MIGRATORY CONNECTIVITY OF WILLOW FLYCATCHER SUBSPECIES

Eben H. Paxton

USGS Southwest Biological Science Center, Flagstaff, AZ

Northern Arizona University, Biological Sciences, Flagstaff, AZ

Southwestern Willow Flycatcher (Empidonax traillii extimus)

- Declared endangered species in 1995
- Focus on breeding ground threats
- Neotropical migrant, spends < 1/3 of year on breeding grounds
- Understanding where they winter and migrate is important for long-term management and recovery

Migratory connectivity: breeding, wintering, migration

• Migratory movements connect different regions (Webster et al. 2002)

Strength of connectivity is key to understanding how different regions may influence SW subspecies

- Migratory connectivity has important consequences to population dynamics
 - Carryover effects
 - Population limitation
 - Migratory pathways

Documenting connectivity

Ideally, track individuals

- Using extrinsic markers
- Impossible for most species
- Difficult and expensive for others

Alternatively, track populations

- Use intrinsic markers to link populations
- Population-level identification

Willow Flycatcher (Empidonax traillii) subspecies

- Distinct populations 4 subspecies recognized
- Subspecies differ in many ways, including genetics and plumage coloration

Significant differences among subspecies, but differences not absolute

Winter distribution of Willow Flycatcher subspecies

Mitochondrial DNA

- 172 wintering birds from43 sites, 5 countries
- Compared to 316
 breeding individuals from 91 sites

- Mixed-Stock Analysis
- Calculated haplotype frequency / subspecies
- Estimated contribution of each subspecies to each wintering region

Moderate to strong connectivity

- Each subspecies occupies a finite portion of the wintering grounds, but with overlapping ranges
- Confidence intervals around estimates are large, but general pattern strong

- Southwestern subspecies only detected in Costa Rica (estimated 6% of Costa Rica population)
- Reverse analysis suggests most SW flycatchers winter in Costa Rica
- Collaboration from 2 banded birds
- But, more sampling needed

Survivorship across the annual cycle

Strong connectivity allows us to combine demographic studies from breeding grounds (Arizona) and winter grounds (Costa Rica) to estimate survivorship during migration

Overall, 66% annual survivorship = 34% annual mortality

By season:

- 8% annual mortality on breeding grounds
- 28% on wintering grounds
- 64% occurs during migration, only ~ ¼ of year

Results consistent with other studies, suggests that migration is a time of high mortality and could limit population growth

What are the migratory pathways of the SW flycatcher?

Plumage coloration differences among subspecies

A colorimeter was used to quantify the differences in plumage coloration among subspecies

- 374 adult flycatchers from 29 breeding sites, 2004-2005
- Migrants along the Lower Colorado River

Significant differences among subspecies for each color value

3 color measurements of crown

MANOVA: Wilks' lambda = 0.358, approx. F_{18,886} = 21.56, P < 0.001

Plumage coloration differences among subspecies

Western subspecies breeding sites clustered together, eastern subspecies breeding sites dispersed

Eastern subspecies rare migrant in west

Migrants along the Colorado River

Assigned migrants to one of three western subspecies

92% correct assignment at high accuracy threshold

Applied model to 83 migrants

2 stopover locations:

- Mexico (Delta)
 - Arizona (Yuma and Imperial NWR)

Migrants along the Colorado River

Different stopover sites have different proportion of subspecies

- Different migration routes
- Different timing

Migration pathways and important stopover sites

Colorado River is believed to be major migration corridor for Willow Flycatchers, but mostly non-SW subspecies

- Large proportion of extimus at Arizona sites surprising
- These results suggest LCR important for SW flycatcher

We still have much to learn about migration pathways in SW

- Need sampling throughout migration season
- Many more areas
- Evaluate feasibility of Fall migration

Plumage coloration + genetics = stronger prediction

Acknowledgements

Funding provided by the U.S. Geological Survey, Northern Arizona University, Bureau of Reclamation, Phoenix Office, and U.S. Fish and Wildlife Service

Collaboration between USGS and

- Tom Koronkiewicz and Mary Anne McLeod, SWCA Environmental Consultants
- Mary Whitfield, Southern Sierra Research Station

The help of many people, particularly: Mark Sogge, Tad Theimer, Paul Keim, Kristina Paxton, USGS Willow Flycatcher Banding Team, Amanda Bakian, Caroline Causey, Osvel Hinojosa-Huerta, Matt Johnson, Chris McCreedy, Gary Slater, Scott Stoleson, and Phil Unitt for assistance in study design and analysis and/or sampling specific locations.

