Habitat Use by Bats along the Lower Colorado River

Beatriz Vizcarra, C. L. Chambers.

Lower Colorado River Multi-Species Conservation Program Objectives

 Conduct research to identify focal species habitat requirements.

 Conduct surveys to determine distribution of focal species

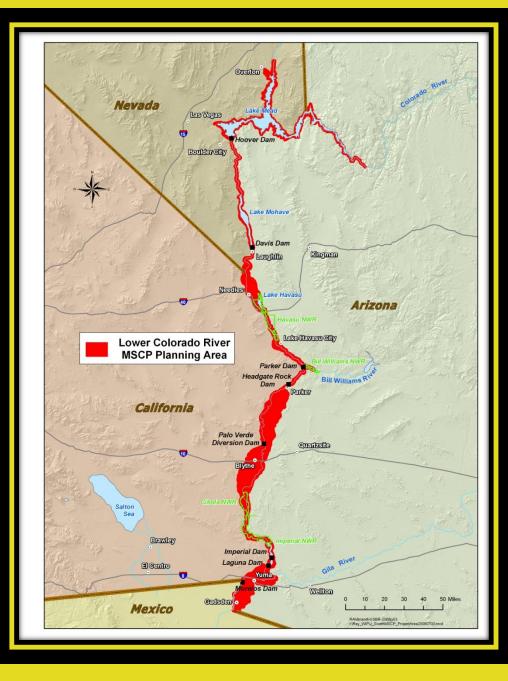
 Monitor and adaptively manage created habitat

Cave Roosting Species

MSCP Species

Tree Roosting Species

Study Objectives


1) To determine habitat use

2) Predict distribution of the four focal species within the study area.

3) Make recommendations for habitat restoration.

Study Area and Methods

72 sites X 2yrs X 4 vegetation types over 386km for 2 consecutive nights per site each of four seasons.

Vegetation Types

Salt cedar 40.4%

Vegetation Types

Cottonwood 3.2%

Mesquite 26.5%

Analook - [C:\Documents and Settings\acalvert\My Documents\Anabat data\Reference calls\Reference\COTO\D6222151.51#]	

📉 File Edit View Filter Tools Record Window Help

1	1		EUPE	EPFU	MYYU	50K	LABL	Replace		Save	D. CL	LODIT
			CUFC	EFFU	MITU	2017	LADL	nepiace		Save	pun+	LCR bats
				TABR	MYCA	40K	LAXA	Edit	Undo	Save	Buf2+	
				NYMA	MYOC	20-25K	MACA	Load	Chara	Save	Buf3-	
				NYFE	ANPA	JUNK	сото	Save As	Clear	Save	Buf4-	

Acoustic Sampling

	Filetime: 20030622 2151 51 N point:	s displayed: 1032				Filter: none	7.743 650s 119.7kHz st= 924
Notes		opec j	Lon 0.00000 E Alt 0 m				
Tape Specie	CF0001 Date 20030622	Loc Budweiser Spring, Mojave Ntnl Preserve, Spec	Lat 0.00000 N				
0		2000 3000 4000	5000 6000	7000 8000	9000 10000) 11000 12000	13000 14000 150
cycs							
5k							
10k :							
136							
15k-							
20k-							
25k-							
30k-							
35k				· · · · ·			
40k							
45k-				la de la composición de la composición Na composición de la c			
50k-							//
55k-							
60k-							63
65k-							3° 601
70k-							o o la
75k							and a second
80k-							· 1000
85k-							
90k-							
95k							
100k-							
105k-							
110k							
115k-							

	/Start 🛛 🕥 🏉 🔇 👋	🏉 😢 ᠉ 🛛 🟉 AOL Mail (1) - Windows I 🛛 🕞 Inbox - Microsoft Outlool	📄 🗁 monitoring and research 🔁 Survey and Habitat Char	🔁 Effects of Abiotic Factor	📩 Insect Population Biology	<u> Analook - [C:\Docum</u>	🦉 LAXA screen shot.bm
--	------------------	--	---	-----------------------------	-----------------------------	-----------------------------	-----------------------

🕞 🕵 🔮 🗞 🇞 🛞 🙁 2:49 PM

Occupancy Modeling

- Uses presence/absence of a species
- Needs a large sample size (>100)
- Predicts the probability of detection and occurrence of a species
- Models created *a-priory* based on expert opinion and literature research.

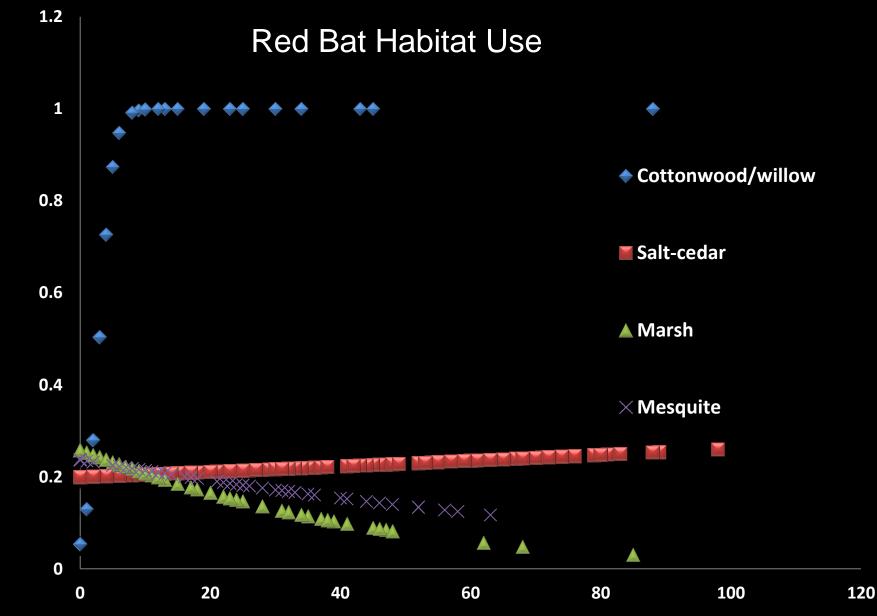
Detection Covariates

Average Temperature *Minimum Temperature Maximum Temperature **Daily Precipitation** Average Wind speed Maximum Wind speed **Moon Phase** Year *2 Seasons (warm vs. cold) *4 Seasons **Individual Survey event**

Occupancy Covariates

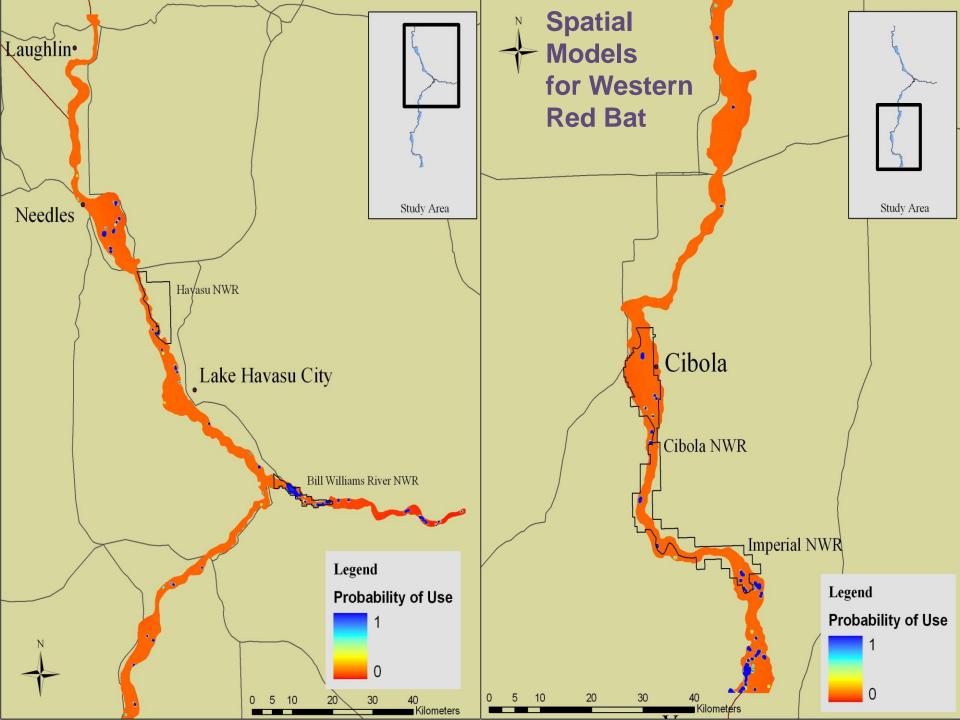
Distance to:

- •Dams
- •Bridges
- Mines
- •Known mine and cave roosts
- Potential roosts
- •River
- Percent area of:
- •Salt-cedar
- Marsh
- Cottonwood/willow
- Mesquite
- •Native plants
- •Water sources
- Human population density


Results

Greater occupancy in cottonwood and willow standsGreater occupancy near river

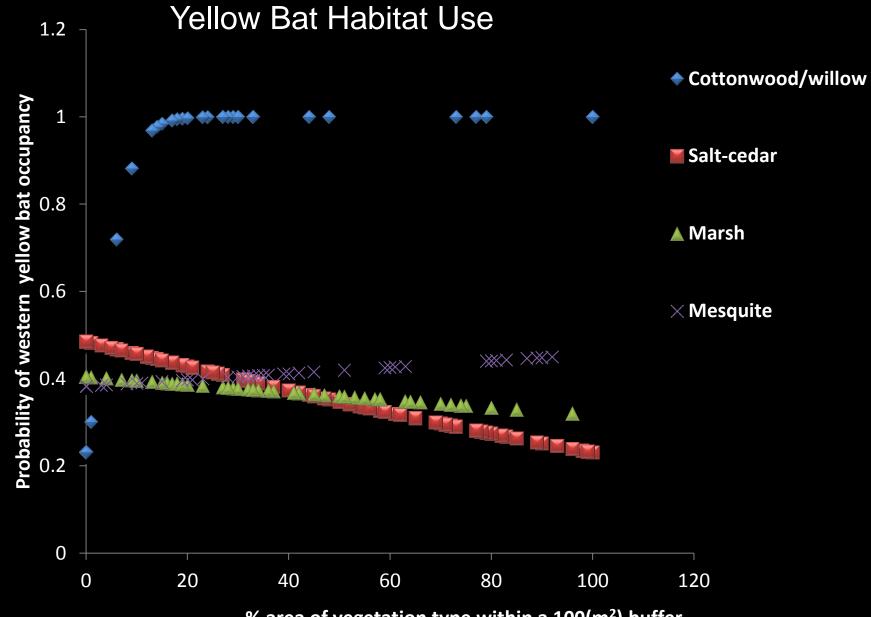
 \$\mu\$: Probability of occupancy \$\mu\$: Probability of detection 	AIC _C	ΔAIC _c	Wi
 <i>ψ</i> Cottonwood/willow <i>p</i>(minimum temperature + 4Seasons) 	323.25	0.00	0.70
2. ψ Cottonwood/willow + proximity to river p(minimum temperature + 4Seasons)	324.91	1.66	0.30



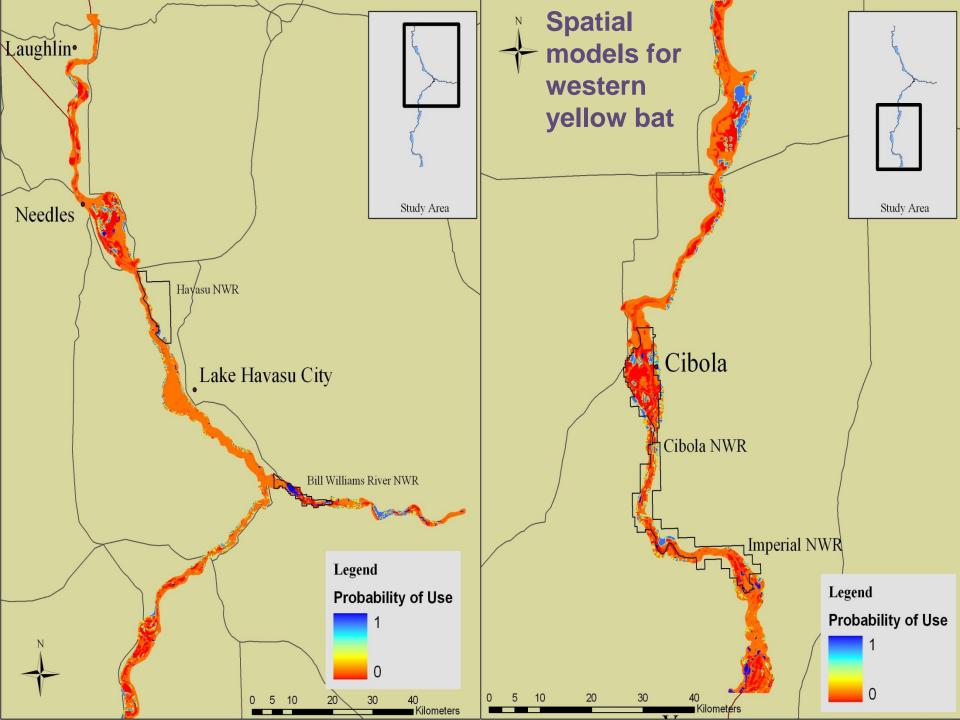
• All models performed better than the global and null

% area of vegetation type within a 300m


Probability of western red bat occupancy

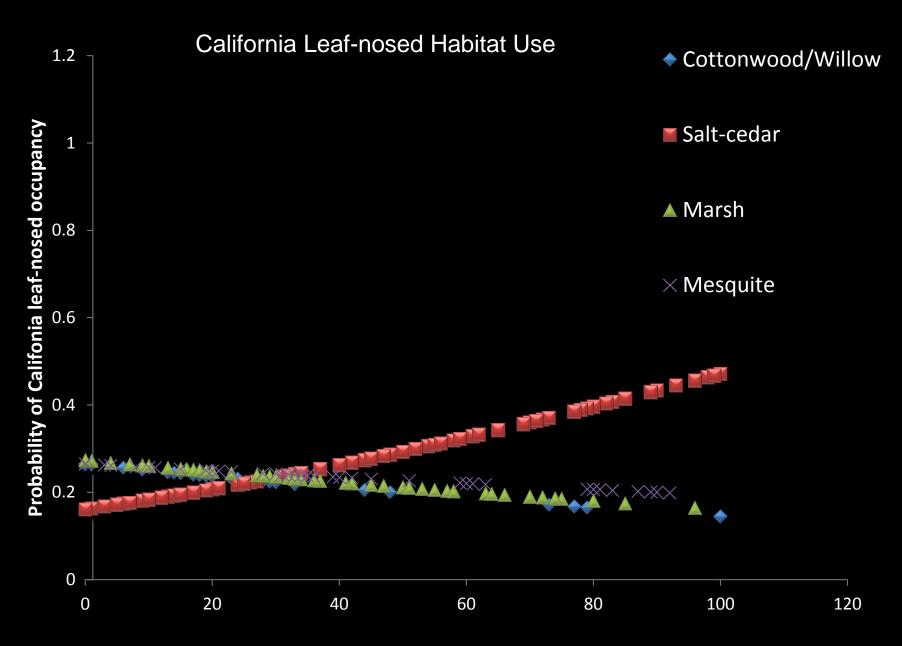

Results

- •Greater occupancy in cottonwood and willow stands
- •Greater occupancy in native vegetation
- Less occupancy in salt-cedar vegetation

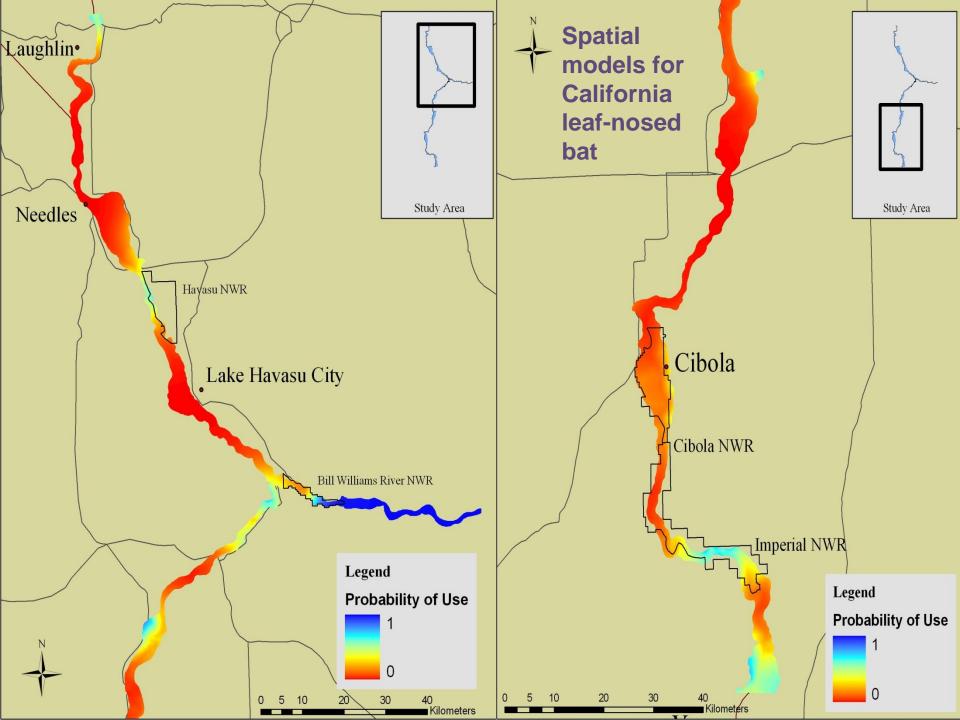

$oldsymbol{\psi}$: Probability of occupancy	AIC _c	ΔAIC _c	Wi
<i>p</i> : Probability of detection			
1. ψ Cottonwood/willow + Native			
p (minimum temperature + 2Seasons)	467.68	0.00	0.67
2. ψ Cottonwood/willow + Salt-cedar(-)			
p (minimum temperature + 2Seasons)	469.56	1.88	0.26

All models performed better than the global and null

% area of vegetation type within a 100(m²) buffer



Results

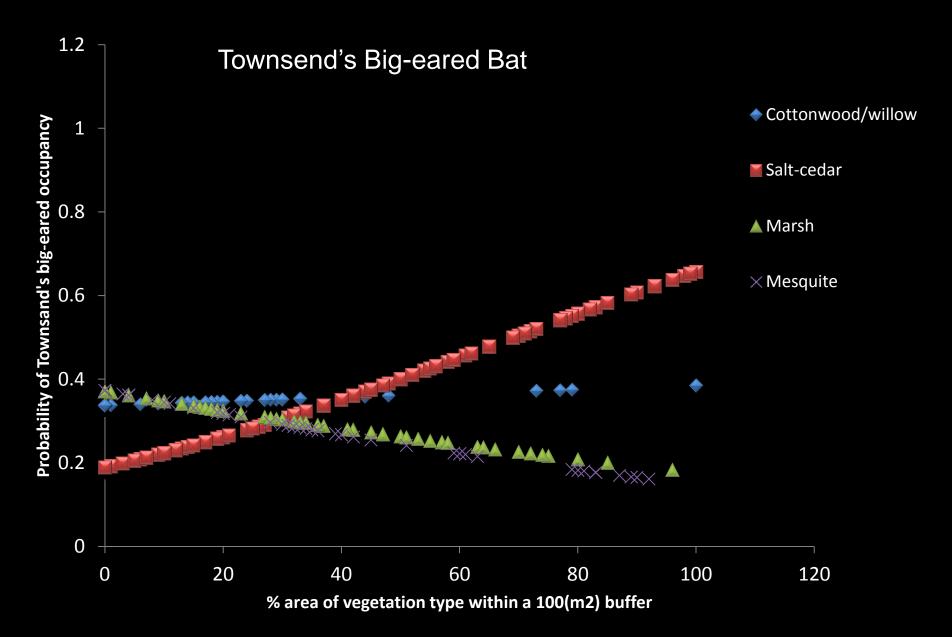

 Greater occupancy near river Greater occupancy near roost 			
 <i>ψ</i> : Probability of occupancy <i>p</i> : Probability of detection 	AIC _c	ΔAIC _C	Wi
1. ψ Proximity to River + Proximity to roost			
p (minimum temperature + 4Seasons)	355.68	0.00	0.88

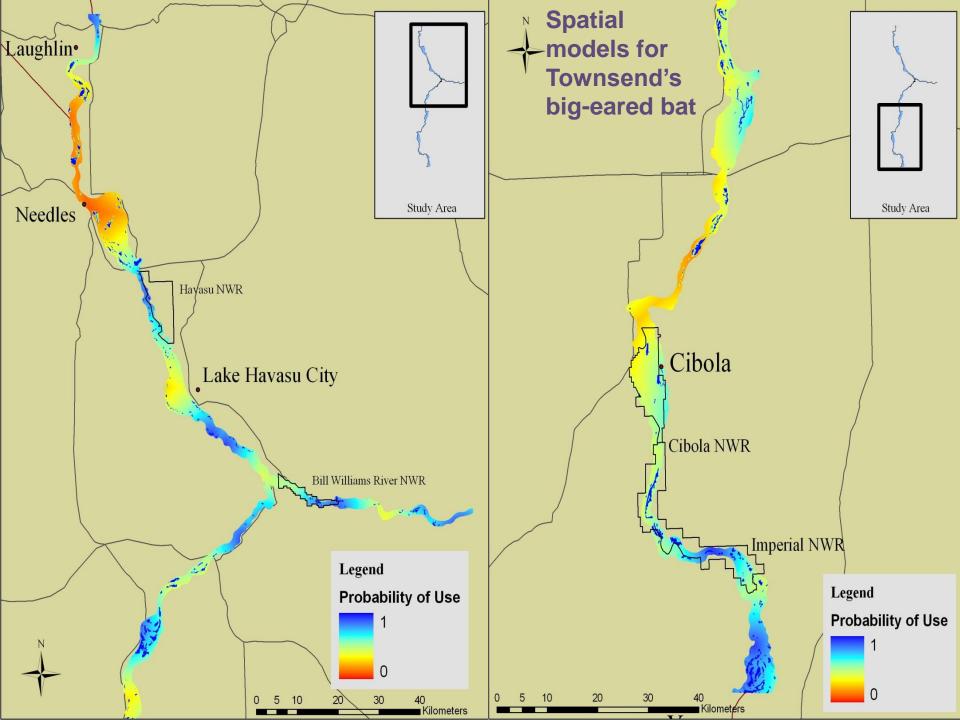
California Leaf-nosed Bat

All models performed better than the global and null

% area of vegetation type within a 100(m²) buffer

Results


- •Greater occupancy in salt-cedar
- •Greater occupancy near mines
- Less occupancy with higher population density


$oldsymbol{\psi}$: Probability of occupancy	AICC	ΔΑΙϹϹ	Wi
<i>p</i> : Probability of detection			
1. ψ Salt-cedar + Proximity to mines			
<i>p</i> (minimum temperature + 2Seasons)	303.38	0.00	0.57
2. ψ Salt-cedar + Human population density(-)			
p (minimum temperature + 2Seasons)	305.74	2.36	0.17

Townsend's Big-eared Bat

• All models performed better than the global and null

Management Recommendations for Tree Roosting Bats

• Establishment of cottonwood and willow habitat and to a lesser extent mesquite.

• Removal of saltcedar should take place only if it is replaced by native vegetation.

Management Recommendations for Cave Roosting Bats

Continue monitoring of California leaf-nosed bat roosts

- Evaluation of mines within the LCR MSCP project area should continue in order to identify any unknown Townsend's big-eared bat roosts.
- Roosts accessible to the public should be gated.
- All known roosts for any of these species should be protected.

Special Thanks to:

 Chris Corben Kym Livengood Drs. Patricia Brown and Bob Berry Theresa Olson (LCR-BR) Allen Calvert (LCR-BR) •Stacy Crowe (LCR-BR) •Ray Ahlbrandt (LCR-BR) Steven McQueen (AZGFD) Michael Ingraldi (AZGFD) •Tim Snow (AZGFD) Sybill Amelon (USFS) •Cecilia Vigil (AWC) Alex Ramsower (AWC)

