Wolfarth M, Keane M, Porter D, Castranova V, Holian A. 2016. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung. Nanotoxicology 10(2):151-161. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25916264)] NIEHS 2016
Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, et al. 2014. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology 8(3):317-327. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23432020)] ARRA-NIEHS 2014
Saikia J, Yazdimamaghani M, Hadipour Moghaddam SP, Ghandehari H. 2016. Differential protein adsorption and cellular uptake of silica nanoparticles based on size and porosity. ACS Appl Mater Interfaces 8(50):34820-34832. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27998138)] NIEHS 2016
Salari M, Bitounis D, Bhattacharya K, Pyrgiotakis G, Zhang Z, Purington E, Gramlich W, Grondin Y, Rogers R, Bousfield D, Demokritou P. 2019. Development & characterization of fluorescently tagged nanocellulose for nanotoxicological studies. Environ Sci Nano 6(5):1516-1526 [Abstract(https://pubs.rsc.org/en/content/articlelanding/2019/EN/C8EN01381K#!divAbstract)] NIEHS 2019
Samberg ME, Loboa EG, Oldenburg SJ, Monteiro-Riviere NA. 2012. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine (Lond) 7(8):1197-1209. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22583572)] ARRA-NIEHS 2012
Sanchez VC, Jachak A, Hurt RH, Kane AB. 2012. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15-34. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21954945)] ARRA-NIEHS 2012
Sanchez VC, Weston P, Yan A, Hurt RH, Kane AB. 2011. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part Fibre Toxicol 8:17. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21592387)] ARRA-NIEHS 2011
Sarkar S, Leo BF, Carranza C, Chen S, Rivas-Santiago C, Porter AE, et al. 2015. Modulation of human macrophage responses to mycobacterium tuberculosis by silver nanoparticles of different size and surface modification. PLoS One 10(11):e0143077. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26580078)] NIEHS 2015
Sarkar S, Song Y, Sarkar S, Kipen HM, Laumbach RJ, Zhang J, et al. 2012. Suppression of the NF-kappaB pathway by diesel exhaust particles impairs human antimycobacterial immunity. J Immunol 188(6):2778-2793. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22345648)] NIEHS 2012
Sayers BC, Taylor AJ, Glista-Baker EE, Shipley-Phillips JK, Dackor RT, Edin ML, et al. 2013. Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes. Am J Respir Cell Mol Biol 49(4):525-535. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23642096)] ARRA-NIEHS 2012
Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, et al. 2013. Silver nanowire exposure results in internalization and toxicity to daphnia magna. ACS Nano 7(12):10681-10694. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24099093)] ARRA-NIEHS 2013
Schon P, Ctistis G, Bakker W, Luthe G. 2017. Nanoparticular surface-bound PCBs, PCDDs, and PCDFs-a novel class of potentially higher toxic POPs. Environ Sci Pollut Res Int 24(14):12758-12766. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/26939687)] NIEHS 2017
Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC, Stapleton PL, Bammler TK, MacDonald JW, Altemeier WA, Hernandez M, Kleeberger SR, Chen LC, Gordon T, Kavanagh TJ. 2017. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice. FASEB J 31(10):4600-4611. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28716969)] NIEHS 2017
Scoville DK, Nolin JD, Ogden HL, An D, Afsharinejad Z, Johnson BW, Bammler TK, Gao X, Frevert CW, Altemeier WA, Hallstrand TS, Kavanagh TJ. 2019. Quantum dots and mouse strain influence house dust mite-induced allergic airway disease. Toxicol Appl Pharmacol 368:55-62. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30682383)] NIEHS 2019
Scoville DK, White CC, Botta D, An D, Afsharinejad Z, Bammler TK, Gao X, Altemeier WA, Kavanagh TJ. 2018. Quantum dot induced acute changes in lung mechanics are mouse strain dependent. Inhal Toxicol 30(9-10):397-403. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30523721)] NIEHS 2018
Scoville DK, White CC, Botta D, McConnachie LA, Zadworny ME, Schmuck SC, et al. 2015. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains. Toxicol Appl Pharmacol 289(2):240-250. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26476918)] NIEHS 2015
Seiffert J, Buckley A, Leo B, Martin NG, Zhu J, Dai R, et al. 2016. Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague-Dawley rats. Respir Res 17(1):85. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27435725)] NIEHS 2016
Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, et al. 2015. Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain. PLoS One 10(3):e0119726. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25747867)] NIEHS 2015
Sengupta B, Gregory WE, Zhu J, Dasetty S, Karakaya M, Brown JM, et al. 2015. Influence of carbon nanomaterial defects on the formation of protein corona. Rsc Adv 5(100):82395-82402. [Abstract(http://dx.doi.org/10.1039/c5ra15007h)] NIEHS 2015
Shang J, Gao X. 2014. Nanoparticle counting: towards accurate determination of the molar concentration. Chem Soc Rev 43(21):7267-7278. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25099190)] NIEHS 2014
Shannahan J. 2017. The biocorona: a challenge for the biomedical application of nanoparticles. Nanotechnol Rev 6(4):345-353. [Abstract(http://dx.doi.org/10.1515/ntrev-2016-0098)] NIEHS 2017
Shannahan JH, Bai W, Brown JM. 2015. Implications of scavenger receptors in the safe development of nanotherapeutics. Receptors Clin Investig 2(3):e811. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26005702)] NIEHS 2015
Shannahan JH, Brown JM, Chen R, Ke PC, Lai X, Mitra S, et al. 2013. Comparison of nanotube-protein corona composition in cell culture media. Small 9(12):2171-2181. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23322550)] ARRA-NIEHS 2013
Shannahan JH, Brown JM. 2014. Engineered nanomaterial exposure and the risk of allergic disease. Curr Opin Allergy Clin Immunol 14(2):95-99. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24378479)] NIEHS 2014
Shannahan JH, Fritz KS, Raghavendra AJ, Podila R, Persaud I, Brown JM. 2016. From the cover: disease-induced disparities in formation of the nanoparticle-biocorona and the toxicological consequences. Toxicol Sci 152(2):406-416. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27255384)] NIEHS 2016
Shannahan JH, Kodavanti UP, Brown JM. 2012. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 24(5):320-339. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22486349)] NIEHS 2012
Shannahan JH, Lai X, Ke PC, Podila R, Brown JM, Witzmann FA. 2013. Silver nanoparticle protein corona composition in cell culture media. PLoS One 8(9):e74001. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24040142)] NIEHS 2012
Shannahan JH, Podila R, Aldossari AA, Emerson H, Powell BA, Ke PC, et al. 2015. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci 143(1):136-146. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25744719)] NIEHS 2015
Shannahan JH, Podila R, Brown JM. 2015. A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation. Int J Nanomedicine 10:6509-6521. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26508856)] NIEHS 2015
Shannahan JH, Sowrirajan H, Persaud I, Podila R, Brown JM. 2015. Impact of silver and iron nanoparticle exposure on cholesterol uptake by macrophages. J Nanomater 2015:127235. [Abstract(http://dx.doi.org/10.1155/2015/127235)] NIEHS 2015
Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, et al. 2014. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose-response profiles in vitro. Nanotoxicology 8(6):663-675. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23837572)] NIEHS 2014
Shi M, de Mesy Bentley KL, Palui G, Mattoussi H, Elder A, Yang H. 2017. The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. Nanoscale 9(14):4739-4750 [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28327771)] ARRA-NIEHS 2017
Shi X, von dem Bussche A, Hurt RH, Kane AB, Gao H. 2011. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6(11):714-719. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21926979)] ARRA-NIEHS 2011
Shipkowski KA, Taylor AJ, Thompson EA, Glista-Baker EE, Sayers BC, Messenger ZJ, et al. 2015. An allergic lung microenvironment suppresses carbon nanotube-induced inflammasome activation via STAT6-dependent inhibition of caspase-1. PLoS One 10(6):e0128888. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26091108)] ARRA-NIEHS 2015
Shirwaiker RA, Samberg ME, Cohen PH, Wysk RA, Monteiro-Riviere NA. 2013. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(3):191-204. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23335493)] ARRA-NIEHS 2013
Shvedova AA, Kisin ER, Yanamala N, Farcas MT, Menas AL, Williams A, et al. 2016. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part Fibre Toxicol 13(1):28. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27278671)] NIEHS 2016
Shvedova AA, Kisin ER, Yanamala N, Tkach AV, Gutkin DW, Star A, et al. 2015. MDSC and TGFbeta are required for facilitation of tumor growth in the lungs of mice exposed to carbon nanotubes. Cancer Res 75(8):1615-1623. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25744719)] NIEHS 2015
Silva RM, Anderson DS, Franzi LM, Peake JL, Edwards PC, Van Winkle LS, et al. 2015. Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation. Toxicol Sci 144(1):151-162. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25628415)] NIEHS 2015
Silva RM, Doudrick K, Franzi LM, TeeSy C, Anderson DS, Wu Z, et al. 2014. Instillation versus inhalation of multiwalled carbon nanotubes: exposure-related health effects, clearance, and the role of particle characteristics. ACS Nano 8(9):8911-8931. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25144856)] NIEHS 2014
Silva RM, Teesy C, Franzi L, Weir A, Westerhoff P, Evans JE, et al. 2013. Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention. J Toxicol Environ Health A 76(16):953-972. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24156719)] NIEHS 2012
Silva RM, Xu J, Saiki C, Anderson DS, Franzi LM, Vulpe CD, et al. 2014. Short versus long silver nanowires: a comparison of in vivo pulmonary effects post instillation. Part Fibre Toxicol 11:52. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25292367)] NIEHS 2014
Sipos A, Kim KJ, Chow RH, Flodby P, Borok Z, Crandall ED. 2018. Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis. Am J Physiol Lung Cell Mol Physiol 315(2):L286-L300. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29722567)] NIEHS 2018
Sipos A, Kim KJ, Sioutas C, Crandall ED. 2019. Evidence for nanoparticle-induced lysosomal dysfunction in lung adenocarcinoma (A549) cells. Int J Mol Sci 20(21):e5253. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31652767)] NIEHS 2019
Sisler JD, Li R, McKinney W, Mercer RR, Ji Z, Xia T, et al. 2016. Differential pulmonary effects of CoO and La2O3 metal oxide nanoparticle responses during aerosolized inhalation in mice. Part Fibre Toxicol 13(1):42. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27527840)] NIEHS 2016
Smith JN, Thomas DG, Jolley H, Kodali VK, Littke MH, Munusamy P, Baer DR, Gaffrey MJ, Thrall BD, Teeguarden JG. 2018. All that is silver is not toxic: silver ion and particle kinetics reveals the role of silver ion aging and dosimetry on the toxicity of silver nanoparticles. Part Fibre Toxicol 15(1):47. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30518385)] NIEHS 2018
Smith MJ, Brown JM, Zamboni WC, Walker NJ. 2014. From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system. Toxicol Sci 138(2):249-255. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24431216)] NIEHS 2014
Snyder RW, Fennell TR, Wingard CJ, Mortensen NP, Holland NA, Shannahan JH, et al. 2015. Distribution and biomarker of carbon-14 labeled fullerene C60 ([(14) C(U)]C60 ) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol 35(12):1438-1451. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26081520)] NIEHS 2015
Snyder-Talkington BN, Dong C, Castranova V, Qian Y, Guo NL. 2019. Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure. Toxicol Rep 6:482-488. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31194188)] NIEHS 2019
Snyder-Talkington BN, Dong C, Porter DW, Ducatman B, Wolfarth MG, Andrew M, et al. 2016. Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: a 1-year postexposure study. J Toxicol Environ Health A 79(8):352-366. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27092743)] NIEHS 2016
Snyder-Talkington BN, Dong C, Sargent LM, Porter DW, Staska LM, Hubbs AF, et al. 2015. mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice. J Appl Toxicol 36(1):161-174.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25926378)] NIEHS 2015
Snyder-Talkington BN, Dong C, Singh S, Raese R, Qian Y, Porter DW, Wolfarth MG, Guo NL. 2019. Multi-walled carbon nanotube-induced gene expression biomarkers for medical and occupational surveillance. Int J Mol Sci 20(11):E2635. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31146342)] NIEHS 2019
Snyder-Talkington BN, Dong C, Zhao X, Dymacek J, Porter DW, Wolfarth MG, et al. 2015. Multi-walled carbon nanotube-induced gene expression in vitro: concordance with in vivo studies. Toxicology 328:66-74. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25511174)] NIEHS 2015
Stapleton PA, Abukabda AB, Hardy SL, Nurkiewicz TR. 2015. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links. Am J Physiol Heart Circ Physiol 309(10):H1609-H1620. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26386111)] NIEHS 2015
Stapleton PA, Hathaway QA, Nichols CE, Abukabda AB, Pinti MV, Shepherd DL, McBride CR, Yi J, Castranova VC, Hollander JM, Nurkiewicz TR. 2018. Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome. Part Fibre Toxicol 15(1):3. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29321036)] NIEHS 2018
Stapleton PA, McBride CR, Yi J, Abukabda AB, Nurkiewicz TR. 2018. Estrous cycle-dependent modulation of in vivo microvascular dysfunction after nanomaterial inhalation. Reprod Toxicol 78:20-28. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29545171)] ARRA-NIEHS 2018
Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. 2015. Uterine microvascular sensitivity to nanomaterial inhalation: an in vivo assessment. Toxicol Appl Pharmacol 288(3):420-428. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26375943)] NIEHS 2015
Stapleton PA, Minarchick VC, Cumpston AM, McKinney W, Chen BT, Sager TM, et al. 2012. Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 13(11):13781-13803. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23203034)] ARRA-NIEHS 2012
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. 2012. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 19(2):126-142. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21951337)] ARRA-NIEHS 2012
Stapleton PA, Minarchick VC, Yi J, Engels K, McBride CR, Nurkiewicz TR. 2013. Maternal engineered nanomaterial exposure and fetal microvascular function: does the Barker hypothesis apply? Am J Obstet Gynecol; 209(3):227.e1-227.e11. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23643573)] ARRA-NIEHS 2013
Stapleton PA, Nichols CE, Yi J, McBride CR, Minarchick VC, Shepherd DL, et al. 2015. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 9(8):941-951. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25475392)] NIEHS 2015
Stapleton PA, Nurkiewicz TR. 2014. Vascular distribution of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(4):338-348. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24777845)] ARRA-NIEHS 2014
Stapleton PA. 2019. Toxicological considerations of nano-sized plastics. AIMS Environ Sci 6(5):367-378. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31745497)] NIEHS 2019
Stierle AA, Stierle DB, Girtsman T. 2012. Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. J Nat Prod 75(3):344-350. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22295871)] ARRA-NIEHS 2012
Stierle DB, Stierle AA, Girtsman T, McIntyre K, Nichols J. 2012. Caspase-1 and -3 inhibiting drimane sesquiterpenoids from the extremophilic fungus Penicillium solitum. J Nat Prod 75(2):262-266. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22276851)] ARRA-NIEHS 2012
Stierle DB, Stierle AA, Patacini B, McIntyre K, Girtsman T, Bolstad E. 2011. Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-beta from induced inflammasomes. J Nat Prod 74(10):2273-2277. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21916432)] ARRA-NIEHS 2011
Stueckle TA, Davidson DC, Derk R, Kornberg TG, Battelli L, Friend S, Orandle M, Wagner A, Dinu CZ, Sierros KA, Agarwal S, Gupta RK, Rojanasakul Y, Porter DW, Rojanasakul L. 2018. Short-term pulmonary toxicity assessment of pre- and post-incinerated organomodified nanoclay in mice. ACS Nano 12(3):2292-2310. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29451776)] NIEHS 2018
Stueckle TA, Davidson DC, Derk R, Kornberg TG, Schwegler-Berry D, Pirela SV, et al. 2017. Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact 6:39-54. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28367517)] NIEHS 2017
Stueckle TA, Davidson DC, Derk R, Wang P, Friend S, Schwegler-Berry D, Zheng P, Wu N, Castranova V, Rojanasakul Y, Wang L. 2017. Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology 11(5):613-624. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28513319)] NIEHS 2017
Sumner SC, Snyder RW, Wingard C, Mortensen NP, Holland NA, Shannahan JH, et al. 2015. Distribution and biomarkers of carbon-14-labeled fullerene C60 ([(14) C(U)]C60 ) in female rats and mice for up to 30 days after intravenous exposure. J Appl Toxicol 35(12):1452-1464. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25727383)] NIEHS 2015
Sun B, Pokhrel S, Dunphy DR, Zhang H, Ji Z, Wang X, et al. 2015. Reduction of acute inflammatory effects of fumed silica nanoparticles in the lung by adjusting silanol display through calcination and metal doping. ACS Nano 9(9):9357-9372. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26200133)] NIEHS 2015
Sun B, Wang X, Ji Z, Li R, Xia T. 2013. NLRP3 inflammasome activation induced by engineered nanomaterials. Small 9(9-10):1595-1607. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23180683)] ARRA-NIEHS 2013
Sun B, Wang X, Ji Z, Wang M, Liao YP, Chang CH, et al. 2015. NADPH oxidase-dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small 11(17):2087-2097. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25581126)] NIEHS 2015
Sun BB, Ji ZX, Liao YP, Wang MY, Wang X, Dong JY, et al. 2013. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano 7(12):10834-10849. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24261790)] NIEHS 2013
Sweeney S, Adamcakova-Dodd A, Thorne PS, Assouline JG. 2017. Biocompatibility of multi-imaging engineered mesoporous silica nanoparticles: In vitro and adult and fetal in vivo studies. J Biomed Nanotechnol 13(5):544-558. [Abstract(http://dx.doi.org/10.1166/jbn.2017.2369)] NIEHS 2017
Sweeney S, Adamcakova-Dodd A, Thorne PS, Assouline JG. 2018. Multifunctional nanoparticles for real-time evaluation of toxicity during fetal development. PLoS One 13(2):e0192474. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29420606)] NIEHS 2018
Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, et al. 2016. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells. Colloids Surf B Biointerfaces 145:167-175. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27182651)] NIEHS 2016
Sweeney S, Theodorou IG, Zambianchi M, Chen S, Gow A, Schwander S, et al. 2015. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells. Nanoscale 7(23):10398-10409. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25996248)] NIEHS 2015
Szymanski CJ, Munusamy P, Mihai C, Xie Y, Hu D, Gilles MK, et al. 2015. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 62:147-154. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26056725)] ARRA-NIEHS 2015
Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ. 2013. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46(3):792-801. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23387478)] NIEHS 2013
Taylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, et al. 2014. Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS One 9(9):e106870. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25216247)] ARRA-NIEHS 2014
Techane S, Baer DR, Castner DG. 2011. Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces. Anal Chem 83(17):6704-6712. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21744862)] NIEHS 2011
Tell LA, Stephens K, Teague SV, Pinkerton KE, Raabe OG. 2012. Study of nebulization delivery of aerosolized fluorescent microspheres to the avian respiratory tract. Avian Dis 56(2):381-386. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22856198)] NIEHS 2012
Theodorou IG, Ruenraroengsak P, Gow A, Schwander S, Zhang JJ, Chung KF, et al. 2016. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology 10(9):1351-1362. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27441789)] NIEHS 2016
Theodorou IG, Ryan MP, Tetley TD, Porter AE. 2014. Inhalation of silver nanomaterials--seeing the risks. Int J Mol Sci 15(12):23936-23974. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25535082)] NIEHS 2014
Thomas DG, Smith JN, Thrall BD, Baer DR, Jolley H, Munusamy P, Kodali V, Demokritou P, Cohen J, Teeguarden JG. 2018. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Part Fibre Toxicol 15(1):6. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29368623)] NIEHS 2018
Thompson EA, Sayers BC, Glista-Baker EE, Shipkowski KA, Ihrie MD, Duke KS, et al. 2015. STAT1 attenuates murine allergen-induced airway remodeling and exacerbation by carbon nanotubes. Am J Respir Cell Mol  Biol53(5):625-636. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25807359)] NIEHS 2015
Thompson LC, Frasier CR, Sloan RC, Mann EE, Harrison BS, Brown JM, et al. 2014. Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology 8(1):38-49. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23102262)] NIEHS 2014
Thompson LC, Sheehan NL, Walters DM, Lust RM, Brown JM, Wingard CJ. 2019. Airway exposure to modified multi-walled carbon nanotubes perturbs cardiovascular adenosinergic signaling in mice. Cardiovasc Toxicol 19(2):168-177. [Abstract(https://doi.org/10.1007/s12012-018-9487-6)] NIEHS 2019
Thompson LC, Urankar RN, Holland NA, Vidanapathirana AK, Pitzer JE, Han L, et al. 2014. C60 exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in sprague dawley rats. Toxicol Sci 138(2):365-378. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24431213)] NIEHS 2014
Thrall BD, Kodali V, Skerrett S, Thomas DG, Frevert CW, Pounds JG, Teeguarden JG. 2019. Modulation of susceptibility to lung bacterial infection by engineered nanomaterials: in vitro and in vivo correspondence based on macrophage phagocytic function. NanoImpact 14:100155. [Abstract(https://www.sciencedirect.com/science/article/pii/S245207481830212X?via%3Dihub)] NIEHS 2019
Tilton SC, Karin NJ, Tolic A, Xie Y, Lai X, Hamilton RF Jr, Waters KM, Holian A, Witzmann FA, Orr G. 2014. Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns. Nanotoxicology 8(5):533-548. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/23659652)] ARRA-NIEHS 2014
Tsuda A, Donaghey TC, Konduru NV, Pyrgiotakis G, Van Winkle LS, Zhang ZY, Edwards P, Bustamante JM, Brain JD, Demokritou P. 2019. Age-dependent translocation of gold nanoparticles across the air-blood barrier. ACS Nano 13(9):10095-10102. [Abstract(https://dx.doi.org/10.1021/acsnano.9b03019)] NIEHS 2019
Urankar RN, Lust RM, Mann E, Katwa P, Wang X, Podila R, et al. 2012. Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes. Part Fibre Toxicol 9:38. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23072542)] NIEHS 2012
Vandivort TC, Birkland TP, Domiciano TP, Mitra S, Kavanagh TJ, Parks WC. 2017. Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes. Int J Nanomedicine 12:1019-1031. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28223796)] NIEHS 2017
Vandivort TC, Birkland TP, Domiciano TP, Mitra S, Kavanagh TJ, Parks WC. 2017. Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes. Int J Nanomedicine 12:1019-1031. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28223796)] NIEHS 2017
Vidanapathirana AK, Lai X, Hilderbrand SC, Pitzer JE, Podila R, Sumner SJ, et al. 2012. Multi-walled carbon nanotube directed gene and protein expression in cultured human aortic endothelial cells is influenced by suspension medium. Toxicology 302(2-3):114-122. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23026733)] ARRA-NIEHS 2012
Vidanapathirana AK, Thompson LC, Herco M, Odom J, Sumner SJ, Fennell TR, Brown JM, Wingard CJ. 2018. Acute intravenous exposure to silver nanoparticles during pregnancy induces particle size and vehicle dependent changes in vascular tissue contractility in Sprague Dawley rats. Reprod Toxicol 75:10-22. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29154916)] NIEHS 2018
Vlasova, II, Kapralov AA, Michael ZP, Burkert SC, Shurin MR, Star A, et al. 2016. Enzymatic oxidative biodegradation of nanoparticles: mechanisms, significance and applications. Toxicol Appl Pharmacol 299:58-69. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26768553)] NIEHS 2016
Voronkova MA, Luanpitpong S, Rojanasakul LW, Castranova V, Dinu CZ, Riedel H, Rojanasakul Y. 2017. SOX9 regulates cancer stem-like properties and metastatic potential of single-walled carbon nanotube-exposed cells. Sci Rep 7(1):11653. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28912540)] NIEHS 2017
Wagner A, Eldawud R, White A, Agarwal S, Stueckle TA, Sierros KA, Rojanasakul Y, Gupta RK, Dinu CZ. 2017. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochim Biophys Acta 1861(1 Pt A):3406-3415. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27612663)] NIEHS 2017
Wagner A, Eldawud R, White A, Agarwal S, Stueckle TA, Sierros KA, et al. 2017. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochim Biophys Acta 1861(1 Pt A):3406-3415. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27612663)] NIEHS 2017
Wagner A, Liu Q, Rose OL, Eden A, Vijay A, Rojanasakul Y, Dinu CZ. 2019. Toxicity screening of two prevalent metal organic frameworks for therapeutic use in human lung epithelial cells. Int J Nanomedicine 14:7583-7591. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31571865)] NIEHS 2019
Wagner A, White AP, Stueckle TA, Banerjee D, Sierros KA, Rojanasakul Y, Agarwal S, Gupta RK, Dinu CZ. 2017. Early assessment and correlations of nanoclay's toxicity to their physical and chemical properties. ACS Appl Mater Interfaces 9(37):32323-32335. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28799741)] NIEHS 2017
Wagner A, White AP, Tang MC, Agarwal S, Stueckle TA, Rojanasakul Y, Gupta RK, Dinu CZ. 2018. Incineration of nanoclay composites leads to byproducts with reduced cellular reactivity. Sci Rep 8(1):10709. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30013129)] NIEHS 2018
Wan R, Mo Y, Tong R, Gao M, Zhang Q. 2019. Determination of phosphorylated histone H2AX in nanoparticle-induced genotoxic studies. Methods Mol Biol 1894:145-159. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30547460)] NIEHS 2018
Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q. 2017. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 14(1):38. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28923112)] NIEHS 2017
Wang J, Pui DY. 2013. Dispersion and filtration of carbon nanotubes (cnts) and measurement of nanoparticle agglomerates in diesel exhaust. Chem Eng Sci 85:69-76. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23355749)] ARRA-NIEHS 2013
Wang P, Voronkova M, Luanpitpong S, He X, Riedel H, Dinu CZ, Wang L, Rojanasakul Y. 2017. Induction of slug by chronic exposure to single-walled carbon nanotubes promotes tumor formation and metastasis. Chem Res Toxicol 30(7):1396-1405. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28598615)] NIEHS 2017
Wang R, Lee M, Kinghorn K, Hughes T, Chuckaree I, Lohray R, Chow E, Pantano P, Draper R. 2018. Quantitation of cell-associated carbon nanotubes: selective binding and accumulation of carboxylated carbon nanotubes by macrophages. Nanotoxicology 1-22. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29804493)] ARRA-NIEHS 2018
Wang R, Meredith AN, Lee M Jr., Deutsch D, Miadzvedskaya L, Braun E, et al. 2016. Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108. Nanotoxicology 10(6):689-698. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26559437)] NIEHS 2015
Wang R, Murali VS, Draper R. 2017. Detecting sonolysis of polyethylene glycol upon functionalizing carbon nanotubes. Methods Mol Biol 1530:147-164. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28150202)] ARRA-NIEHS 2017
Wang X, Chang CH, Jiang J, Liu Q, Liao YP, Lu J, Li L, Liu X, Kim J, Ahmed A, Nel AE, Xia T. 2019. The crystallinity and aspect ratio of cellulose nanomaterials determine their pro-inflammatory and immune adjuvant effects in vitro and in vivo. Small 15(42):e1901642. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/31461215)] NIEHS 2019
Wang X, Duch MC, Mansukhani N, Ji Z, Liao YP, Wang M, et al. 2015. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano 9(3):3032-3043. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25646681)] NIEHS 2015
Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, et al. 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10(2):385-398. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24039004)] NIEHS 2014
Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, et al. 2011. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol 8:24. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21851604)] NIEHS 2011
Wang X, Lee JH, Li R, Liao YP, Kang J, Chang CH, Guiney LM, Mirshafiee V, Li L, Lu J, Xia T, Hersam MC, Nel AE. 2018. Toxicological profiling of highly purified single-walled carbon nanotubes with different lengths in the rodent lung and Escherichia coli. Small 14(23):e1703915. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29733549)] NIEHS 2018
Wang X, Liao YP, Telesca D, Chang CH, Xia T, Nel AE. 2017. The genetic heterogeneity among different mouse strains impacts the lung injury potential of multiwalled carbon nanotubes. Small 13(33). [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28677920)] NIEHS 2017
Wang X, Mansukhani ND, Guiney LM, Ji Z, Chang CH, Wang M, et al. 2015. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small 11(38):5079-5087. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26237579)] NIEHS 2015
Wang X, Mansukhani ND, Guiney LM, Lee JH, Li R, Sun B, et al. 2016. Toxicological profiling of highly purified metallic and semiconducting single-walled carbon nanotubes in the rodent lung and E. coli. ACS Nano 10(6):6008-6019. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27159184)] NIEHS 2016
Wang X, Podila R, Shannahan JH, Rao AM, Brown JM. 2013. Intravenously delivered graphene nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Int J Nanomedicine 8:1733-1748 [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23662055)] NIEHS 2013
Wang X, Reece SP, Brown JM. 2013. Immunotoxicological impact of engineered nanomaterial exposure: mechanisms of immune cell modulation. Toxicol Mech Methods 23(3):168-177. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23256453)] NIEHS 2013
Wang X, Shannahan JH, Brown JM. 2014. IL-33 modulates chronic airway resistance changes induced by multi-walled carbon nanotubes. Inhal Toxicol 26(4):240-249. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24502429)] NIEHS 2014
Wang X, Sun B, Liu S, Xia T. 2017. Structure activity relationships of engineered nanomaterials in inducing NLRP3 inflammasome activation and chronic lung fibrosis. NanoImpact 6:99-108. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/28480337)] NIEHS 2017
Wang X, Xia T, Duch MC, Ji Z, Zhang H, Li R, et al. 2012. Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett 12(6):3050-3061.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22546002)] NIEHS 2012
Wang X, Xia T, Ntim SA, Ji Z, George S, Meng H, et al. 2010. Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. ACS Nano 4(12):7241-7252. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21067152)] ARRA-NIEHS 2010
Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, et al. 2011. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5(12):9772-9787. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22047207)] ARRA-NIEHS 2011
Wang YC, Engelhard MH, Baer DR, Castner DG. 2016. Quantifying the impact of nanoparticle coatings and nonuniformities on XPS analysis: gold/silver core-shell nanoparticles. Anal Chem 88(7):3917-3925. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26950247)] NIEHS 2016
Wang Z, Pokhrel S, Chen M, Hunger M, Madler L, Huang J. 2013. Palladium-doped silica-alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone. J Catalysis 302:10-19. [Abstract(http://dx.doi.org/10.1016/j.jcat.2013.02.017)] ARRA-NIEHS 2013
Wang Z, Xia T, Liu S. 2015. Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7(17):7470-7481. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25865054)] NIEHS 2015
Wang Z, von dem Bussche A, Qiu Y, Valentin TM, Gion K, Kane AB, et al. 2016. Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media. Environ Sci Technol 50(13):7208-7217. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27267956)] NIEHS 2016
Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242-2250. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22260395)] ARRA-NIEHS 2012
Weldon BA, Faustman EM, Oberdorster G, Workman T, Griffith WC, Kneuer C, et al. 2016. Occupational exposure limit for silver nanoparticles: considerations on the derivation of a general health-based value. Nanotoxicology 10(7):945-956. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26982810)] NIEHS 2016
Weldon BA, Griffith WC, Workman T, Scoville DK, Kavanagh TJ, Faustman EM. 2018. In vitro to in vivo benchmark dose comparisons to inform risk assessment of quantum dot nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(4):e1507. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29350469)] ARRA-NIEHS 2018
Weldon BA, Park JJ, Hong S, Workman T, Dills R, Lee JH, Griffith WC, Kavanagh TJ, Faustman EM. 2018. Using primary organotypic mouse midbrain cultures to examine developmental neurotoxicity of silver nanoparticles across two genetic strains. Toxicol Appl Pharmacol 354:215-224. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29678449)] NIEHS 2018
Wenger Y, Schneider RJ 2nd, Reddy GR, Kopelman R, Jolliet O, Philbert MA. 2011. Tissue distribution and pharmacokinetics of stable polyacrylamide nanoparticles following intravenous injection in the rat. Toxicol Appl Pharmacol 251(3):181-190. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21134391)] NIEHS 2011
Wingard CJ, Walters DM, Cathey BL, Hilderbrand SC, Katwa P, Lin S, et al. 2011. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology 5(4):531-545. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21043986)] NIEHS 2011
Wu F, Harper BJ, Harper SL. 2019. Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environ Toxicol Chem 38(3):591-602. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30615210)] NIEHS 2019
Wu N, Wang J, Tafen de N, Wang H, Zheng JG, Lewis JP, et al. 2010. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO(2) (101) nanobelts. J Am Chem Soc 132(19):6679-6685.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20420405)] ARRA-NIEHS 2010
Wu ZQ, Hamilton RF Jr, Wang ZQ, Holian A, Mitra S. 2014. Oxidation debris in microwave functionalized carbon nanotubes: chemical and biological effects. Carbon 68:678-686. [Abstract(https://doi.org/10.1016/j.carbon.2013.11.049)] ARRA-NIEHS 2014
Xia T, Hamilton RF, Bonner JC, Crandall ED, Elder A, Fazlollahi F, et al. 2013. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect 121(6):683-690. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23649538)] ARRA-NIEHS 2013
Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, et al. 2011. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5(2):1223-1235. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21250651)] ARRA-NIEHS 2011
Xia T, Zhu Y, Mu L, Zhang ZF, Liu S. 2016. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Natl Sci Rev 3(4):416-429. [Abstract(http://dx.doi.org/10.1093/nsr/nww064)] NIEHS 2016
Xia XR, Monteiro-Riviere NA, Mathur S, Song X, Xiao L, Oldenberg SJ, et al. 2011. Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 5(11):9074-9081. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21999618)] ARRA-NIEHS 2011
Xiao J, Kuc A, Pokhrel S, Madler L, Pottgen R, Winter F, et al. 2013. Fe-doped ZnO nanoparticles: the oxidation number and local charge on iron, studied by 57Fe Mossbauer spectroscopy and DFT calculations. Chemistry 19(10):3287-3291. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23400908)] NIEHS 2013
Xiao J, Kuc A, Pokhrel S, Schowalter M, Parlapalli S, Rosenauer A, et al. 2011. Evidence for Fe(2+) in wurtzite coordination: iron doping stabilizes ZnO nanoparticles. Small 7(20):2879-2886. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21913325)] ARRA-NIEHS 2011
Xu X, Rao X, Wang TY, Jiang SY, Ying Z, Liu C, et al. 2012. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model. Part Fibre Toxicol 9:40.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23126276)] NIEHS 2012
Yacobi NR, Fazllolahi F, Kim YH, Sipos A, Borok Z, Kim KJ, et al. 2011. Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. Air Qual Atmos Health 4(1):65-78. [Abstract(http://link.springer.com/article/10.1007%2Fs11869-010-0098-z)] ARRA-NIEHS 2011
Yacobi NR, Malmstadt N, Fazlollahi F, DeMaio L, Marchelletta R, Hamm-Alvarez SF, et al. 2010. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42(5):604-614. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/19574531)] ARRA-NIEHS 2010
Yang X, Shao H, Liu W, Gu W, Shu X, Mo Y, et al. 2015. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. Toxicol Lett 234(1):40-49. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25680694)] NIEHS 2015
Yazdimamaghani M, Barber ZB, Hadipour Moghaddam SP, Ghandehari H. 2018. Influence of silica nanoparticle density and flow conditions on sedimentation, cell uptake, and cytotoxicity. Mol Pharm 15(6):2372-2383. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29719153)] ARRA-NIEHS 2018
Yazdimamaghani M, Moos PJ, Dobrovolskaia MA, Ghandehari H. 2019. Genotoxicity of amorphous silica nanoparticles: status and prospects. Nanomedicine 16:106-125. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30529789)] NIEHS 2019
Yazdimamaghani M, Moos PJ, Ghandehari H. 2018. Global gene expression analysis of macrophage response induced by nonporous and porous silica nanoparticles. Nanomedicine 14(2):533-545. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29203145)] NIEHS 2018
Ye F, White CC, Jin Y, Hu X, Hayden S, Zhang X, et al. 2015. Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages. Nanoscale 7(22):10085-10093. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25978523)] NIEHS 2015
Yi J, Chen BT, Schwegler-Berry D, Frazer D, Castranova V, McBride C, et al. 2013. Whole-body nanoparticle aerosol inhalation exposures. J Vis Exp (75):e50263. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23685643)] ARRA-NIEHS 2012
Zampardi G, Thoming J, Naatz H, Amin HMA, Pokhrel S, Madler L, Compton RG. 2018. Electrochemical behavior of single CuO nanoparticles: implications for the assessment of their environmental fate. Small 14(32):e1801765. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30016009)] NIEHS 2018
Zauscher MD, Moore MJ, Lewis GS, Hering SV, Prather KA. 2011. Approach for measuring the chemistry of individual particles in the size range critical for cloud formation. Anal Chem 83(6):2271-2278.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21338063)] ARRA-NIEHS 2011
Zhang H, Burnum KE, Luna ML, Petritis BO, Kim JS, Qian WJ, et al. 2011. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11(23):4569-4577. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21956884)] ARRA-NIEHS 2011
Zhang H, Dunphy DR, Jiang X, Meng H, Sun B, Tarn D, et al. 2012. Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134(38):15790-15804.  [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22924492)] NIEHS 2012
Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349-4368. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22502734)] NIEHS 2012
Zhang H, Newman DR, Bonner JC, Sannes PL. 2012. Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro. Toxicol Appl Pharmacol 265(1):27-42. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/23000194)] ARRA-NIEHS 2012
Zhang H, Pokhrel S, Ji Z, Meng H, Wang X, Lin S, et al. 2014. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co3O4 p-type semiconductor in cells and the lung. J Am Chem Soc 136(17):6406-6420. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24673286)] NIEHS 2014
Zhang H, Wang X, Wang M, Li L, Chang CH, Ji Z, et al. 2015. Mammalian cells exhibit a range of sensitivities to silver nanoparticles that are partially explicable by variations in antioxidant defense and metallothionein expression. Small 11(31):3797-3805. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25930061)] NIEHS 2015
Zhang H, Xia T, Meng H, Xue M, George S, Ji Z, et al. 2011. Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. ACS Nano 5(4):2756-2769. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21366263)] ARRA-NIEHS 2011
Zhang J, Whitehead J, Liu Y, Yang Q, Leach JK, Liu GY. 2018. Direct observation of tunneling nanotubes within human mesenchymal stem cell spheroids. J Phys Chem B 122(43):9920-9926. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30350968)] NIEHS 2018
Zhang LW, Baumer W, Monteiro-Riviere NA. 2011. Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine (Lond) 6(5):777-791. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21793671)] ARRA-NIEHS 2011
Zhang T, Gaffrey MJ, Thrall BD, Qian WJ. 2018. Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials. Anal Bioanal Chem 410(24):6067-6077. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/29947897)] ARRA-NIEHS 2018
Zhang Y, Wan R, Zhang Q, Mo Y. 2019. Application of gelatin zymography in nanotoxicity research. Methods Mol Biol 1894:133-143. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30547459)] NIEHS 2018
Zhang Z, Zhang R, Xiao H, Bhattacharya K, Bitounis D, Demokritou P, McClements DJ. 2019. Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact 13:13-25. [Abstract(https://doi.org/10.1016/j.impact.2018.11.002)] NIEHS 2019
Zhao H, Osborne OJ, Lin S, Ji Z, Damoiseux R, Wang Y, et al. 2016. Lanthanide hydroxide nanoparticles induce angiogenesis via ROS-sensitive signaling. Small 12(32):4404-4411. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/27383397)] NIEHS 2016
Zhong Q, Zhou B, Ann DK, Minoo P, Liu Y, Banfalvi A, et al. 2011. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol 45(3):498-509. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21169555)] ARRA-NIEHS 2011
Zhou B, Buckley ST, Patel V, Liu Y, Luo J, Krishnaveni MS, et al. 2012. Troglitazone attenuates TGF-beta1-induced EMT in alveolar epithelial cells via a PPARgamma-independent mechanism. PLoS One 7(6):e38827. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22745681)] ARRA-NIEHS 2012
Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, et al. 2012. Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem 287(10):7026-7038. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22241478)] ARRA-NIEHS 2012
Zhou D, Ji Z, Jiang X, Dunphy DR, Brinker J, Keller AA. 2013. Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 8(11):e81239. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24282573)] NIEHS 2012
Zhou W, Baneyx F. 2011. Aqueous, protein-driven synthesis of transition metal-doped ZnS immuno-quantum dots. ACS Nano 5(10):8013-8018. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/21942544)] NIEHS 2011
Zhou W, Baneyx F. 2014. Biofabrication of ZnS:Mn luminescent nanocrystals using histidine, hexahistidine, and His-tagged proteins: a comparison study. Biochem Eng J 89:28-32. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/25013361)] NIEHS 2014
Zhou W, Moguche AO, Chiu D, Murali-Krishna K, Baneyx F. 2014. Just-in-time vaccines: biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8(+) T cell responses in mice. Nanomedicine 10(3):571-578. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/24275478)] NIEHS 2014
Zhou Z, Lenk RP, Dellinger A, Wilson SR, Sadler R, Kepley CL. 2010. Liposomal formulation of amphiphilic fullerene antioxidants. Bioconjug Chem 21(9):1656-1661. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/20839887)] ARRA-NIEHS 2010
Zhou Z, Son J, Harper B, Zhou Z, Harper S. 2015. Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish. Beilstein J Nanotechnol 6:1568-1579. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/26425408)] NIEHS 2015
Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. 2013. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46(3):622-631. [Abstract(http://www.ncbi.nlm.nih.gov/pubmed/22891796)] NIEHS 2013
Zhu W, von dem Bussche A, Yi X, Qiu Y, Wang Z, Weston P, et al. 2016. Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc Natl Acad Sci U S A 113(44):12374-12379. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/27791073)] NIEHS 2016
Zimmerman JF, Ardona HAM, Pyrgiotakis G, Dong J, Moudgil B, Demokritou P, Parker KK. 2019. Scatter enhanced phase contrast microscopy for discriminating mechanisms of active nanoparticle transport in living cells. Nano Lett 19(2):793-804. [Abstract(https://www.ncbi.nlm.nih.gov/pubmed/30616354)] NIEHS 2019

Most of the publications were funded through our Division of Extramural Research and Training (https://www.niehs.nih.gov/research/supported/index.cfm), which is simply denoted as NIEHS in the charts above. The NIEHS Centers for Nanotechnology Health Implications Research Consortium(https://www.niehs.nih.gov/research/supported/exposure/nanohealth/index.cfm) oversees most of this.

Some of these publications were funded, at least originally, through the American Recovery and Reinvestment Act of 2009 (ARRA) with NIEHS (https://recovery.nih.gov/) support.

The Division of Intramural Research(https://www.niehs.nih.gov/research/atniehs/dir/index.cfm) (DIR) and the National Toxicology Program(https://www.niehs.nih.gov/research/atniehs/dntp/index.cfm) (NTP) indicated in the Funding column have also conducted studies and published papers through NIEHS funding.

Back
to Top