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Lake Bidahochi fills as upper Colorado
Drainage extends to south (~6-7 Ma)

Lake overtops ‘Coconino’ divide and spills
down proto-Grand Canyon

Sequential filling of lakes in Western
Lake Mead Area (6-5.6 Ma)

Lake overtops ‘Black Canyon’ divide and
spills into Cottonwood Basin (6-5.6 Ma)

Lake overtops ‘Pyramid’ divide and fills
Mohave and Cottonwood Valleys (~5.6 Ma)

Lake overtops ‘Topock’ divide and
fills Chemehuevi Valley

Lake overtops ‘Buckskin’ divide and
fills Parker-Cibola Valley

Lake overtops ‘Chocolate’ divide and LCR
reaches developing Gulf of California

Kyle House, 2002
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Late Cenozoic Alluvial Stratigraphy
of the Lower Colorado River
near Laughlin, Nevada

Bullhead alluvium Strong soil

Te2

Chemehuevi Terrace
840' (256 m)

Mohave Terrace
720" (220 m)

\=

Mohave Alluvium

........................... Emerald
Terrace
560' (170 m) 3
Riviera
Terrace
520
(158 m) Colorado River

500' (152 m)

Tfy

Kyle House, 2002



Late Tertiary Transitional Stratigraphy—The Laughlin Bluffs

~ ‘Panda gravel

. -
> <

~ Bousemarl
Pyramid gravel

Fanglomerate =~ :

Axial gravel

Tbo .y.y
=
Base of axial gravel at 600’; Modern river at 500’ Kyle House, 2002




“Rain added to a river that is rank
Perforce will force it overflow its bank”

SHAKESPEARE
Venus and Adonis
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Colorado River near Grand Canyon, Ariz.

@ Colorado River neagr Lees Ferry, Ariz.
@ Colorado River near Cisco, Utah

Green River at Green River; Utah
Green River near Ouray, Utah
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Colorado River
near Topock, Ariz.

Colorado River . @
, . Colorado River
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near Green River, Wyo.
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Microtopography, hydrology, soll texture,
salt content and chemical redox state are
Interrelated in floodplains.

These edaphic properties result in a pattern
of mutually dependent plant and microbial
communities on geomorphic landscapes
which relate to the function of the floodplain
ecosystems.
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disturbed systems provides opportunltles to better
. restore these sites ln coordination with-ongoing

management and melntenance control programs.
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rise of H20 (cm)
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SEM images from Las Vegas Wash

(A) lenticular gypsum from By2
horizon (61-98 cm)

(B) tabular pseudo-hexagonal
gypsum By3 horizon (98-140 cm)

(C) lath gypsum from By2 horizon
(61-98 cm)

(D) euhedral, tabular pseudo-
hexagonal bloedite from surface
salt crust (0—1 cm)

(E) euhedral bladed bloedite from
Azn horizon (0-2 cm)

(F) twinned bladed bloedite from
Azn horizon (0-2 cm)

Salt Mineralogy of Las Vegas Wash, Nevada:
Morphology and Subsurface Evaporation

Brenda J. Buck,* Katherine Wolff, Douglas J. Merkler, and
Nancy J. McMillan

Published in Soil Sci. Soc. Am. J. 70:1639-1651 (2006).
Soil Mineralogy and Urban Soils
do0i:10.2136/sssaj2005.0276
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Table 7. LVW2 crystal habits.

Horizon Mineral Crystal habit Percenty
Azn 0-1 ¢m bloedite anhedral massive 100
cugsterite tabular rhomboidal 19
hexahydrite  bladed 15
halite anhedral massive 13
gypsum columnar T
thenardite hollow triangle 6
kainite foliated 3
lath 3
tabular hexagonal 2
acicular 100
tabular pseudo-hexagonal 33
anhedral massive 67
anhedral massive 100
tabular pseudo-hexagonal 100
anhedral massive 100
tabular pseudo-hexagonal 32
Ayzn 1-9 cm gypsum tabular pseudo-hexagonal 57
tablular hexagonal 29
lenticular 14
Byznl 9-20 cm gypsum tablular hexagonal 50
tabular pseudo-hexagonal 25
lenticular 25
Byzn2 20-62 cm gypsum lenticular 50
lath 38
tabular pseudo-hexagonal 12
2Byzn3 62-110 em  halite anhedral massive 73
hexahydrite  hopper 23
bloedite cubic 4
gypsum anhedral massive 91
tabular pseudo-hexagonal 9
tabular pseudo-hexagonal 86
bladed 14
tabular pseudo-hexagonal 100
2Byznd 110-127 em  gypsum lenticular 60
lath 28
tabular pseudo-hexagonal 12
2Byzn5 127-150 em  hexahydrite  anhedral massive 92
bloedite tabular pseudo-hexagonal 8
halite tabular pseudo-hexagonal 50
gypsum bladed 33
lenticular 17
anhedral massive 100
tabular pseudo-hexagonal 100

T Percentage determined by frequency of occurrence within the total SEM

images analyzed.



Interesting issues with hydric
soils in hypersaline
environments.

Classical indicators (iron oxides
and manganese oxides -

mottles) will not form in soils
with pH’s higher than 9.

Wil affect formal wetland
determinations.




Interesting issues with hydric
soils in hypersaline
environments.

Classical indicators (iron oxides
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Selenium cycle
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Se (-Il)
Selenides

HoSe
decomposes in
H20

Waterlogged acid soils -

Se (0)
Allopatric
forms of
elemental Se

Very insoluble
in HoO

Se (IV)
Selenites

Selenites
strongly
sorbed on
Fe203.xH20

Biological

Organic selenium compounds

-HoC-Se-CHo.

-H2C-S-Se-CH2o-

Se (VI)
Selenates

Selenates
very weakly
sorbed on
Fep03.xH20

» Aerated alkaline soils




Se concentration with depth

Depth
0-9¢m
9-20cm

Selenium Total

20-62 cm

62-110cm

Depth (Inches)

® Duck Creek - 110-127 cm

~>-DMWP 12
127-147 cm
Water Table

§) 8 10

Concentration (ug/qg)

Papelis, DRI, unpublished data




Water balance - Win - Wout = AW

W, - Water gains:

P - Precipitation

| - Irrigation

U - Upward capillary flow
R, - Runon

W, .- Water losses:

E - Evaporation from soil

T, - Transpiration from plants
R.# - Runoff

D - Downward drainage

AW - Change in storage:
AS - Change in water storage
AV - Change in vegetative mass

Precipitation/

Irrigation
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Transpiration Rate (mg m s1)
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April 22, 1994 ET (mm day™) April 13, 1996 ET (mm day)
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© Start Web Soil Survey
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o Know the Web Soil Survey
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Scientists studying biota are often interested in the time scales that
define how fast one ecosystem succeeds another after a disturbance.
Generally, this response time is tens to hundreds of years. In fact,
whether an ecosystem can ever reach steady state is a matter of debate.

If it is possible, steady state is a complex function of the extent and
frequency of disturbances such as fires and insect infestations.

Water, responds at the shortest time scales. Water moves both
downward (because of meteoric inputs) and upward (because of
evapotranspiration mediated by roots that often extend to depths of
tens of meters). Water residence times in soil are measured with stable
isotopes to decipher the interplay of “old” and “new” water. These water
types are characterized by long or short residence times varying from
tens of years to minutes.




Key links:

Climate Data:

Solls Data

Web Soil Survey:

NCSS Lab Data:

Soilweb Cal Davis:

Douglas J. Merkler
Area Resource Soil Scientist

USDA NRCS
(702) 262-9047 ex 106
email: doug.merkler@nv.usda.gov
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