Seeding Project at Cibola National Wildlife Refuge

Results from four years of seeding projects.

Matt Grabau 26 January, 2011

Potential Benefits of Native Seed Application

- Preservation and enhancement of genetic diversity (Winfield and Hughes, 2002; Landis et al. 2003).
- Potential for very high planting densities:
 - Improved native species habitat?
 - Increased competitive advantage over saltcedar and other undesired species?
- Economic efficiency.

Study Objectives

- Analyze the feasibility of direct seeding of riparian species for revegetation:
 - Determine effects of seed treatment and storage methods on long-term viability and vigor of riparian tree seed.
 - Determine the effects of: soil conditions; seeding rates; seed cleaning; and seeding methods on tree establishment and growth.
 - 3. Optimize irrigation methods for tree establishment.
 - Determine establishment rates for different seed application methods and rates.

Study Phases

- Laboratory and greenhouse study of seed storage.
- Controlled environment (greenhouse) seeding study.
- Small-scale field study plots at Cibola NWR—scope of this presentation.

Phase 3 Small-scale (20' by 40' Plots) Field Study Chronology

- 2007 Plots: Direct seeding a mix of Fremont cottonwood (20%), Goodding's willow (40%), and coyote willow (40%).
- 2008 and 2009 Plots: Direct seeding Goodding's willow alone:
 - Different seeding and surface irrigation methods— 2008.
 - Variable seeding rates—2009.

Field Study Location

2007 Small-scale Field Study Matrix

Early-Time Sprinkler Irrigation	Seeding Method	Surface Irrigation Method	
Three Weeks (Y)	Hydroseed Un -Cleaned Seed (UH)	Furrow (F)	
None	Hydroseed Cleaned Seed (CH)	Border (Small-	
(N)	Broadcast Cleaned Seed (CB)	Scale Basin) (B)	

■ Analyze
seeding of ~125
PLS/ft² as 25
Fremont
cottonwood, 50
Goodding's
willow, 50
coyote willow.

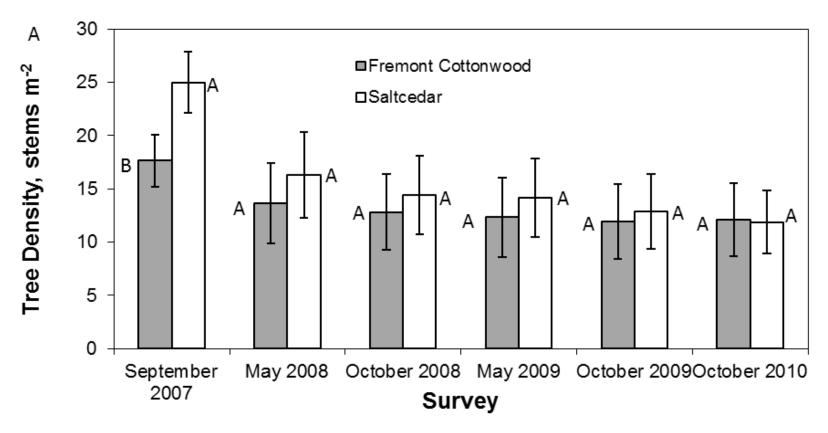
Note for 2007 results:

- Very poor establishment of Goodding's and coyote willow created various problems with sampling and statistical design.
- Focus on Fremont cottonwood for 2007 study plots.

Seeding Method Effects (ANOVA Modeling)

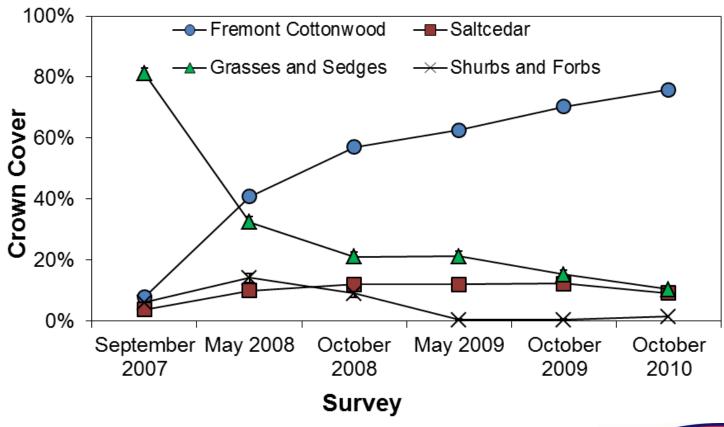
	Fremont Cottonwood	
Results	Establishment, Stems m ⁻²	Above-ground Dry Biomass, g m ⁻²
Seed Treatment	Least-squared Means and Significant Differences (Student's t-test)	
Un-cleaned Hydroseed	24.03 A	65.45 A
Cleaned Hydroseed	12.79 B	44.66 AB
Cleaned Broadcast	16.07 AB	25.47 B

 Hydroseeding (un-cleaned seed) resulted in highest cottonwood establishment.


No significant effects of irrigation methods (sprinklers or

Multi-Species Conservation

furrows).


Long-term Vegetation Observations: Tree Density Over 4 Growing Seasons

Long-term Vegetation Observations: Crown Cover Over 4 Growing Seasons

One Growing Season

Two Growing Seasons

GSA

2008 Small-scale Field Study Matrix

Seeding Method	Surface Irrigation Method
Hydroseed Un -Cleaned Seed (UH)	Furrow (F)
Broadcast Cleaned Seed (CB)	Border (Small- Scale Basin) (B)

Objective:

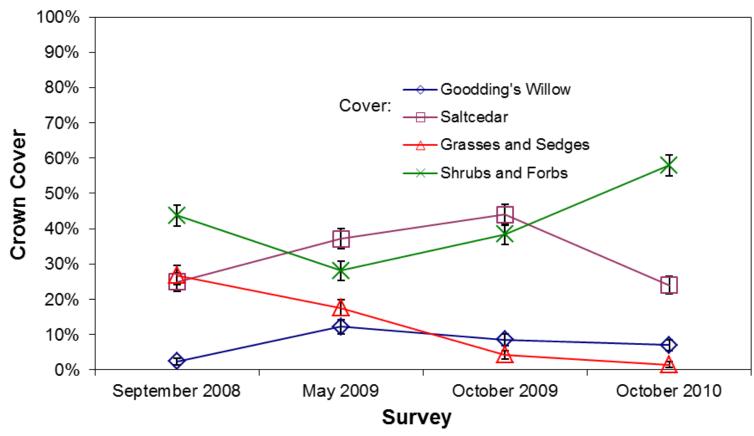
- Attempt to enhance willow establishment by:
 - Removing cottonwood from the seed mix.
 - Enhancing grass control.
- Goodding's willow seeded at approximately 150 PLS/ft².

2008 Plots: Seeding Method Effects

	Goodding's Willow		
Results	Establishment, Stems m ⁻²	Canopy Cover, %	
Seed Treatment	Least-squared Means and Significant Differences (Student's t-test)		
Un-cleaned Hydroseed	14.90 A	10.0 A	
Cleaned Broadcast	3.76 B	3.4 B	

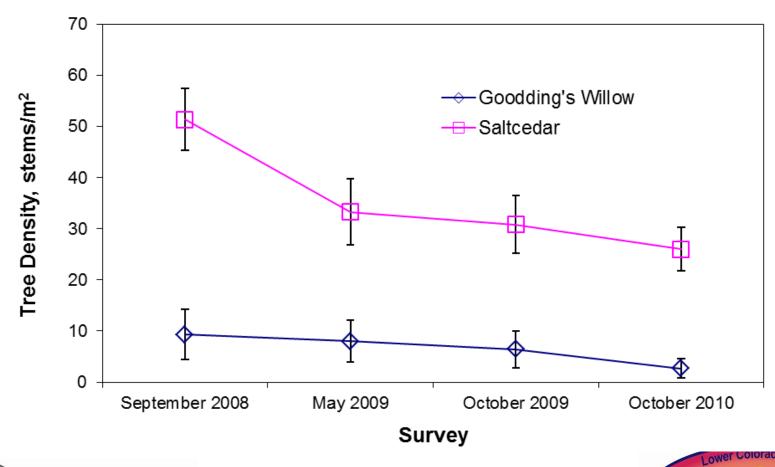
 Hydroseeding (un-cleaned seed) resulted in ~3X higher Goodding's willow establishment.

2008 Plots: Surface Irrigation Effects


	Tree Density, Stems m ⁻²		Canopy Cover, %	
Results	Goodding's Willow	Saltcedar	Goodding's Willow	Saltcedar
Surface Irrigation Method	Signif		ared Means ar nces (Studen	
Border	9.1 A	56 A	6.3 A	48 A
Furrow	9.6 A	47 A	7.1 A	41 A

- Surface irrigation method did not affect establishment.
- Much higher density of saltcedar than Goodding's willow.

Multi-Species Conservation


Long-term Vegetation Observations: Crown Cover Over 3 Growing Seasons

Long-term Vegetation Observations: Tree Density Over 3 Growing Seasons

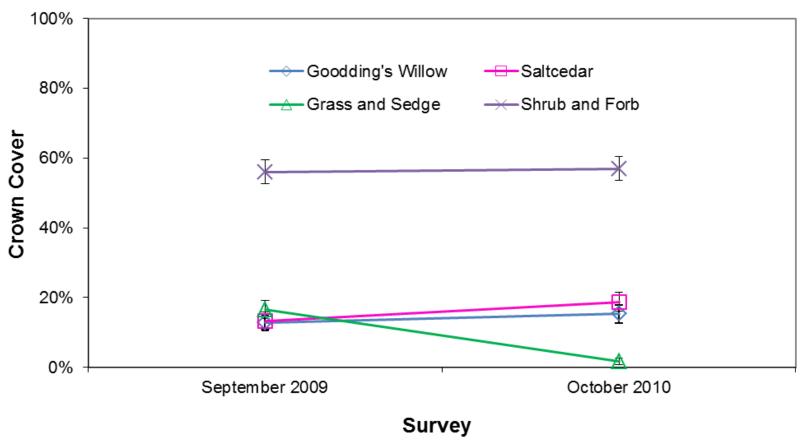
Multi-Species Conservation Pro

2009 Small-scale Field Study Matrix

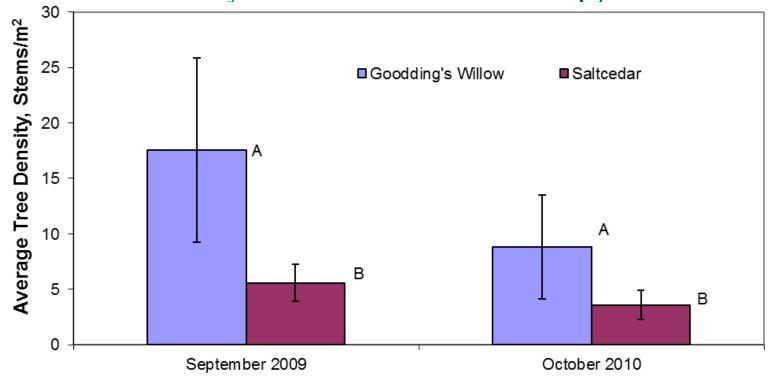
Seeding Method	Surface Irrigation Method	Seeding Rate (PLS/ft ² Goodding's Willow)
Hydroseed	Furrow	50
Un-Cleaned		100
Seed		150


Objective:

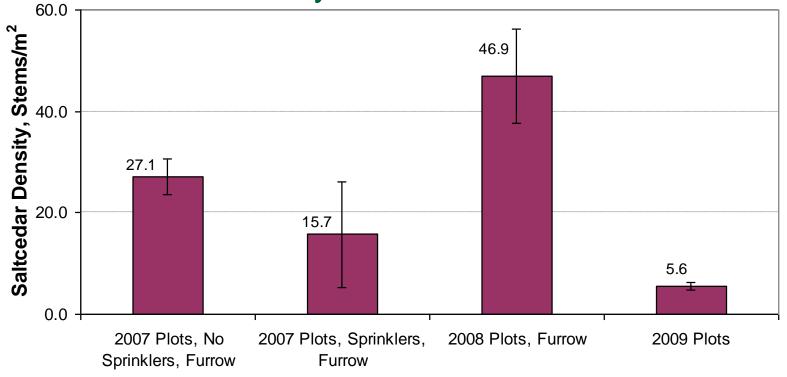
1. Refine establishment estimates and seeding rate effects for hydroseeding onto furrows.


2009 Study Results: Tree Density after One Growing Season

Multi-Species Conservation


"Long-term" Vegetation Observations: Crown Cover Over 2 Growing Seasons

"Long-term" Vegetation Observations: Tree Density Over 2 Growing Seasons



Survey ~50% mortality for willow. ~37% for saltcedar.

Saltcedar Density vs. Years for Furrows

Year and Irrigation Method

- Year 1: Poor grass control, high cottonwood density. Filtration for sprinklers.
- Year 2: Excellent grass control, no cottonwood.
- Year 3: Excellent grass control, large-scale clearing of saltcedar in Cibola NWR Farm Unit.

Conclusions: Phase 3 Small-scale Field Study

- Sprinklers are NOT necessary.
- Cottonwood establishment of over 10% for un-cleaned hydroseed.
- Goodding's willow establishment expected between 1 and 2%.
 - Note: very high seeding rates are likely economically feasible.
- Very high grass and saltcedar establishment compared to seeded species (2007 and 2008 plots), reduced saltcedar establishment in 2009 plots.
- Fremont cottonwood is out-competing saltcedar.
- Saltcedar at high density is out-competing Goodding's willow.

Multi-Species Conservation

Competition at similar densities is uncertain.

Study Conclusions and Recommendations

- Seed storage duration is not limiting.
- Soil conditions (salinity, bulk density, texture and fertility) should be analyzed in field restoration sites prior to seeding (go/no-go decision).
- Fremont cottonwood will likely need to be seeded separately from willow species, or within seed mixes at very low rates.
- Volunteer vegetation controls might be needed, and can include:
 - Reduction of the existing seedbank.
 - Application of grass-specific herbicide during the first year.
 - Management of saltcedar seed dispersal near the site.
 - Removal of saltcedar during the first year.

Direct Seeding or Not?

Benefits:

- Increase in genetic, sexual, and structural diversity.
- Decrease of 30% to 50% in costs compared to rooted cuttings at 10X the tree density (<\$0.05 per tree) (GSA 2010).
- High density establishment possible for cottonwood and willow—just apply the density you require.

Remaining questions:

- Can willow seedlings survive long-term?
- What would scaling effects be?
- What are the site-specific effects?

Current Efforts

- In conjunction with The Sonoran Institute, a demonstration project is being implemented in Baja California, Mexico.
 - Fremont cottonwood and Goodding's willow seeding on a five-acre site.
- Interest in site-specific effects, particularly for Goodding's willow.
- Nursery production of seedlings?

Acknowledgments

- The Bureau of Reclamation
- Cibola NWR, Bill Williams NWR, Havasu National Wildlife Refuge
- The University of Arizona Office of Arid Land Studies

