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EXECUTIVE SUMMARY 
 

In 2006 the Department of Energy (DOE) Leadership Computing Facility (LCF) at the Oak Ridge 

National Laboratory (ORNL) National Center for Computational Sciences (NCCS) elicited petascale 

computational science requirements from leading computational scientists in the international science 

community. Targeted were those scientific teams whose projects were recipients of large computer 

allocation awards on DOE LCF systems (such as the ORNL NCCS) and National Science Foundation 

(NSF) Centers. The overwhelming response from this distinguished group of scientists was a call for a 

balanced, well-integrated, and reliable system.  

We found, not surprisingly, that each of approximate dozen principal LCF system attributes is 

interdependent upon one another. With scientific discovery as the principal objective, greatly increasing 

the potential of one particular attribute (e.g., peak flops) can and should only be done while 

simultaneously increasing other attributes (e.g., memory) having a “shared fate,” thus the need for a 

“balanced” system. Each system attribute (e.g., peak flops, mean time to interrupt, network bandwidth, 

node memory, local storage, archival storage, memory latency, communication latency, disk latency, 

interconnect bandwidth, memory bandwidth, disk bandwidth) cannot be considered and optimized in 

isolation. 

Requirements elication, analysis, validation, and management is a difficult and inexact process. It is 

especially difficult when reliable, quantitative extrapolations are sought. The results of this first annual 

leadership computational science requirements elication and analysis by the ORNL NCCS are more 

qualitative in nature (e.g., science achievable at the petascale), but important nevertheless. As this annual 

process continues, the analyses and extrapolations will become more quantitative and actionable. With 

that said, the analysis contained herein did lead to tangible, actionable decisions for the ORNL NCCS 

(e.g., required local and archival I/O bandwidth and capacity).  

Based on interactions with leading scientists in the field, the LCF system attributes expected to have 

the greatest impact on existing and developing science applications have been identified. In the area of 

system hardware, the attributes found to be most critical to maximizing the potential for breakthrough 

science were peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and 

memory bandwidth. Scientific applications of course impose requirements on the LCF systems, but the 

LCF systems, in fact, impose real requirements on the applications as well. For applications to execute 

efficiently on LCF systems, for example, they must possess algorithm and software attributes such as  

105–106 task and hybrid (task/thread) parallelism, multilevel (in time and space) linear/nonlinear solution 

techniques, multiphysics coupling and time integration schemes, data structures that minimize bandwidth 

and maximize locality, and efficient parallel I/O. 
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We conclude with recommendations for the computing capabilities that scientists will need in future 

LCF systems. Scientific discoveries and breakthroughs cannot be “planned” with LCF systems, but by 

optimally matching these systems with the scientific needs and goals, discoveries and new levels of 

fundamental understanding are virtually guaranteed. The HPC and computational science communities 

now are truly at the forefront of a very exciting scientific renaissance. 
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INTRODUCTION 
 

Refining requirements is a two-way street. The code developers must understand the 

petascale computer’s capabilities and limitations, and HPC architects must understand the 

needs of a wide variety of science domain codes. 

 

A requirement is a condition or capability needed by a user to solve a problem or achieve an 

objective. A requirement is also a condition or capability that must be met or possessed by a system to 

satisfy a contract, standard, specification, or other formally imposed document. Both definitions apply for 

the breakthrough computational science requirements used in the design, procurement, deployment, and 

operation of the Department of Energy (DOE) Leadership Computing Facility (LCF) at the National 

Center for Computational Sciences (NCCS). This document contains critical leadership computational 

science requirements for the key science areas of interest to the DOE, for improved science quality and 

productivity, for higher fidelity physical model and numerical algorithm requirements, for more efficient 

and higher quality software, and for in-depth data analytics and work flow. 

By articulating these requirements and using them to manage and arbitrate decisions, the NCCS will 

align LCF systems to the maximum extent possible with the needs and goals of the breakthrough science 

projects using these resources. LCF requirements for the NCCS apply to the entire end-to-end analysis 

process that scientists follow when using the NCCS facilities. This process comprises system hardware, 

system software, the integrated development environment, and the problem-solving environment that 

includes data analysis, management, and visualization. We expect that effective requirements 

development, management, and planning will positively influence the design, procurement, deployment, 

and operation of an NCCS system by improving the quality, quantity, or fidelity of the output of one or 

more breakthrough science simulation applications in a measurable way. For requirements to be useful to 

the NCCS, they must be actionable and as quantitative as possible without being solutions themselves. In 

reality, requirements flow in both directions: applications impose requirements on the LCF systems, and 

the LCF systems in turn impose requirements upon the applications. 

A valid requirements process must follow three basic steps: planning, development, and management. 

The NCCS requirements effort in 2006 was principally devoted to establishing the methods by which the 

three-step requirements process is executed, and to initiating the first step in the requirements process—

requirements development. Elicitation is key in requirements development. It is the ongoing process of 

analyzing existing documentation (see refs. 1–7 at the end of this section) and interviewing stakeholders. 
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Information from stakeholders was elicited with three separate surveys that were derived and/or given 

directly to the science project team members. These surveys were 

• A requirements survey constructed and collected by the Application Requirements Council 

(ARC) (see Appendix C); 

• A code project survey constructed by the ASCAC subpanel on science metrics for the Advanced 

Scientific Computing Research (ASCR) computing facility metrics (see Appendix D); and  

• Answers to science and code questions from LCF and Innovative and Novel Computational 

Impact on Theory and Experiment (INCITE) project proposal applications (see Appendix E). 

For the 22 projects allocated on the NCCS LCF systems in 2006, 8 projects responded to the ARC 

survey, 19 responded to the ASCAC survey, and all 22 filled out proposal applications (necessary for 

allocation awards). Answers to these surveys helped to define requirements from the following points of 

reference: science motivation and impact, science quality and productivity, application models, 

application algorithms, application software, application footprint, and data management and analysis. 

Requirements in general fall into four categories: 

• Business (“why”) requirements reflect the goals and objectives of the organization. Sources 

include project sponsors and key clients. Business requirements are described in project charters 

and vision statements. 

• Functional (“what”) requirements dictate what the product must do. Sources include end users, 

customers, regulations, and internal brainstorming. Functional requirements are found in use 

cases, specifications, interview notes, and models.  

• Quality (“how well”) requirements define the properties that the product must have: look and 

feel, usability, performance, operational environment, maintainability and portability, security, 

etc. Sources include end users, standards, and support teams. Quality requirements are found in 

models, specifications, use cases, and notes.  

• Design (“how”) requirements depict imposed design choices. Design requirements are found in 

models, specifications, and high-level designs. 

In a broad sense, science motivation and impact reflect business requirements; science quality and 

productivity reflect quality requirements; application models reflect functional requirements; and 

algorithm, software, application footprint, and data analysis/management reflect design requirements. The 

elicitation process yields a series of documented responses that represent potential LCF requirements. 

These responses must then be analyzed and validated to ensure that they will result in workable 

requirements. Good requirements must be unambiguous, testable, correct, in scope, modifiable, feasible, 

traceable, written in clear (customer’s) language, acceptable to all clients, and not themselves a solution. 
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Science Drivers 

Over the past 5 years, DOE’s Office of Science (SC), Scientific Discovery through Advanced 

Computing (SciDAC) Program, has achieved simulation-based scientific accomplishments through 

focused collaboration and active partnership of domain scientists, applied mathematicians, and computer 

scientists. The LCF at NCCS has played a role in many of these successes (e.g., nanoscience, accelerator 

design, astrophysics, chemistry, combustion, climate modeling, and fusion). Even more compelling 

opportunities for scientific discovery have fostered the new SciDAC-2 Program in which a series of 

coordinated investments across all DOE/SC Programs (Basic Energy Sciences, Biological and 

Environment Research, Fusion Energy Sciences, High-Energy Physics, and Nuclear Physics) promises to 

further the achievement of breakthrough science through (1) focusing efforts on scientific applications in 

specific domains and (2) enabling technologies in computer science, software infrastructure, and applied 

mathematics through centers for enabling technologies (CETs), university-led institutes, and scientific 

application partnerships (SAPs). SciDAC-2 thrust areas (with examples) include accelerator science 

[International Linear Collider (ILC) design], astrophysics (understanding of nucleosynthesis), climate 

modeling (global carbon cycle prediction), biology (protein interaction networks), fusion [International 

Thermonuclear Experimental Reactor (ITER) design], groundwater (subsurface reactive transport), high 

energy physics (dark universe and neutrinos), nuclear physics [National Nuclear Security Agency 

(NNSA) physics], and quantum chromodynamics (QCD) (lattice gauge theory). Other science areas ripe 

for discovery include nanoscience, chemistry, nuclear energy, and manufacturing (Table 1). 
 

Table 1. Science drivers projects receiving a 2006 allocation  
on LCF systems at the NCCS 

Science 
domain Example science driver 

Accelerator 
physics 

Evaluate and optimize a new low-loss cavity design for the International Linear Collider (ILC) that 
has a lower operating cost and higher performance than existing designs. 

Astrophysics 

Determine the explosion mechanism of core-collapse supernova, one of the universe’s most 
important sites for nucleosynthesis and galactic chemical enrichment. 
Determine details of the explosion mechanism of Type Ia supernova (thermonuclear explosions of 
white dwarf stars), helping to determine key characteristics for their use as standard candles for 
cosmology. 

Biology Help address the current oil and gasoline crisis by studying the ethanol option, including the most 
efficient means of converting cellulose to ethanol. 

Chemistry Study the catalytic transformation of hydrocarbons, clean energy and hydrogen production and 
storage, and the chemistry of transition metal clusters, including metal oxide. 

Climate 

Focus on the Grand Challenge of climate change science: predict future climates based on 
scenarios of anthropogenic emissions and other changes resulting from options in energy policies. 
Simulate the dynamic ecological and chemical evolution the climate system. 
Develop, deliver, and support the Community Climate System Model (CCSM). 
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Table 1 (continued) 

Science 
domain Example science driver 

Combustion Develop cleaner-burning, more efficient devices for combustion. 

Engineering 

Develop and correlate/validate large-scale computational tools for flight vehicles. 
Demonstrate the applicability and predictive accuracy of computational fluid dynamics (CFD) 
tools in a production environment. 
Investigate flight vehicle phenomena such as fluid-structure/flutter interaction, and control surface 
free-plays. 

Fusion 

Resolve fundamental science and engineering questions in fusion reactor technology.  
Understand interactions that both RF wave and particle sources have on extended MHD 
phenomena. 
Understand and control plasma turbulent fluctuations that can cause loss of heat needed to 
maintain the fusion reaction. 

High energy 
physics 

Seek to find the Higgs particles thought to be responsible for mass, using the Large Hadron 
Collider (LHC) physics program. 
Seek to find evidence of supersymmetry (SUSY), a necessary element of String Theory that may 
unify all of nature’s fundamental interactions. 

Materials 
science 

Understand the initiation of failure in a local region, the appearance of a macro-crack due to the 
coalescence of subscale cracks, the localization of deformation due to coalescence of voids, the 
dynamic propagation of cracks or shear bands, and all causes leading to eventual fragmentation 
and failure of a solid. 

Nanoscience 

Understand the quantitative differences in the transition temperatures of high temperature 
superconductors. 
Understand and improve colossally magneto-resistive oxides and magnetic semiconductors. 
Develop new switching mechanism in magnetic nanoparticles for ultra high density storage. 
Simulate and design molecular-scale electronics devices. 
Elucidate the physical-chemical factors mechanisms that control damage to DNA. 

Nuclear  
energy 

Design and deploy efficient and safe closed nuclear fuel cycle facilities, including next-generation 
power generation and recycle reactors, separations reprocessing facilities, and fuel 
fabrication/storage facilities. 

Nuclear 
physics 

Develop ways to describe nuclei whose properties cannot be measured (e.g., thermal nuclear 
properties in the mass 80–150 region). 

 

Leadership Computing (LC) will make possible many breakthroughs in science in the next decade. 

Many exciting opportunities present themselves as evidenced by accomplishments already attained in 

science disciplines supported by petascale computing. These opportunities are realizable, but they are also 

confronted with challenges, uncertainties, and issues on the horizon.  

For a science application to be mission relevant, alignment with the DOE ASCR Strategic Plan is 

important, which includes (1) enabling new materials through nanoscience; (2) enabling the design and 

engineering of fusion power plants to produce energy without CO2; (3) understanding the regional effects 

of global climate change; (4) developing new bacteria that can produce hydrogen, sequester carbon, and 

clean up toxic wastes; (5) understanding the fundamental nature of matter; and (6) understanding the 

processes that underpin combustion of fossil fuels to reduce pollution and increase efficiency. Business 
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requirements, which broadly address science motivation and impact, are elicited from all LCF projects by 

probing the 

• need for LC and mission relevancy; 
• science questions (what/when/why) being answered with LC; 
• need for and quality of simulation validation; 
• identification of the clients, customers, and users, defined as those who pay for product 

development, pay for product, and use the product; and 
• list of all end products. 
 

Appendix A of this document is a glossary of application codes; Appendix B provides information on 

project allocations and usage; Appendix C gives the charter and mission of the Applications 

Requirements Council; Appendix D gives the code project questionnaire developed by the Advanced 

Scientific Computing Advisory Committee (ASCAC); and Appendix E is the survey of acceptance and 

early access science applications. 
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SCIENCE QUALITY AND PRODUCTIVITY REQUIREMENTS 
 

Science quality and productivity requirements define simulation capabilities and output that 

LCF systems must support so that science applications can embody more predictive models 

and run to completion more quickly so that more accelerated decision-making, discovery, and 

understanding results. 

 
From one point of view, science quality and productivity requirements directly reflect the DOE Office 

of Science “Joule Metrics,” namely, efficiency and improvement in simulation time to solution for a 

given problem size (one measure of productivity) and constant (or improving) simulation time to solution 

for ever-larger problems (one measure of quality) (Table 2). In a broader sense, science quality and  

 

Table 2. Science investigations and achievements possible on a 1-PF LC system  
for specific application codes in relevant science domains 

Science 
domain Science achievements possible 

Accelerator 
physics Design the ILC. 

Astrophysics Determine the explosion mechanisms of core-collapse and Type Ia supernovae. 
Biology Help to make biofuels economically feasible. 

Chemistry Improved processes for clean coal, hydrogen production and storage, and catalyst design. 

Climate Simulate the dynamic ecological and chemical evolution the climate system. 

Combustion Develop a fundamental understanding of high-efficiency, low-emissions combustion devices 
required for transportation and power generation. 

Engineering Demonstrate the applicability and predictive accuracy of continuum engineering tools in a 
production environment. 

Fusion 
Improve our capability for predicting and optimizing the performance of burning plasmas. 
Attain a more realistic assessment of ignition margins using more accurate calculations of 
steady-state temperature and density profiles for ions, electrons, and helium ash. 

High energy 
physics Close in on the unifying theory for all of nature’s fundamental interactions. 

Materials 
science Predictive simulation of brittle and ductile materials subjected to high-speed loads. 

Nanoscience Hone in on the theory for high temperature superconductors; design and construct nanoparticles 
for specific tasks (magnetic storage, electronic devices, semiconductors, etc.) 

Nuclear energy A virtual “flight simulator” for an operating closed fuel cycle facility. 

Nuclear physics Accurate nuclear properties for material whose properties cannot be measured. 
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productivity requirements define properties that LC systems must possess so that science applications are 

able to embody higher-fidelity physics models (becoming more predictable) and to run to completion 

quicker so that researchers can more quickly arrive at decisions, discovery, or understanding (allowing the 

researcher to be more productive) (Table 3). Science quality and productivity requirements are elicited 

from all LCF projects by understanding the 

• quality (fidelity of physics models) of current applications and how this might improve with LC 

system specifications [e.g., peak speed from 25 teraflops (TF) to a sustained 1 petaflops (PF)]; 

• productivity of science output, and how this might change with LC system specifications (e.g., 

peak speed from 25 TF to a sustained 1 PF); 

• work flow of the science simulations being performed (e.g., simulation turn-around times, 

problem setup times, use cases, bottlenecks); 

• extent to which applications are validated (physical models compared against experimental data) 

and the breadth/depth/quality of simulation testing needed to improve the validation state; 

• confidence level (level of predictability) of current applications, whether or not this be quantified 

(e.g., error bars), and how it might change as a function of LC system specifications. 

Table 3. Increase in science simulation fidelity possible with a 1-PF LC system  
for specific application codes in various science domains 

Science 
domain Code Fidelity at 25 TF Fidelity at >1 PF 

Astrophysics Chimera 
3-D hydro simulations to follow the 
shock evolution out to several times the 
stalled shock radius. 

Improved transport scheme (Boltzmann Sn) 
Improved nuclear kinetics (150 species 
versus an alpha network) 

Astrophysics Vulcan2D 
2-D multigroup, time-dependent radiation 
hydrodynamics with 10,000-km and 2-s 
resolution. 

3-D multigroup, time-dependent radiation 
hydrodynamics. More integration time, more 
state variables, increased complexity 
reaction networks. 

Biology LAMMPS 
Dynamics of 700K-atom systems for  
5–10 ns of model time per day of 
simulation time. 

Multimillion atom systems evolved for  
0.1–1.0 ms. 

Climate CCSM 

Eulerian spectral atmospheric circulation 
model with diurnal cycle resolved 
columnar radiation and moist convection 
(CAM3), Brian-Cox free-surface ocean 
model with Gent-McWilliams eddy 
parameterization (POP1.4), dynamic sea-
ice model with visco-plastic rheolgy 
(CICE), land surface model with soil, 
river and vegetation components 
(CLM3). 

Tropospheric chemistry (100 species), 
dynamic vegetation, terrestrial carbon pools, 
ocean ecosystems, land ice sheets, 
stratospheric chemistry, full sulfur cycle, 
increase in ensemble size for climate change 
studies, coupled-ocean eddy-resolving 
simulations, cloud microphysics, realistic 
land-use patterns, tropical event simulation 
on climate timescales. 
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Table 3 (continued) 

Science 
domain Code Fidelity at 25 TF Fidelity at >1 PF 

Climate MITgcm 

4-km horizontal and variable (30 levels) 
vertical resolution in a 2000 by 4000 km 
domain 2000 m deep. Time step of 500 s 
and integration of the primitive equations 
(3 diagnostic and 2 prognostic variables) 
for several decades  
(20–40 years). 

Understanding the role of non-hydrostatic 
physics and internal wave breaking in deep 
ocean mixing, required to close the heat and 
salinity budget suggested by the current 
sinking rates in high latitudes and in the 
establishment of the thermohaline 
circulation. 

Combustion S3D 

Chemical mechanism for CO/H2 and 
reduced mechanism for CH4 and 
molecular transport model. 2.5 decades  
of time and length scales resolved for 
reactive turbulent flow. Moderate 
Reynolds numbers of 5–15K. 

Increase Reynolds numbers to >20K, 
(consistent with internal combustion 
engines) and pressures to 10–20 atm. 
Chemical mechanisms include multi-stage 
n-heptane ignition. 

Fusion GTC 

Gyrokinetic ions with drift-kinetic 
electrons and electrostatic perturbations. 
Resolved time scale is the electron transit 
time and the resolved length scale is the 
ion gyroradius. 

Integrated simulation with gyrating ions and 
drift-kinetic electrons with electromagnetic 
perturbations by resolving ion cyclotron 
waves and electron skin depth. Transport 
time scale simulations (evolving plasma 
background equilibrium). 

Fusion GYRO 

Test of first-principles models of plasma 
turbulence against measured levels of 
heat and particle transport in tokamaks 
(DIII-D, C-mod, NSTX) to build reduced 
models of plasma transport to predict 
performance of prototypes. 

ITER performance predictions. Possible to 
introduce feedback loop to adjust input 
profiles to match target heat and particle 
flows for truly predictive simulation. 

Model and Algorithm Requirements 

Application models represent functional (“what”) requirements that drive the need for certain 

numerical algorithms and software implementations. They are also often pre-determined by the given 

features and specifications in LC systems (Table 4). A choice and specification of LCF system attributes 

(e.g., peak speed or node memory capacity) tends to constrain the functional attributes employed usefully 

in a given physical model on that system. For example, attributes such as the following all depend in part 

upon the LCF system for which implementation of the models was targeted. 

• model state variables (how many now, how many planned in the future), 

• model characteristics [partial differential equations (PDE) or ordinary differential equation 

(ODE); deterministic or stochastic: formulation of equations], 

• the presence of multiple, simultaneous phenomena, and the required degree of coupling, 

• the domain of dependence (local with specific patterns, global), and 

• data dependency (degree of parallelizability)  
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Table 4. Examples of how physical model attributes might change on a 1-PF LC system for 
specific application codes in various science domains 

Science 
domain Code Current physical model attributes Physical model attributes  

at >1 PF 

Astrophysics Chimera Deterministic nonlinear integro-PDEs; 
63 variables. 

High-resolution energy and angle 
phase space and a 200-species nuclear 
network; >1000 variables. 

Climate CCSM 
Deterministic nonlinear PDEs;  
5–10 prognostics and ~100 diagnostic 
variables. 

Could add another ~100 diagnostic 
variables for biogeochemical 
processes. 

Climate MITgcm Deterministic nonlinear PDEs; 3 prognostic 
and 2 diagnostic variables. 

Could add stochastic component. 
5 prognostic and 1 diagnostic 
variables; can vary key forcing 
parameters to study the response to 
changed climate scenarios. 

Combustion S3D Deterministic nonlinear PDEs; 16 variables. Better chemical kinetics could result in 
75 variables. 

Fusion GTC 

Vlasov equation in Lagrangian coordinates as 
ODEs, Maxwell equations in Eulerian 
coordinates as PDEs, and collisions as 
stochastic Monte Carlo processes; 2 field 
equations and 5 phase variables per particle. 

5 field equations and 6 phase variables 
per particle. 

Fusion GYRO 2 field, no feedback. 3 field with profile feedback. 

 

After a physical model has been postulated, the application developer must devise and/or use one or 

more algorithms to generate numerical solutions to the model as formulated. For most of the applications 

surveyed, the physical models tend to be sets of coupled linear and nonlinear PDEs and ODEs. Most of 

the time application model requirements inherently imply algorithm requirements because they are 

closely tied to the algorithms chosen to find numerical solutions. 

Application algorithm requirements are design (“how”) requirements that clarify the ramifications of 

these choices in the science applications on LCF specifications. Algorithm requirements are elicited from 

each application by understanding: 

• the parallelism paradigm (distributed, domain replicated, coupled distributed models, etc.) and 
method for implementation [message-passing interface (MPI) tasks, threads, etc.]; 

• scalability (how many execution threads/tasks can be handled) and any identified obstacles to 
scalability; 

• the extent of algorithm convergence, accuracy, and verification; 
• solution methods (linear/nonlinear sets of equations, matrix properties, etc.), categorized 

according to Colella’s “Seven Dwarfs” *(Table 5); and 
• algorithm adaptivity as a function of space, time, and data. 

                                                           
* Defining Software Requirements for Scientific Computing, Phillip Colella (2004). 
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Table 5. The “seven dwarfs” categorization of algorithms employed  

by specific application codes in various science domains 

Science 
domain Code Structured 

grids 
Unstructured 

grids FFT
Dense 
linear 

algebra 

Sparse 
linear 

algebra 
Particles Monte 

Carlo 

Accelerator 
physics T3P  X   X   

Astrophysics 
CHIMERA X   X X X  

VULCAN/2D  X  X    

Biology LAMMPS   X   X  

Chemistry 
MADNESS  X  X    

NWChem   X X    

Climate 

CAM X  X   X  

POP/CICE X    X X  

MITgcm X    X X  

Combustion S3D X       

Fusion 

AORSA X  X X    

GTC X    X X X 

GYRO X  X X X   

Geophysics PFLOTRAN X X   X   

Materials 
science 

QMC/DCA    X   X 

QBOX   X X  X  

Nanoscience 
CASINO      X X 

LSMS X   X    
Nuclear 
energy NEWTRNX  X  X X   

Nuclear 
physics NUCCOR    X    

QCD MILC X      X 

Note: The “X” denotes a particular algorithm is utilized by that code. 
 

For each one of these areas, it is important to understand how and where these algorithms are likely to 

change in the next 5 years or when a 1-PF system becomes available. 

Several trends are noteworthy in the “seven dwarfs” categorization of codes in  

• The seven algorithm types are scattered broadly among science domains, with no one particular 

algorithm being ubiquitous and no one algorithm going unused. 

• Structured grids and dense linear algebra algorithms are the most widely used algorithms (used by 

over half of the representative codes), hence system attributes such as node peak flops and 

memory capacity, memory latency, and interconnect latency will be important (see the section on 

Runtime Requirements in this document). 
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• Particle-based and Monte Carlo algorithms, which have similar properties from a system 

standpoint, are also broadly used, and can tax interconnect latency and in some cases node 

memory capacity, depending upon implementation and usage. 
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SOFTWARE REQUIREMENTS 
 

Applications impose software requirements on LC systems in the form of programming 

models and languages and I/O and math libraries. This well-defined set will become more 

complex with the advent of multicore and accelerator-based architectures. 

 
Application software requirements are design (“how”) requirements that elucidate the ramifications of 

current and planned science application software implementations on LC systems (Table 6). These 

requirements not only lead in part to a predefined set of tools that must be present on LC systems, but 

they also help to point out potential pitfalls and dead ends in some current software choices. Science 

application software requirements are elicited from each application by analyzing the following: 

• the programming languages, external libraries, and tools used and needed and where any 

productivity bottlenecks might exist; 

• the breadth, depth, and quality of software verification and testing employed; 

• the software engineering attributes (best practices, team development); and 

• the quality and maturity of software (as judged by the application team). 

 

Table 6. Functional software requirements (and options) for specific application codes  
in various science domains 

Science 
domain Code Programming 

language 
Programming 

model I/O libraries Math libraries 

Accelerator 
design T3P C/C++ MPI NetCDF MUMPS, ParMETIS, Zoltan 

Astrophysics 
CHIMERA F90 MPI HDF5 

(pNetCDF) LAPACK 

VULCAN/2D F90 MPI HDF5 PETSc 

Biology LAMMPS C/C++ MPI  FFTW 

Chemistry 
MADNESS F90 MPI  BLAS 

NWChem F77, C/C++ MPI, Global Arrays, 
ARMCI  BLAS, ScaLAPACK, 

FFTPACK 

Climate 

CAM F90, C (CAF) MPI (OpenMP) NetCDF (SciLib) 

POP/CICE F90 (CAF) MPI (OpenMP) NetCDF  

MITgcm F90, C MPI (OpenMP) NetCDF  

Combustion S3D F90 MPI   
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Table 6 (continued) 

Science 
domain Code Programming 

language 
Programming 

model I/O libraries Math libraries 

Fusion 

AORSA F77, F90 MPI NetCDF ScaLAPACK, FFTPACK 

GTC F90, C/C++ MPI (OpenMP) MPI-IO, HDF5, 
NetCDF, XML PetSC 

GYRO F90, Python MPI MPI-IO, 
NetCDF 

BLAS, LAPACK, 
UMFPACK, MUMPS, 
FFTW (SciLib, ESSL) 

Geophysics PFLOTRAN F90 MPI  BLAS, PetSC 

Materials 
science 

LSMS F77, F90, C/C++ MPI2 HDF5, XML BLAS, LAPACK 

QBOX C/C++ MPI XML LAPACK, ScaLAPACK, 
FFTW  

QMC F90 MPI  BLAS, LAPACK, SPRNG 

Nanoscience 
CASINO F90 MPI  BLAS 

VASP F90 MPI  BLAS, ScaLAPACK 

Nuclear energy NEWTRNX F90, C/C++, Python  HDF5 LAPACK, PARPACK 

Nuclear 
physics NUCCOR F90 MPI MPI-IO BLAS 

QCD MILC, 
Chroma C/C++ MPI   

 

For each one of these areas, it is important to understand how and where software needs to change 

and is likely to do so in the coming years (Table 7). A very important theme emerged upon analyzing 

application software requirements: too many application software designs are monolithic and not 

component-based. Such designs will not be able to adequately exploit future LC architectures, where the 

ability to use optimized, hardware-specific middleware (e.g., math libraries) will be critical. 

System software is considered here to be the software associated with the operating system, file 

system, and run-time libraries.  

Table 8 presents proposed solutions to specific software requirements. 
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Table 7. Typical features and associated suggested requirements for components  
of an LC system software stack 

System software 
feature Requirement 

Mathematical libraries BLAS, LAPACK, SCALAPACK, PETSc, SuperLU, and Parallel FFT tuned to the LC 
systems and modified to exploit multicore. 

Communication library High-performance, fault-tolerant communication library able to deal with dead nodes. 
Specialized 
mathematical libraries 

Specialized, high-performance O(N) libraries (USFFT, KFFMM, MRA, LSR, 
Generalize Gaussian Quadrature) optimized for the LC systems. 

Lightweight OS kernel Scalable and robust kernel with support for multicore processors as an SMP node. 
I/O and storage  Increased scalability and updated algorithms for data and metadata servers. 
Reliability and fault 
tolerance 

Development of advanced systems software enabling applications to have and use built-
in fault handling. 

Advanced debugging Comparative debugging tools to support the simultaneous execution of two versions of 
an application, allowing the selection of comparison points for verification. 

Automatic performance 
analysis 

Easy-to-use, automated performance tools able to handle large amounts of data. 
Development of an infrastructure to support scalability and automation. 

Integrated compilation Compilation environment for applications simultaneously targeted for different systems 
(scalar/vector processors, FPGAs, stream-based coprocessors, etc.). 

 

Table 8. Proposed solutions to specific requirements for components  
of the NCCS LCF software stack 

Requirement NCCS LCF software stack 

Resource manager/scheduler Torque, Moab, CRMS (will become ALPS) 
Workflow tools Kepler, bbcp 
User mgmt, ticket system, accounting ORNL Resource Accounting and Tracking (RATS), RT 
Security and fault detection Nagios, Inmon, OSIRIS, SNORT/BRO 
Compilers PGI, Pathscale 
Vendor math libraries SciLIB, ACML 
Community math libraries FFTW, PETSc, LAPACK, ScaLAPACK, Atlas, Goto BLAS 
Programming languages Fortran, C/C++, CAF 
Performance and debugging tools CrayPat, Apprentice, TotalView, PAPI 
Parallel I/O libraries HDF5, pNetCDF, MPI-IO 
MPI MPT 
Low-level communication layers Portals, ARMCI 
Shared memory layers OpenMP, Threads 
CN and ION kernels, CIOD CVN, CNOS (Linux) and SUSE 
Visualization and data analysis VisIt, EnSight, IDL, AVS/Express, Parallel R, VTK, Matlab 
Production file system Lustre 
Archive tools hsi, htar 
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RUNTIME REQUIREMENTS 
 

Detailed knowledge of the application runtime footprint, expressed in a relative sense, allows 

reliable extrapolation to future LC systems. 

 
Application runtime requirements are design (“how”) requirements that specify the application 

“footprint” on LC systems. The footprint is what the system sees from the application while it is 

executing: its memory usage, memory patterns, communication usage and attributes, I/O usage and 

attributes, etc. Often applications requirements are solely determined by collecting runtime attributes 

only. While these are important, they should be derivable from detailed knowledge of other types of 

requirements (model, algorithm, software), and they do not help to elucidate future applications needs 

unless they are specified in a normalized sense. An example of a useful requirement is a statement that an 

application must dump 20% of its simulation images every 100 time steps. A less useful requirement is a 

statement that an application needs 100 TB of locally attached disk space. If runtime requirements are 

expressed in a relative or normalized sense, then more accurate and reliable extrapolations to future 

systems are possible. Application runtime requirements are elicited by probing its 

• I/O model and volume (size, bandwidth, parallel scalability), 

• extent of indirect addressing, 

• ability to execute on a heterogeneous system, 

• need for and ability to do dynamic data repartitioning, 

• extent of load imbalance, 

• communication patterns (global, local, size of message, number of messages), 

• performance bottlenecks and metrics, and 

• memory usage. 

A given LCF system has many attributes that uniquely characterize it relative to other systems, but 

the following 12 attributes in particular have been found to be useful and important to consider from the 

application’s perspective: 

• peak flops per node, 

• mean time to interrupt (MTTI), 

• wide area network (WAN) bandwidth, 

• node memory capacity, 

• local storage capacity, 

• archival storage capacity, 
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• memory latency, 

• interconnect latency, 

• disk latency, 

• interconnect bandwidth, 

• memory bandwidth, and 

• disk bandwidth. 

For each of these 12 system attributes, certain behaviors and properties of a given application may 

expose one particular attribute relative to another. Table 9 summarizes application behaviors and 

properties that serve as drivers for system attributes. 

 

Table 9. Science application behavioral and algorithmic drivers  
for LC system attributes 

LC system 
attribute 

Application algorithms 
driving  

a need for this attribute 
Application behaviors driving a need  

for this attribute 

Node peak  
flops 

Dense linear algebra, FFT, 
sparse linear algebra, Monte 
Carlo 

Scalable and required spatial resolution low; would benefit from 
a doubling of clock speed; only a problem domain that has 
strong scaling, completely unscalable algorithms; 
embarrassingly parallel algorithms. 

Mean time to 
interrupt Particles, Monte Carlo Naïve restart capability; large restart files; large restart R/W 

time. 
WAN 

bandwidth 
Long time evolution, 
multiphysics, multiscale 

Community data/repositories; remote visualization and analysis; 
data analysis. 

Node memory 
capacity 

Dense linear algebra, sparse 
linear algebra, unstructured 
grids, particles 

High DOFs per node, multi-component/multi-physics, volume 
visualization, data replication parallelism, restarted Krylov 
subspace with large bases, subgrid models. 

Local storage 
capacity 

Particles, out-of-core 
algorithms 

High-frequency/large dumps, out-of-core state, debugging at 
scale. 

Archival 
storage 
capacity 

Long time evolution, 
multiphysics, multiscale 

Large data (relative to local storage) that must be preserved for 
future analysis, for comparison, for community data (e.g., EOS 
tables, wind surface, and ozone data); expensive to recreate; 
nowhere else to store. 

Memory 
latency 

Sparse linear algebra, 
unstructured grids 

Data structures with stride-one access patterns (e.g., cache-
aware algorithms); random data-access patterns for small data. 

Interconnect 
latency 

Structured grids, particles, 
FFT, sparse linear algebra 
(global), Monte Carlo 

Global reduction of scalars; explicit algorithms using nearest-
neighbor or systolic communication; interactive visualization; 
iterative solvers; pipelined algorithms. 

Disk latency Out-of-core algorithms Naïve out-of-core memory usage; many small I/O files; small 
record direct-access files. 

Interconnect 
bandwidth 

FFT and other spectral 
methods, coupled models 

Large messages, global reductions of large data; implicit 
algorithms with large DOFs per grid point. 
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Table 9 (continued) 

LC system 
attribute 

Application algorithms 
driving  

a need for this attribute 
Application behaviors driving a need  

for this attribute 

Memory 
bandwidth 

Sparse linear algebra, 
unstructured grids 

Large multidimensional data structures and indirect addressing; 
lots of data copying; lots of library calls, requiring data copies if 
algorithms require data retransformations; sparse matrix 
operations. 

Disk  
bandwidth Out-of-core algorithms 

Reads/writes large amounts of data at a relatively low 
frequency; read/writes large amounts of large intermediate 
temporary data; well-structured out-of-core memory usage. 

 
A qualitative prioritization of these system attributes for each domain science is shown in Table 10. 

Priorities are presented according to color: green is highest, yellow is moderate, and grey is lowest 

priority. A high priority (green) attribute should be maximized over a lower (yellow or grey) priority 

attribute for a computer system designed for that science domain. For each domain, four attributes were 

given a high (green) priority, four a moderate (yellow) priority, and four a low (grey) priority. 
 

Table 10. Three-tier prioritization of 12 system attributes  
for relevant science domains* 

System attribute Climate Astrophysics Fusion Chemistry Combustion Accelerator 
physics Biology Materials 

science 

Node peak  
flops         

MTTI         

WAN network 
bandwidth         

Node memory capacity         

Local storage capacity         

Archival storage 
capacity         

Memory latency         

Interconnect latency         

Disk latency         

Interconnect bandwidth         

Memory bandwidth         

Disk bandwidth         

*In each science domain, green denotes an attribute with the highest priority for maximizing, yellow is moderate priority, and grey lowest 
priority. 

 

An example of moving from qualitative to more quantitative runtime requirements is the analysis of 

what currently constitutes a single simulation for selected application codes. Such analysis helps to 

validate the importance of system attributes for these codes. Table 11 presents typical development 
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characteristics and runtime requirements of a single simulation for selected application codes on the 

NCCS LCF systems. 

 

Table 11. Typical development characteristics and runtime requirements of a single simulation 
(job) for selected application codes on the  

NCCS LCF systems circa June 2006 

Science 
domain Code Code attributes 

Job 
size 

(nodes, 
time) 

Storage 
capacity 

needs (local, 
archive) 

Node 
memory 
capacity 
needs 

Number of 
queue dwell 

times needed for 
full simulation 

Accelerator 
design Omega3D 

9 years old, 173-K 
C++ LOC, 12 
developers 

128–256,
24 hours

1 TB, 
12 TB 8 GB 3–4 

Astrophysics CHIMERA 
Components  
10–15 years old, 
5 developers, F90 

128–256,
24 hours

300 GB, 
2 TB ≥2 GB 10–15 

Astrophysics Vulcan2D 9 developers, F90 48, 
24 hours

300 GB, 
5 TB 2 GB 30 

Climate CCSM 

Components 20 years 
old, 690 K Fortran 
LOC, over 
40 developers 

250, 
24 hours

5 TB, 
10 TB 2 GB 10–30 

Combustion S3D 
16 years old, 100 K 
Fortran LOC, 5 
developers 

4000, 
24 hours

10–20 TB, 
300 TB 1 GB 7–10 

Fusion GTC 7 years old, 
~30 developers 

4800, 
24 hours

10 TB, 
10 TB 2 GB 4–5 

Nuclear 
physics NUCCOR 3 years old, 

10 developers, F90 

200–
1000, 
4–8 

hours 

300 GB, 
1 TB 2 GB 1 
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DATA ANALYSIS AND DATA MANAGEMENT REQUIREMENTS 
 

Application data analysis and management requirements are more quantifiable, dictating 

onerous constraints on LC system I/O infrastructure unless end-to-end workflows change. 

 
Data analysis and management requirements specify end-to-end application analysis characteristics 

and needs on LCF systems. These requirements are collected for each application by determining: 

• the analysis tools (visualization, data mining, etc.) needed, 

• file system storage needs per simulation, 

• the maximum desired read/write time as a percentage of simulation time; and 

• archival storage needs per simulation. 

Given the above, several other important application-specific data analysis requirements directly 

follow; for example, output bandwidth (GB/s) from the LC system to local storage. The most demanding 

data management requirements often come from applications that incorporate multiphysics and multiscale 

models. This kind of coupling leads to high dimensionality in evolved quantities (e.g., radiation fields, 

chemical and nuclear species, and particle phase spaces). These applications also tend to involve long 

time evolutions. Therefore, large multidimensional datasets are output at many regular intervals to allow 

for analysis of time-dependent correlations and the overall evolution of the modeled systems. The 

particular science objectives for these types of applications are often directly relatable to a set of 

resolution requirements—in time, space, and tangent or phase space—which in turn determines the 

overall size of the datasets output and their number. This scaling also holds for the I/O requirements for 

checkpoint (restarts). The infrastructure requirements for the LCF that stem from these application 

requirements ultimately set the scale of the scientific simulations that can be performed on the system. 

The I/O requirements for LCF systems can be broken down into two distinct categories, namely, 

those required to 

• output results in the form of restart dumps and other analysis files, and 

• postprocess data files for analysis and visualization. 

The “output” portion of I/O requirements can be determined for the LCF by examining the needs of 

the largest data-producing codes on the current systems. The current largest data producers are the 

following application codes: CHIMERA, GTC, S3D, T3P/Omega3P, and POP. I/O requirements were 

therefore explicitly elicited from users and developers of these codes, with the results highlighted in Table 

12 for per-simulation requirements on a 1-PF LC system with 200 TB of memory. Most application  
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Table 12. Typical per-simulation I/O requirements for the largest data-producing application 
codes on the NCCS LCF systems* 

Science 
domain Code Restart 

file size 
Restart 

frequency
Analysis 
file size 

Analysis 
dump 

frequency 
File type Analysis tools

Astrophysics 
CHIMERA 160 TB 1/hour 160 TB 1/hour 

pnetCDF or 
binary, 
collective 

IDL, xmgrace, 
EnSight 

VULCAN/2D 20 GB 1/day 200 GB 10/day Binary, 
HDF5 

VTK, Open-DX, 
IDL 

Climate POP 26 GB 1/hour 1.4 GB 
per field 1/minute Binary, 

1 serial file 
IDL, NCAR 
graphics 

Combustion S3D 5 TB 1/hour 5 TB 2/hour 
Binary, 
individual 
files 

TecPlot, VisIt, 
Post_S3D, 
Matlab 

Fusion GTC 20 TB 1/hour 10 GB 1/minute 
Binary, 
individual 
files 

IDL, gnuplot, 
Matlab, 
AVS/Express, 
EnSight 

Fusion GYRO 50 GB 1/hour 10 GB 1/minute Binary, 
collective 

IDL, VTK, 
Asymptote 

*A 1-PF LC system with 200 TB of memory is the assumed system. 
 

codes were found to write restart files on a per-processor basis to get the best performance on the system. 

Ideally, users would like to write out the data via pNetCDF or parallel HDF5, thereby producing a single 

inode per restart dump. Users also require that the system have minimal impact while writing the restart 

and analysis files, namely by keeping I/O overhead at less than 5% of the total run time. This study has 

found that the users would ideally like to generate restart files ranging from 10 to 80% of the total 

memory on the nodes used in the run, but often do much less (like 1–20%) because the I/O overhead 

would be much larger than 5%. This information, along with a conservative estimate of MTTI, helps set 

the restart dump frequency, which in turn can be used to determine a minimum write bandwidth to local 

storage. The prescription is given in Table 13; required local storage bandwidth can be reasonably 

estimated as the ratio of restart file size to time tolerated by the user necessary to write out the data. The 

time tolerated for output is usually some small fraction (5–10%) of the restart output periods. Application 

restart output periods are usually 1–2 hours for LC systems, set ultimately by the system MTTI or queue 

dwell-time maximum, which is often 24 hours (or less). 
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Table 13. Prescription for estimating local storage bandwidth requirements  
for science applications on LC systems* 

Variable Description Typical values 

M Total system memory 100–400 TB for a 1-PF system 

f Fraction of application runtime memory captured and 
written out per restart 20–80% 

T Runtime intervals between successive restart file outputs 1–3 hours when MTTI is 12–24 hours or 
maximum queue runtimes ~24 hours 

O Maximum allowable fraction of total runtime devoted to I/O 
operations 10% 

B Required bandwidth to local storage 
fM
TO

=  

*I/O activity is assumed to follow a periodic saw tooth pattern, namely short bursts of I/O activity followed by 
longer periods of I/O inactivity. 

 
Using the range of local storage bandwidth requirements, users can compute bandwidth requirements 

as shown in Table 14. As an example, assume an application is running on the entire 1-PF system, 

occupying at or near the entire 200-TB system memory, and must write out every hour a restart file whose 

size is roughly 10% of the occupied memory, or 20 TB. If the tolerable I/O overhead is 5%, then the 

20-TB file must be written out in 3 minutes (180 seconds), corresponding to an output bandwidth of 

111 GB/s. This analysis can be performed for all ranges spanning known requirements.  

 
Table 14. Estimates of science application local storage bandwidth requirements 

using the prescription outlined in Table 13* 

Restart file size/ 
total system memory 

Restart 
period 
(hours) 

Allowable I/O 
overhead  

(%) 
Required local storage 

bandwidth (GB/s) 

0.10 
1 5 

10 
111 
56 

2 5 
10 

56 
28 

0.20 
1 5 

10 
222 
111 

2 5 
10 

111 
56 

0.80 
1 5 

10 
888 
444 

2 5 
10 

444 
222 

*Simulations are assumed to run on a full 200-TB LC system. 
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It is important to note in this analysis that use of asynchronous I/O by the application was not 

assumed, either for historical reasons or because memory constraints render buffering I/O unfeasible for 

the largest simulations. Nevertheless, the use of asynchronous I/O could markedly reduce bandwidth 

requirements, introducing at the same time a new set of software infrastructure requirements. Bandwidth 

requirements could easily be reduced by an order of magnitude (relative to Table 14) if applications 

employed asynchronous I/O; this will be investigated further. 

Storage requirements for all produced data can be estimated in a number of ways. A good estimate 

can be determined by simply aggregating typical restart and analysis file sizes for each application and 

multiplying by the total number of projects according to the prescription laid out in Table 15 and 

Table 16. Given the total system memory, the total number of LC projects, a reasonable estimate of 

project output file size per simulation, and an average number of simulations whose output will be 

retained on local storage, a local storage capacity estimate follows from their collective product. 

 
Table 15. Prescription for estimating local storage capacity 

requirements for science applications  
on LC systems 

Variable Description Typical values 

M Total system memory 100–400 TB for a  
1-PF system 

P Total number of projects with LC 
allocations annually 20–40 

F Fraction of application runtime memory 
captured and written out per restart 20–80% 

R Average number of simulations per project 
whose output is retained on local storage 10–20 

C Required local storage capacity fMPR=  

 
If, for example, each of 20 projects required saving 20% of the total application memory per 

simulation (with applications occupying the entire system), and 10 such simulations (~1 per month) were 

retained, then 8 PB of local storage capacity is required to support this workload. 

Archival storage requirements are more difficult to estimate because the use cases for archived data 

vary widely from application to application. A reasonable methodology is to scale current archival storage 

usage with a system attribute that is directly tied to data generation (e.g., peak flops, total memory, 

memory bandwidth). From an application point of view, however, application storage requirements are 

mostly driven by total memory used per simulation, hence, total system memory scaling is most  
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Table 16. Estimates of science application local storage capacity 
requirements using the prescription outlined in Table 15  

Number of 
projects 

Restart file 
size/total 
system 
memory 

Number of runs 
per project 

retained on local 
storage 

Required local 
storage 

capacity (PB) 

10 
0.20 2 

10 
0.8 
4.0 

0.80 2 
10 

3.2 
16.0 

20 
0.20 2 

10 
1.6 
8.0 

0.80 2 
10 

6.4 
32.0 

40 
0.20 2 

10 
3.2 

16.0 

0.80 2 
10 

12.8 
64.0 

*An LC system memory of 200 TB is assumed. 
 

appropriate. It is interesting, however (as shown in ), that estimates of archival storage capacity needs 

based on any of these three system attributes yield results for the 1-PF system that are all  

within a factor of two of one another. The memory-scaled or memory bandwidth-scaled estimates are 

likely to be the most reliable, however, because application output requirements directly follow from 

memory used per application simulation. Another defensible approach for estimating archival storage 

requirements is to take the local storage requirements (e.g., those in Table 16) and assume that some or all 

of these data must also be archived (admittedly neglecting any experimental data storage requirements). 

If, for example, the requirements in Table 16 are expected to occur annually during those years the 1-PF 

system is deployed, then archival storage requirements for any given year would represent the  

 

Table 17. Estimates of science application archival storage capacity requirements 
based on scaling current capacities with either system memory,  

memory bandwidth, or peak flops 

System attribute 
assumed to govern 

archival storage 
requirements 

Estimated 
capacity needs by 
end of CY06 (PB) 

Estimated 250-
TF capacity 
needs (PB) 

Estimated 1-PF 
capacity needs (PB) 

Memory 2.8 4.6 15.9 
Memory bandwidth 3.8 10.8 36.0 

Peak flop rate 3.6 7.1 18.5 
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 accumulation of local storage requirements over some previous number of years. Other system 

characteristics can lead to considerably different results, as archival storage requirements are cumulative 

over the lifetime of the system. 
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SUMMARY AND RECOMMENDATIONS 
 

Leadership Class Facilities must engage in a regular and evolving applications requirements 

process that is rigorous and quantitative. This process is difficult, time-consuming, yet 

necessary. High-consequence decisions about current and future systems informed by this 

process are virtually guaranteed to deliver what is best for accelerating scientific discovery 

and understanding. 

 
Establishing a formal, rigorous, and useful requirements management process is very challenging 

when applied to breakthrough science applications for leadership computing, where the research is by its 

very nature exploratory and high risk. The requirements process must always evolve, continuing to 

improve as guided by lessons learned, just as this document must be a living document, ever-changing to 

keep up with the applications themselves. Computational science requirements for LC computing flow 

both ways—LCF systems set requirements for the science applications just as the science applications 

must set requirements for the LCF systems. Nevertheless, given current experience, we provide the 

following set of preliminary specific observations and recommendations: 

Science 

• The annual number of allocated projects must be small (<25) to ensure science output and access 

to LCF resources are maximized. 

• Science roadmaps in every field call for not only increased fidelity but also increased productivity 

upon access to a petascale LCF system. An example of increased fidelity is executing a larger 

simulation in the same turn-around time as on a smaller system; an example of increased 

productivity is executing the same size simulation in a shorter turn-around time. 

Models and Algorithms 

• As applications are ported to, developed on, and used on petascale LCF systems, the change in 

physical models employed is likely to be more evolutionary than revolutionary. The prototypical 

example is the solution of nonlinear PDEs—a petascale LCF system affords more spatial and 

temporal resolution, which modern solution methods should easily support given a correct 

formulation. A drastic change in physical models (e.g., from a deterministic PDE to a 

nondeterministic model) as motivated by access to a petascale LCF system is not likely to be the 

norm. Exceptions could be climate, biology, and chemistry, among others. 
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• Parallel algorithm maturity and efficiency vary widely from one field to another and from one 

code to another. For example, fields focused on “atomistics” (nanoscience, materials science, 

chemistry, biology, etc.) have parallelism challenges that are unique enough to make it difficult 

for other fields to contribute useful approaches. 

• A “seven dwarfs” algorithm analysis of applications indicates, not surprisingly, that there are no 

algorithm “sweet spots,” thereby disallowing an LCF system to pursue a hardware architecture 

designed to specifically optimize a particular algorithm (e.g., FFT). 

Software 

• Standard programming languages (e.g., Fortran, C, and C++) remain the scientific computing 

staple on LCF systems. To a lesser extent, Co-array Fortran and scripting languages like Python 

are also needed, but a demand for brand new and/or unanticipated languages is not evident at 

present. 

• Parallel programming strategies continue to emphasize MPI, along with, in some cases, OpenMP 

and Global Arrays. Other paradigms need to be examined, at least in prototype form, in order to 

demonstrate proof of principle.  

•  “Critical” math libraries needed by a large fraction of applications include BLAS, LAPACK, 

FFTPACK, FFTW, and PETSc. Others needed (but not as prevalent) include ParMETIS, 

MUMPS, and Zoltan. 

• Most applications have chosen to implement fault-tolerance via their own checkpoint restart 

capability rather than rely on the need for a fault-tolerant communication library. Further 

possibilities in this regard should be pursued. 

• Hybrid parallel programming models for efficient scaling on multicore processors need to be 

pursued vigorously. 

• Large-scale application codes can easily have useful lifetimes of 20–50 years (corresponding to 

5–10 generations of LCF systems), with the first 5–10 years (and ~100 person-years of effort) 

needed just to reach maturity. Expecting applications code developers to rewrite a mature code 

from scratch (e.g., in a new language) in order to achieve better scaling or parallel performance is 

therefore naïve. Applications code developers are talented; they are adept at and used to 

refactoring existing code to achieve better performance. This will be the approach of preference 

on petascale LCF systems. There is no magic language or compiler that can do better in this short 

time frame. 

• With petascale LCF systems consisting of 100K (or more) nodes and/or processors, parallel 

algorithms must not only work, but their implementation must also conform to the highest 
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software quality assurance (SQA) standards. Software quality, and the breadth and depth of 

testing required to ensure and maintain this quality, is too often underemphasized or neglected 

under the pressure of producing timely science results. This trend could be exacerbated on LCF 

systems. 

Runtime Footprint 

• The path forward for many application areas includes either enhanced resolution or additional 

physics or both. This necessarily translates to increased aggregate and per-node memory 

requirements. Given the present cost of memory relative to processing power, this requirement 

represents a fundamental tension that must be carefully examined. 

• Developer estimates for many code characteristics (e.g., memory usage, network bandwidth, 

wallclock time) are often misguided by poor implementations of algorithms and poor choices of 

software infrastructure (e.g., data structures). A basic understanding of fundamental algorithm 

characteristics (e.g., floating-point operations required, memory operations required) is necessary 

to accurately evaluate such requirements. 

Data Analysis and Data Management 

• I/O software packages and library requirements can be captured in a relatively small list. 

• The NCCS LCF should consider procuring a cluster of “fat” nodes, each with multiple multicore 

processors and many gigabytes of memory. This fat-node cluster should have direct access to the 

local file systems on the LCF supercomputers, allowing efficient analysis, with standard tools 

such as IDL and Matlab, without having to move data over the WAN. Furthermore, for the 

visualization and analysis of the largest datasets, we believe that the aggregate memory of the 

cluster must be large enough to hold one full time step of state data. 

• Developers should explore the use of asynchronous I/O, which could give the potential for 

decreasing output bandwidth requirements by an order of magnitude. 

• Developers should explore performing analysis and data reduction within the parallel application 

itself, thus decreasing output bandwidth significantly and dramatically speeding analysis. 
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APPENDIX A: GLOSSARY OF APPLICATION CODES 
 

The following is an alphabetical list of science application codes (by name) and the science domains 

in which they are used that have been installed and run on the NCCS LCF systems during the calendar 

year 2006. This list is not exhaustive, but it is representative of the codes possessed by the 22 projects 

(17 LCF and 5 INCITE projects) that received over 36 million processor hours of allocation on the NCCS 

Cray XT3 and Cray X1E LCF systems. 
 
Active Harmony Computer Science 

ABinit Chemistry 

AMBER Biology 

AMRMHD Fusion 

AORSA Fusion 

BOLTZTRAN Astrophysics 

CASINO Nanoscience 

CCSM Climate (Includes CAM, POP/CICE, CN, CASA, CLM) 

CFL3D Engineering 

CHARMM Biology 

(m.b)CHIMERA Astrophysics 

CHROMA High Energy Physics 

CMS High Energy Physics 

CompHEP High Energy Physics 

CPMD Chemistry  

CQL3D Fusion 

DELTA5D Fusion 

ESPRESSO Chemistry 

FLASH Astrophysics 

FPMPI Computer Science 

GAMESS-US Biology 

GEM Fusion 

GeNASiS Astrophysics 

GEOS5 Climate 

GTC Fusion 

GYRO Fusion 

HFB Nuclear Physics 
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HPCC Computer Science 

HPCTOOLKIT Computer Science 

IPM Computer Science 

KOJAK Computer Science 

LAMMPS Biology 

LCG High Energy Physics 

LSMS Materials and Nanoscience 

MADNESS Chemistry 

M3D Fusion 

MILC High Energy Physics 

MITgcm Climate 

mpiP Computer Science 

NAMD Biology 

NIMROD Fusion 

NUCCOR Nuclear Coupled Cluster — Oak Ridge 

NWChem Chemistry 

OCTOPUS Chemistry 

Omega3P Accelerator Physics 

PAPI Computer Science 

PARADYN Computer Science 

PMaC Computer Science 

PWSCF Chemistry 

PYTHIA High Energy Physics 

QBOX Materials Science 

QMC/DCA Materials & Nanoscience 

ROOT High Energy Physics 

ROSE Computer Science 

S3D Combustion 

S3P Accelerator Physics 

SMMC Nuclear Physics 

SPF Materials and Nanoscience 

SUPERNOVA Astrophysics 

SvPablo Computer Science 

T3P Accelerator Physics 
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TAU Computer Science 

TORIC Fusion 

V2D Astrophysics 

VASP Materials and Nanoscience, Chemistry 

VH1/EVH1 Astrophysics 

VULCAN/2D Astrophysics 

WRF Climate 

XGC-ET Fusion 

ZEUS-MP Astrophysics 
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APPENDIX B: PROJECT ALLOCATIONS AND USAGE  
ON THE NCCS LCF SYSTEMS IN 2006 

 

Table B.1 summarizes the 22 projects awarded allocations on the NCCS LCF systems during the 

calendar year 2006: 17 of these projects were LCF projects, with the stipulation that the principal 

investigator’s (PI’s) research be funded by DOE, and the remaining 5 project were INCITE projects, 

which were broadly open to PIs from industry and academia, whose research was not necessarily funded 

by DOE. 

 

Table B.1. Projects receiving allocation awards on the NCCS LCF  
systems in 2006 

Science 
domain Project title Project 

type 
Principal 

investigator 
Cray XT3 
allocation 

Cray X1E 
allocation 

Astrophysics Multi-dimensional Simulations 
of Core-Collapse Supernovae  LCF Adam Burrows 

1.25M 
4.1% 

0 
0.0% 

Astrophysics 
Ignition and Flame 
Propagation in Type la 
Supernovae  

LCF Stan Woosley 
3.00M 

9.9% 
0 

0.0% 

Astrophysics Multi-dimensional Simulations 
of Core-Collapse Supernovae  LCF Tony 

Mezzacappa 
3.55M 
11.7% 

0.70M 
11.9% 

Biology Next Generation Simulations in 
Biology  LCF Pratul Agarwal 

0.50M 
1.7% 

0 
0.0% 

Biology 
Molecular Dynamics 
Simulations of Molecular 
Motors  

INCITE Martin Karplus 
1.48M 

4.9% 
0 

0.0% 

Chemistry Rational Design of Chemical 
Catalysts  LCF Robert Harrison 

1.00M 
3.3% 

0.30M 
5.1% 

Climate Role of Eddies in Thermohaline 
Circulation  LCF Paoli Cessi 

0 
0.0% 

0.03M 
0.5% 

Climate Climate-Science 
Computational End Station  LCF Warren 

Washington 
3.00M 

9.9% 
2.00M 
33.9% 

Climate Studies of Turbulent Transport 
in the Global Ocean  LCF Synte Peacock 

1.50M 
4.9% 

0 
0.0% 

Computer 
Science PEAC End Station  LCF Patrick Worley 

1.00M 
3.3% 

0.20M 
3.4% 

Computer 
science Real-Time Ray-Tracing  INCITE Evan Smyth 

0.95M 
3.1% 

0 
0.0% 

Materials 
science 

Simulations in Strongly 
Correlated Electron Systems  LCF Thomas 

Schulthess 
3.50M 
11.6% 

0.30M 
5.1% 

Engineering Large Scale Computational 
Tools for Flight Vehicles  INCITE Moeljo Hong 

0 
0.0% 

0.20M 
3.4% 
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Table B.1 (continued) 

Science 
domain Project title Project 

type 
Principal 

investigator 
Cray XT3 
allocation 

Cray X1E 
allocation 

Materials 
science 

Numerical Simulation of Brittle 
and Ductile Materials  INCITE Michael Ortiz 

0.50M 
1.7% 

0 
0.0% 

Fusion Gyrokinetic Plasma Simulation LCF W. W. Lee 
2.00M 

6.6% 
0.23M 

3.8% 

Fusion Tokamak Operating Regimes 
Using Gyrokinetic Simulations LCF Jeff Candy 

0 
0.0% 

0.44M 
7.5% 

Fusion 
Wave-Plasma Interaction and 
Extended MHD in Fusion 
Systems  

LCF Don Batchelor 
3.00M 

9.9% 
0 

0.0% 

Fusion 
Interaction of ETG and 
ITG/TEM Gyrokinetic 
Turbulence  

INCITE Ronald Waltz 
0 

0.0% 
0.40M 

6.8% 

High energy 
physics 

Reconstruction of CompHEP-
produced Hadronic 
Backgrounds  

LCF Harvey Newman 
0.03M 

0.1% 
0 

0.0% 

Accelerator 
physics 

Design of Low-loss 
Accelerating Cavity for the ILC LCF Kwok Ko 

0 
0.0% 

0.50M 
8.5% 

Nuclear 
physics 

Ab-inito Nuclear Structure 
Computations  LCF David Dean 

1.00M 
3.3% 

0 
0.0% 

Combustion 
High-Fidelity Numerical 
Simulations of Turbulent 
Combustion  

LCF Jackie Chen 
3.00M 

9.9% 
0.60M 
10.2% 

 

During the 9-month period from January to September 2006, the science application codes associated 

with the 22 LCF and INCITE projects executed on the NCCS LCF Cray XT3 (Jaguar) and Cray X1E 

(Phoenix) resources according to the job size distribution shown in the bar chart in Fig. B.1 and 

Table B.2. Job size is defined as the number of processors utilized during any given calculation (placed in 

discrete bins), the percentage of utilization for a job distribution bin is defined as the total number of 

processor hours utilized in that job size range (e.g., 129–256 nodes) divided by the total number of 

processor hours used on that particular system over the time period of interest (Fig. B.2). Note that both 

of the LCF systems have a job distribution load characteristic of a leadership (or capability) usage model, 

namely, skewed heavily toward usage of a large percentage (e.g., >25%) of the total available resource for 

any given calculation. Also shown in Figs. B.3–B.6 is month-to-month evolution of job distribution and 

utilization on each LCF system.  
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Fig. B.1. Job size distribution of allocated science applications on the NCCS LCF systems in 
the January to September 2006 time period. Shown is the percentage of total utilization as a function 
of calculation size (number of processors). 
 

Table B.2. Job size distribution of allocated science applications on the NCCS LCF systems in 
the January–October 2006 time period 

Job Size 
(processor 

count) 

Jaguar 
(Jan 2006–Oct 2006) 

Phoenix 
(Jan 2006–Oct 2006) 

Fraction of total 
system (%) 

Fraction of total 
utilization (%) 

Fraction of total 
system (%) 

Fraction of total 
utilization (%) 

1–2 <0.04 0.01 <0.2 0.02 

3–4 <0.08 0.02 <0.4 0.05 

5–8 <0.2 0.11 <0.8 0.39 

9–16 <0.3 0.92 <1.6 0.89 

17–32 <0.6 2.73 <3.1 10.15 

33–64 <1.2 9.99 <6.3 24.87 

65–128 <2.5 18.96 <12.5 40.65 

129–256 <4.9 28.40 <25.0 79.26 

257–512 <9.8 37.43 <50.0 93.58 

513–1024 <19.7 47.69 <100.0 100.0 

1025–2048 <39.3 58.39 N/A N/A 

2049–4096 <78.6 72.46 N/A N/A 

4097+ <100.0 100.0 N/A N/A 
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Fig. B.2. Percentage of total NCCS LCF system utilization for each project receiving a 2006 
allocation award in the January to September 2006 time period. Shown is the percentage of total 
utilization as a function of calculation size (number of processors). 
 

 
Fig. B.3. Month-by-month change in the job size distribution of the allocated science 
applications on the NCCS Cray XT3 (Jaguar) system in the January to September 2006 time 
period. Shown is the percentage of total utilization as a function of calculation size (number of processors). 
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Fig. B.4. Month-by-month change in the job size distribution of the allocated science 
applications on the NCCS Cray X1E (Phoenix) system in the January to September 2006 
time period. Shown is the percentage of total utilization as a function of calculation size (number of 
processors). 
 

 
Fig. B.5. FY 06 utilization on the Cray XT3 (Jaguar) system by scientific discipline. 
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Fig. B.6. FY 06 utilization on the Cray X1E (Phoenix) system by scientific discipline. 
 

As expected, the distribution of jobs over the course of the year tends to reflect an evolving leadership 

usage distribution (i.e., skewed more toward capacity early in the year when the applications are more 

immature and not as adept with regard to scalability). As the parallel algorithms are tuned, optimized, and 

in some cases redesigned, the applications make more effective use of the full resource, and by the end of 

the year the job distribution tends to skew toward fuller utilization of the LCF resources. 
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APPENDIX C: APPLICATIONS REQUIREMENT COUNCIL 
 

The NCCS requirements process—the development, management, and planning of requirements for 

NCCS clients, customers, and users (the “stakeholders”)—is the responsibility of the Applications 

Requirements Council (ARC). The ARC, whose charter is given below, is the NCCS requirements board 

in a formal project-management sense. ARC requirements are passed on to the NCCS Technology 

Council (TC), where they serve as guidance, constraints, and specifications for the upgrade, selection, 

procurement, acceptance testing, and even design of current and next-generation leadership systems. 

The ARC develops, manages, and plans the breakthrough science requirements imposed upon the 

NCCS leadership computing systems. These requirements are embodied within the simulation tools used, 

developed, and envisioned by scientists pursuing these tools as vehicles for discovery, exploration, and 

validation of their research. The principal product of the ARC is the documentation, publication, and 

handoff of requirements to the NCCS TC, which is responsible for implementing and/or aligning these 

requirements with deployed NCCS leadership computing systems. By articulating requirements, the ARC 

will help to ensure that all NCCS systems are aligned to the maximum extent possible with the needs and 

goals of the breakthrough science projects using the NCCS resources. ARC requirements apply to the 

entire end-to-end analysis process followed by scientists using the NCCS facilities. The process includes 

system hardware, system software, the integrated development environment, and the problem-solving 

environment, which includes data analysis, management, and visualization. It is our vision that the ARC 

will positively influence the design, procurement, deployment, and/or operation (e.g., user and technical 

support) of an NCCS system by improving the quality, quantity, or fidelity of the output of one or more 

breakthrough science simulation applications in a measurable way. 

The remainder of this section gives the process for the development, management, and planning of 

NCCS stakeholder requirements. This process translates into explicit ARC tasks and milestones, many of 

which are repeated on an annual basis. The ARC requirements process follows three basic steps: 

development, management, and planning. 

Requirements Development 

Requirements are developed after (in sequence) elicitation, analysis, validation, and specification. 

Requirements Elicitation 

Requirements elicitation was performed by reformulating the four basic types of requirements 

(business, functional, quality, and design) into a series of questions to ask specific people, who were in 

one of three categories—client, customer, or user. Clients are those who pay for product development; 

customers pay for the product; and users use the product. The next task was to identify people to 
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interview (preferably at least one per category) and formulate several questions per requirement. We then 

sought answers to these questions from the selected people through e-mail, phone calls, meetings 

(interviews), or workshops. The answers were then documented and verified by the interviewee to ensure 

that the answers correctly reflected the opinion of the person interviewed. We found that using models 

during the interview and encouraging the interviewee to change them was an effective method for 

clarifying responses. Asking negative questions was an effective means for soliciting quantitative 

answers. The elicitation process is a two-step process: (1) identify the stakeholders and (2) interview the 

stakeholders. 

The following questions are suggested as guidance in the elicitation process: 

Science motivation and impact 

• Why does your science need leadership computing? Without leadership computing, can progress 

be made at all? Or as fast? 

• What science questions are you answering? When are these answers needed? Why are these 

answers needed? What are the impacts of having the answers to these questions? Will having 

those answers mean you are finished or lead to new questions? 

• Is your science to be validated against observation (experimental validation) or solely the 

instantiation of theory? 

• Who are your clients (who pays for product development)? 

• Who are your customers (who pays for the product)? 

• What is your product? Answers to fundamental understanding or to guide theory? Will the 

software be released to others? Will you provide guidance and/or optimization in designing an 

experiment or actual end product? All of the above? 

Science quality and productivity 

• How might the quality (fidelity of physics models) of your science quality change with system 

peak speed and aggregate memory? 

o 25 TF 

• List of physics models currently in your application 

• Specify the time and length scales resolved (if appropriate) 

o 100 TF, 250 TF, 1 PF, sustained PF 

• List of new and improved physics models now possible  

• Specify the time and length scales resolvable (if appropriate) 
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• How might the productivity of your science output change with system peak speed and aggregate 

memory? Is this important? 

o 25 TF 

• Estimate the time with your current simulation tool that it takes to arrive at a simulation-

informed decision, discovery, experimental design, or training/education exercise 

o 100 TF, 250 TF, 1 PF, sustained PF 

• Estimate time improvement 

• What maximum simulation turn-around time can you tolerate and still move your science 

forward? What turn-around time would allow detailed parameter studies and optimization? 

• What are the current time-intensive bottlenecks for your workflow process? What might this 

process be for you in 5 years (e.g., with >1 PF)? 

• Can you give a use case for today’s resources? A use case is characterized by workflow (problem 

definition, problem setup, main compute phase, post processing, data analysis and visualization, 

dissemination of results), reason for simulation, recipient of the result, physics/algorithm aspects 

of the simulation. How might a use case look in 5 years? 

• How many instances of use cases are required for scientific discovery? 

• Are your computational experiments sequential (the current dependent upon the previous result)? 

How many experiments might be performed in a year? 

• Can your simulations be validated (physical models compared against experimental data)? If so, 

have they been? To what extent (breadth, depth, and quality) has your simulation tool been 

validated? 

• What confidence level (level of predictability) do you have in your current simulations? Can this 

be quantified (e.g., “error bars”)? If not, is this possible with more computational resources? 

What physics models are crudely represented today (have the highest uncertainties)? How might 

this change in 5 years (with >1 PF)? 

Application models 

• How many state variables currently describe your physical system? How might this change in 

5 years (with >1 PF)? 

• Are your models deterministic? Stochastic? Both? If deterministic, how are your models 

expressed (e.g., PDEs)? How might this change in 5 years (> 1 PF)? 

• Are multiple, simultaneous physical processes modeled? If so, are fully coupled solutions 

obtained? How might this approach change in 5 years (> 1 PF)? 
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• Is the domain of dependence for any given state variable local (dependent upon other nearby state 

variables) or global? 

• Is your physical model data dependent, meaning that the actual physical model invoked 

dynamically depends upon data itself (e.g., an interfacial physics model is only invoked along 

interfaces)? 

Application algorithms 

• What is your current parallelism model (distributed, domain replicated, etc.)? Are you 

instantiating parallelism with MPI tasks, threads, or both? 

• We are currently at 5K threads of execution. Do you have any algorithms that may not scale to 

100K threads of execution? If so, why and what are the obstacles? 

• Have you been able to quantify numerical errors and convergence properties of your algorithms? 

How might this change on larger systems? 

• Do your algorithms require solutions to linear and/or nonlinear sets of equations? If so, are these 

local, global, sparse, dense? How might this change in 5 years (> 1 PF)? 

• Do your algorithms adaptively change as a function of space and time, based on the data (e.g., 

AMR)? How might this change in 5 years (> 1 PF)? 

Application software 

• What programming languages and external libraries, and tools (compilers, debuggers) do you 

require? How might this change in 5 (> 1 PF) years? 

• How are your simulations verified (solving equations correctly)? 

• What kind of testing (e.g., unit, regression, integral, etc.) do you perform? Is the breadth, depth, 

and quality of your software and algorithm verification testing adequate?  

• What development tools (IDE, editors, compilers, debuggers) do you require? 

• What is the biggest time bottleneck in the IDE cycle? 

• Is your software under active development? If so, by a single individual or a team? Are software 

engineering and software project management best practices found useful and followed? 

• How would you rate the quality and maturity of your software? 

Application footprint on the system (hardware) 

• What is your current I/O model (parallel, serial through a single PE)? 

• What are the frequency and size (in terms of fraction of simulation image) of your restart and 

graphics dumps? 

• Does your application require an extensive amount of indirect addressing? 
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• Can your application execute on a heterogeneous system? If not, would the workload be 

amenable to this? 

• Does your application require dynamic repartitioning? Might it in 5 years (>1 PF)? 

• Is your application load balanced?  

• What are your application communication needs in terms of locality and regularity? How might 

this change in 5 years (>1 PF)? 

• Does your application have a few identifiable performance bottlenecks? Are these bottlenecks 

localized in software? 

• Do you have a normalized performance metric for your application (e.g., grind time)? If so, what 

is it and is it being tracked? What fraction of peak system speed is being realized? What fraction 

of the total cycles is devoted to floating point ops, integer ops, logical ops, data movement, etc.? 

• What is your application’s normalized memory usage (e.g., double precision words required per 

discrete solution point or cell)? What fraction of this can be accounted for by the permanent state 

variables representing the physical system you are modeling? 

Data management and analysis 

• What analysis tools (data mining, visualization, etc.) do you require? 

• For a typical leadership simulation, what is your temporary and archival storage size needs 

(expressed as a function of the simulation image size)? 

• For a typical leadership simulation, what are your needs for maximum allowable read/write times 

to temporary storage (expressed as a function of the total simulation time)? 

• Why do you need archival storage? Are your simulation datasets analyzed and used by many 

others or are they for single-user backup? 

Miscellaneous 

• What keeps you awake at night about your simulation tool? 

• What are the highest risks or impediments to success? 

Analysis 

Analysis is the process by which gaps or missing requirements are identified, which includes possibly 

new elicitation, negotiation of scope, and establishment of consistency. Models such as state diagrams, 

information/class diagrams, and data flow diagrams are used to analyze requirements. Analysis also 

involves prioritization (based on issues like scale, cost, benefit, risk) of existing requirements; this 

information is often obtained by interviewing the key players once again. Prioritization schemes based on 
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numerical scales (1–10), enumerated scales, or timelines can be used. In setting priorities, a forced 

distribution should be used: 25% in the top tier, 50% in the middle tier, and 25% in the low tier. 

Validation 

Validation is determining whether the requirements are “good enough” (attained) as well as being the 

correct set (allocation). Requirements are validated through peer reviews, test case creation, and 

target/estimation alignment. Good requirements must be unambiguous, testable, correct, in scope, 

modifiable, feasible, traceable, written in clear (customer’s) language, acceptable to all clients, and not a 

solution. 

Specification 

Requirements can be specified in templates (text or models), user manuals, test cases, or prototypes.  

Requirements Management 

Requirements are managed by scrubbing, tracking change, and matching scope. 

Scrubbing 

Specified requirements are scrubbed by eliminating those that are not “important” and simplifying 

those that are unnecessarily complicated. Scrubbing occurs via a requirements review (peer review) 

board, which is currently the ARC. 

Change Management 

Changes in requirements must be documented, tracked, and approved, just like change control of any 

software. The ARC serves as the change board. 

Scope Matching 

In considering changes to requirements, attention must be paid to the impact the change has on 

benefits, cost, risk, schedule, quality, resource allocation, timing, and stability.  

Requirements Planning 

Since requirements development and management is an ongoing process, the necessary supporting 

activities must be planned ahead of time. A requirements plan is the documentation of the process by 

which requirements are developed and managed. The ARC, chaired by the NCCS Director of Science, 

owns and executes requirements development and management.  
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ARC Implementation 

ARC membership consists of the NCCS Director of Science (co-chair), the group leader and staff of 

NCCS Scientific Computing (SC), and external users and scientists selected by the ARC chair to 

represent each domain science (at least one member per domain) currently supported by NCCS resources. 

One external member will serve as co-chair along with the Director of Science. ARC membership will be 

for one year with ongoing renewals acceptable. The ARC shall communicate regularly through monthly 

teleconference calls, face-to-face group meetings (at least one annually), electronic mailing lists, 

sharepoint Web sites, one-on-one meetings, phone conversations, and e-mail messages. 

ARC Tasks and Milestones 

To develop, manage, and plan applications requirements, the ARC will 

• Maintain regular phone conversations and e-mail exchanges about requirements issues among its 

members (NCCS Director of Science, SC group staff, and LCF INCITE project points of 

contact), 

• Conduct regular (every four to six week) teleconferences to develop, manage, and plan 

requirements, 

• Keep abreast of other related computational science requirements management efforts and any 

associated documentation, workshops, and activities, 

• Document and publicize an annual applications requirements document, 

• Hold an annual (end of fiscal year) PI meeting where LCF and INCITE projects discuss and 

present their science results as well as current and anticipated requirements, 

• Hold at least one face-to-face meeting annually (e.g., at the users or PI meeting), 

• Produce quarterly LCF and INCITE project updates on science results and requirements, 

• Maintain a sharepoint Web site, and 

• Provide formal requirements-based technology recommendations to the TC that are as actionable 

as possible since the TC helps to design, procure, and deploy computer systems that best meet the 

requirements submitted by the ARC. 

The functions, actions, and outcomes of the ARC are the responsibility of the NCCS Director of 

Science. 
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APPENDIX D: ASCAC CODE PROJECT QUESTIONNAIRE 
 

The following is the project survey template developed by members of the ASCAC subpanel on 

science-based performance metrics for ASCR computational facilities. These surveys were used by 

members of the NCCS Scientific Computing Group in gathering requirements-relevant information from 

each LCF and INCITE project teams receiving an allocation on the NCCS LCF systems in 2006. 

Experiment Project Overview 

• Project name 

• Contact information for the project 

o Principal investigators, e-mails, phones 

o URL 

• DOE Office support: DOE program manager; SC Office (BES, BER, NP, HEP, ASCR, FES, 

other) 

• Scientific domain (chemistry, fusion, high energy, nuclear, other) 

• What are the technical goals of the project? 

o What problem or “grand challenge” are you trying to solve? 

o What is the expect impact of project success? (e.g., better understanding of supernova 

explosions, prediction of ITER performance)? 

• Support for the development of the code 

o Degree of DOE support to develop the code 

o Other agency support 

• What is the project profile in total human resources, including 

o Trained scientists 

o Program development and maintenance 

o User(s) of the team codes 

• Size of any or all external communities that your code or datasets support: 

Project Team Resources 

• Team size 

• Team institutional affiliation(s) 

• To what extent are the code team members affiliated with the computer center institution? Team 

composition and experience total 

o Domain scientists 
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• Team composition by educational level (total) 

o Ph.D. 

o M.S., B.S., undergraduate students, graduate students 

• Team resources utilization: time spent on code and algorithm development, maintenance, and 

problem setup, production, and results analysis 

Project Code 

• Problem type (data analysis, data mining, simulation, experimental design, etc.) 

• Types of algorithms and computational mathematics (e.g., finite element, finite volume, Monte-

Carlo, Krylov methods, adaptive mesh refinement, etc.) 

• What systems does your code run on? 

• What is your preferred system? 

• Code size (single lines of code, function points, etc.) 

• Code age 

• Amount of code added per year 

• Computer languages employed 

o Fortran 

o C 

o C++ 

• Structure of the codes 

o What libraries are used? 

o What fraction of the effort do they represent? 

• Code mix 

o To what extent does your team develop and use your own codes? 

o Codes developed by others in the DOE and general scientific community? 

• What is the present parallel scalability? 

o Projected or maximum scalability? 

o How is measured? 

o Is the code massively parallel? 

• What memory/processor ratio does your project require? (i.e., gigabytes/processor)? 

• Parallelization model 

o Does your team use domain decomposition and if so what tools do you use? 

• What is the “efficiency” of the code? 

o How is it measured? 
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• What are the major bottlenecks for scaling your code? 

• What is the split between interactive and batch use? 

• What is the split between code development on the computer center computers and on computers 

at other institutions? 

Project resources input from the centers 

• Steady state user of resources on a production basis per month 

o Processor number 

o Processor time 

o Disk 

o Tertiary rate of change 

• Annual use of resources 

o Processor time 

o Disk 

o Tertiary storage rate of change 

• Software provided by center 

• Consulting 

• Direct project support as a team member 

• What is the size of the job in terms of memory, concurrency (processors), disk, and tertiary store? 

• What is the scalability of these codes? 

• What is the wall-clock time for typical runs? 

Software Engineering, Development, Verification and Validation 
Processes 

• Software development tools used 

o Parallel development 

o Debuggers 

o Visualization 

o Production management and steering 

• Software engineering practices. Please list the specific tools or processes used for: 

o Configuration management 

o Quality control 

o Bug reporting an tracking 

o Code reviews 
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o Project planning 

o Project scheduling an tracking 

• What is your verification strategy?  

• What use do you make of regression tests? 

• What is your validation strategy?  

• What experimental facilities do you use for validation? 

• Does your project have adequate resources for validation? 

Project output (t) and user metrics 

• Enumerate project output, consisting mainly of journal publications, dissertations, and research 

reports 

• In addition provide: number of publications, citations, dissertations, prizes and other honors 

• Residual and supported, living datasets and/or databases that are accessed by a community 

• Describe size of the external user community for the datasets 

• Change in code capabilities and quality (t) 

• Code contributed to the centers 

• Code contributed to the scientific community at large 

• Company spin-offs based on code or trained people and/or CRADAs 

• Corporation, extra-agency, etc. use 

• Increase in trained scientists during 2001–2005 

• Increase in trained code developers capable of writing project-level codes during 2001–2005 

Project Future (qualitative) 

• What is today’s greatest impediment in terms of your use of the center’s computational facilities? 

• With the projected increases resources over next 3 years? 

• What do you believe the proposed increases in capacity at the facilities will provide (e.g., based 

on observations of historical increases)? 

o Better turn-around time for the project 

o More users and incremental improvement in use with little or no change in scale or quality 

o Reduced granularity, resulting in constant solution time, though more accurate results 

o New applications permitting in new approaches and new science 

o How, specifically, has your use changed with specific facilities increases 

• How is the project effort projected to change in the next 5 years? 

• What is your plan for utilizing increased resources?
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APPENDIX E: SURVEY OF ACCEPTANCE AND EARLY 
ACCESS SCIENCE APPLICATIONS 

 

This appendix contains a representative list of science application codes considered to be priority 

petascale applications. These codes are suitable for acceptance testing as well as possessing high potential 

for achieving breakthrough science results. The science outlined by each application would benefit greatly 

from early access to “science at scale” simulation time on the planned 250-TF and 1000-TF Leadership 

Computing Facility (LCF) systems at Oak Ridge National Laboratory. This candidate list, which is not 

exhaustive, represents what we believe to be an excellent set of codes that have high potential of scaling 

to fully utilize the 250-TF and 1000-TF systems while achieving breakthrough science with the resulting 

simulations. The codes span many domains of science and a wide variety of models, algorithms, and 

software that collectively stress all aspects of a petascale computational resource. These applications 

originate from many different institutions. For each code in this list the following are summarized: 

physical models, numerical algorithms, current and project scaling performance, ways to be used in an 

acceptance test, the science it might probe with early access simulations, its functional software 

requirements (system software and math libraries), and points of contact. The code data is based in large 

part on details graciously provided by the relevant code authors and subject matter experts. The authors of 

this document have attempted to compile a complete list of available codes in Table E.1. Details for each 

code are provided in the text following the table. 

 

Table E.1. Acceptance test utility, description, and metrics for selected science application 
codes 

Code Acceptance test 
utility Acceptance test description and metrics 

AORSA Scalability; 
functionality 

Scale up on full system with problem having a known 
answer; test complex factorization of dense matrices 
(ScaLAPACK/PBLAS) 

CAM Single PE performance Test problem of finite volume dynamical core with 
atmospheric chemistry 

CASINO Single PE performance Perform a 10000 electron system calculation 
NUCCOR Functionality Reproduce regression tests 

CHIMERA Functionality; 
interconnect B/W 

Standard explicit hydro test problem with a known answer 
(Sod) 

FLASH Scalability; I/O 

Reproduce isotropic DNS run on BG/L; whole star type 
1A simulation, ensuring amount of burned mass at same 
resolution is identical to a prior result obtained on another 
system; write out restarts with <10% overhead 

GTC I/O; scalability Write out restarts with <1% of overhead; push 20B 
particles in one step in one second 
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Table E.1 (continued) 

Code Acceptance test 
utility Acceptance test description and metrics 

LAMMPS Functionality ~1M atom simulation generating reproducible answers 

LSMS (+WL) Scalability; stability Use a simple, well known bulk system (bcc Fe) to test 
stability and scaling of message-passing performance 

MADNESS Functionality Compile and run code with correct answers 

MILC/CHROMA Scalability >15% of peak performance realized in the conjugate 
gradient portion of standard MILC without optimization 

NEWTRNX Functionality Reproduce regression tests 
NWChem Functionality Test proper implementation of global arrays 

PFLOTRAN Functionality Exercises a large portion of the PETSc code base 

POP/CICE Single PE performance; 
interconnect latency 

Runtime in simulated years per CPU day for a fixed-size 
problem (0.10 degree) 

QBOX Scalability Parallel efficiency; percent of peak 

QMC/DCA Functionality 
Generate test runs of virtually any size with a known 
answer that checks MPI, BLAS, LAPACK, and F90 
compiler 

S3D Interconnect latency; 
I/O 

Simulation with production I/O works and generates 
correct answers; runs correctly at a variety of PE counts; 
flame benchmark (time/step/grid point) is constant or 
better  

T3P Functionality Test functionality of Zoltan, MUMPS, ScaLAPACK 
VASP (+WL) Functionality Test functionality of BLAS, ScaLAPACK 

AORSA 

Physics Models 

The All-Orders Spectral Algorithm (AORSA) code solves Maxwell-Boltzmann equations for the 

wave electric and magnetic fields and for the distribution function fs(r, v, t), representing the density of 

species in a 6-D phase space. The time-evolution of this function is determined using self-consistent 

electric and magnetic fields. The wave fields and particle distribution function can be separated into a 

time-averaged slowly varying part, (E0, B0, fs
0), and a time harmonic rapidly oscillating part, [E(r)e-iωt, 

B(r) e-iωt, fs
1(r,v)e-iωt] where ω is the frequency of the wave. Solving the linearized Boltzmann equation 

gives the rapidly varying part of the distribution function fs
1(r, v) in terms of the equilibrium part fs

0. For 

the rapidly oscillating, time harmonic wave fields, Maxwell’s equations reduce to a generalization of the 

Helmholtz wave equation. The numerical solution is expensive because of the nonlocal nature of the 

plasma current, the geometric complexity of the plasma boundary, and the enormous range of spatial 

scales that must be treated. AORSA takes advantage of today’s parallel computers and solves its 

equations in the general integral form with no restriction on wavelength relative to orbit size and no limit 
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on the number of cyclotron harmonics. AORSA has been generalized to treat nonthermal (i.e., non-

Maxwellian) plasma components. 

Algorithms 

AORSA uses a fully spectral method to solve the wave equation and the resulting set of linear 

equations is solved using ScaLAPACK libraries or HPL, modified for use with complex coefficient 

systems (E. F. D’Azevedo et al., “Complex Version of High Performance Computing Linpack 

Benchmark [HPL],” SIAM Conference on Computational Science and Engineering, 2007). This avoids 

complicated convolutions associated with calculating the plasma current, and at the same time, includes 

cyclotron harmonics of arbitrarily high order. For an N × N grid in 2-D, AORSA generates a dense matrix 

of approximately 0.70*(3*N2). For example, the medium-size ITER problem (128 × 128) requires the 

solution of a double complex valued linear system of order 34,692. The larger ITER problem (256 × 256) 

required to resolve the mode-converted waves requires solution of a linear system of order 124,587. 

Scaling 

Linear scaling up to 4096 processors; prefer twice the memory of Jaguar’s processors 

(2 Gbytes/processor available to code); domain decomposition with MPI; 50% of peak on Jaguar; and 

757 GF on 2024 Seaborg processors (Fig. E.1). 

Fig. E.1. AORSA on the Cray XT series Jaguar system compared with an IBM Power3. 
The columns represent execution phases of the code. The aggregate is the total wall time, with Jaguar 
showing more than a factor of 3 improvements over Seaborg. 
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If Chosen for Science Day One 

On day one with a petaflop, AORSA could do a complete simulation of mode conversion heating in 

ITER with a realistic antenna geometry and non-Maxwellian alpha particles. Right now, it takes 

5000 processor hours to simulate mode conversion for a single toroidal mode with Maxwellian alphas. 

Non-Maxwellian alphas would take three times as long (15,000 processing hours) and then ten nonlinear 

iterations of this case with CQL3D (150,000 processor hours.) Then the realistic antenna would take 

about 100 toroidal modes or 15,000,000 processing hours. 

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran 77/90 BLACS NetCDF None 

Libraries and Tools 

Library Function Functionality 

SCALAPACK PZGETRF Double complex factorization of a dense 
matrix 

SCALAPACK PZGETRS Double complex triangular matrix solve 
PBLAS PZSCAL Double complex scaling of a submatrix 
PBLAS PZGECOPY Double complex copying of a submatrix 

FFTPACK ZFFTF, ZFFTB, 
ZFFTI 

Double complex forward, backward, and 
initialization 

BLACS ZGSUM2D Double complex reduction sum of a 
submatrix 

BLACS BLACS_BARRIER Interprocess barrier 

Code Reference 

Fred Jaeger (jaegeref@ornl.gov) 

E. F. Jaeger et al., “Self-Consistent Full-Wave and Fokker-Planck Calculations for Ion Cyclotron Heating 

in Non-Maxwellian Plasmas,” Physics of Plasmas 13, 056101 (2006). 

NCCS Point of Contact 

Richard Barrett 

rbarrett@ornl.gov 

mailto:jaegeref@ornl.gov


 
Computational Science Requirements Appendix E 
 

 71 

CAM 

Physics Models 

The general circulation of the atmosphere and ocean are modeled by the primitive equations of 

geophysical flows in a hydrostatic formulation. These are conservation laws for mass, momentum, 

energy, and species expressed as partial differential (and integral) equations. They are time dependent 

with the ocean surface, forming a boundary condition across which fluxes are exchanged between 

atmosphere and ocean. Similarly, the land surface with vegetation modeling and soil hydrology and river 

routing is also coupled with the atmosphere. The physics of the Community Atmosphere Model (CAM) 

embodies radiation balance with adsorption and emissivity calculated across 16 spectral bands, depending 

on the chemical constituents of the atmospheric grid point. Moist thermodynamics with cloud water as a 

prognostic variable and sulfate aerosol dynamics are some of the other formulation specifics of the 

atmospheric model (Fig. E.2). 

 

Fig. E.2. Performance of the CAM 3.1 atmospheric model. 

Algorithms 

The atmospheric model utilizes two different formulations, depending on the form of the 

discretization. The spectral models (Eulerian and semi-Lagrange spectral) are in “advective form” while 

the semi-Lagrange finite volume discretization is in “flux form.” 
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Scaling 

Scalability has hard limits from the data-distribution algorithm, not from parallel inefficiency. Current 

development will enable scaling to thousands of processors by increasing resolution, adding 

computational complexity, and implementing more-scalable data distributions. Two GBs/processor are 

adequate. MPI with 2-D domain decomposition is the primary mechanism for parallelism. OpenMP 

parallelism is also implemented and used on systems for which it is appropriate. On the nonvector XT 

series system, the maximum useful processor counts are higher, though throughput compared with the 

X1E is lower. The finite volume dynamical core of the atmosphere will also effectively utilize the entire 

system, particularly with active atmospheric chemistry. In this configuration, the embarrassingly parallel 

chemistry and physics calculations dominate the dynamics by a factor of 5 to 8. 

Functional Software Requirements 

System Software  

Programming 
languages 

Communication  
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran 90, C, Co-
Array Fortran 
(optional), GNU Make 

MPI, OpenMP (optional), 
SHMEM (optional),  
MPI-2 One-sided (optional) 

NetCDF Getrusage (optional) 

Math Libraries 

Library Function Functionality 

Cray SciLib dz/zdfftm 
(optional) 

Multiple real-to-complex or complex-to-
real fast Fourier transforms 

SGI SCSL dz/zdfftm1du 
(optional) 

Multiple real-to-complex or complex-to-
real fast Fourier transforms 

Other Requirements 

Good connectivity to the Earth System grid is required. 

Code Reference 

Mariana Vertenstein (mvertens@ucar.edu) 

http://www.ccsm.ucar.edu/models/atm-cam/ 

NCCS Point of Contact 

James B. White III 

trey@ornl.gov 

mailto:mvertens@ucar.edu
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CASINO 

Physics Models 

This code performs a first-principles electronic structure calculation using Quantum Monte Carlo 

(QMC) to directly solve the Schrodinger equation. In contrast to other first-principles methods, such as 

density functional theory (DFT), QMC provides essentially exact answers, with no or few approximations 

in the entire method. The method is therefore ideal for providing benchmark answers for delicate 

problems such as those in optical properties of nanostructures, catalysis, reaction pathways, and many 

other problems involving transition metals where common DFT approaches are suspect. Indeed, practical 

implementations of DFT are based on a parameterization of QMC data. Although calculations are 

substantially more expensive than DFT, structures of several hundred atoms have been examined. Several 

QMC algorithms exist; the most accurate involve a set of interacting “walkers” of sets of electron 

positions that are guided through space by Monte Carlo. Walkers are created and destroyed dynamically 

according to the underlying quantum problem. The computational requirements scale with the second to 

fourth power of the number of electrons and atoms, depending on the quantities being measured. A trial 

wave function partially based on results from a more approximate method (such as DFT) is used to 

provide importance sampling. 

Algorithms 

Atomistic QMC calculations have many features in common with both molecular dynamics 

calculations (e.g., the movement of individual particles, Ewald sums for long range forces) and with 

quantum chemical and DFT electronic structure methods (e.g., representation of wave functions in an 

underlying Gaussian or plane-wave basis, possible use of pseudopotentials). A generalized Metropolis 

algorithm is used for Monte Carlo. The population of walkers is dynamically load balanced across 

processors ensuring very high parallel efficiency (>90%). The Monte Carlo and dynamic nature of the 

algorithms could take advantage of fault-tolerant parallel environments, if available: the loss of a few 

walkers due a failed processor can be rigorously accounted for with only minor overhead. 

Scaling 

The scalability of QMC calculations depends on a combination of the size of materials system under 

study, the physical quantities of interest (energies, forces, optical excitations), as well as the quality of 

trial wave function that can be obtained using more approximate methods. Based on current experience 

with these governing factors, publication-quality QMC calculations will scale to systems of 1000–10000 

electrons on 10000–100000 processors without major developments to existing code. These system sizes 

are necessary to tackle the problems mentioned above. Hard scaling could be further improved by 

dividing each walker over several processors. Although this development has not been done, an additional 
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order of magnitude of scalability might be reasonably achieved. QMC calculations of the type 

implemented by CASINO have been routinely run on 1000 processors on LLNL systems with >90% 

parallel efficiency for systems of a few hundred electrons. 

If Chosen for Acceptance 

The CASINO QMC code has few external dependencies and could be part of an acceptance test. The 

code stresses the F90 compiler for performance. MPI and communications are not heavily stressed 

because of the loosely coupled nature of the algorithm. 

If Chosen for Science Day One 

If chosen for science on day one, it would immediately be possible to study a key scientific problem 

in an area of materials science such as catalysis, hydrogen production (photodissociation of water on 

titanium dioxide surface), hydrogen storage in organic and solid state nanostructures, as well as magnetic 

systems. Calculations on intermediate sized problems (on 10000 cores) are required to determine the 

exact science and system size that could be achieved on 100000 cores. 

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O Libraries 
and functions 

Operating System 
functions 

Fortran 90 MPI None Timing only 

Math Libraries 

Library Function Functionality 

BLAS xGEMM,  
xGEMV 

Matrix-multiplication 
Minor use only 

Code Reference 

Paul Kent (kentpr@ornl.gov) 

http://www.tcm.phy.cam.ac.uk/~mdt26/casino2.html 

NCCS Point of Contact 

Markus Eisenbach 

eisenbachm@ornl.gov 

mailto:kentpr@ornl.gov
http://www.tcm.phy.cam.ac.uk/%7Emdt26/casino2.html
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CHIMERA 

Physics Models 

VH-1 solves the compressible Euler equations for fluid flow. It has been coupled to a variety of 

neutrino transport solvers as part of the Terascale Supernova Initiative. CHIMERA is one of these “code-

chimeras,” being a combination of VH-1 and the neutrino transport code MGFLD-TRANS (Bruenn, 

Florida Atlantic U.). CHIMERA solves the equations of radiation hydrodynamics in a ray-by-ray 

approach: the hydrodynamic evolution is followed in two or three spatial dimensions and the neutrino 

radiation transport is constrained along radial rays. This is an excellent approximation for the core-

collapse supernova problem: for much of the evolution, the configuration is roughly spherical on scales 

probed by the neutrino interactions with the surrounding matter (Table E.2). 

Algorithms 

Piecewise Parabolic Method (PPM) is a finite-volume discretization of the Euler equations (a 

particular example of a Godunov method). VH1 is a Lagrangian remap version of PPM (i.e., the hydro 

step is performed on a Lagrangian mesh and remapped back to the primary Eulerian mesh during each 

timestep. CHIMERA includes all the PPM technology of VH-1 along with a fully implicit, multigroup 

flux-limited diffusion neutrino transport solver. The transport solver uses a variety of Krylov solvers. 

Scaling 

Explicit Eulerian hydrodynamics is shown to scale to thousands of processors on the NCCS XT series 

in Fig. E.3. CHIMERA is under active development on the Cray XT series. Its scaling characteristics are 

essentially identical to VH-1, as the transport solves that mark the added physics in CHIMERA are local. 

If Chosen for Acceptance 

CHIMERA is under active development and as such is not available to be used as production-level 

code in an acceptance test. 

If Chosen for Science Day One 

CHIMERA would perform the world’s first core-collapse supernova simulation in 3-D with realistic 

neutrino transport. The simulation would also likely include magnetic fields, some approximation to 

general relativistic gravity, and realistic nuclear burning (Table E.2 gives details of calculation for various 

codes).  

A second variant of CHIMERA, bCHIMERA, is also under development. This variant replaces the 

MGFLD transport in CHIMERA (mCHIMERA) with full Boltzmann neutrino transport. 
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Fig. E.3. Explicit Eulerian hydrodynamics. VH-1 weak scaling. 
 

 

 

Table E.2. Details of calculation(s) 

Code Simulation 
target 

Spatial 
resolution 

Phase space 
resolution 

Global 
memory 
required 

Memory/ 
process 
required 

Run-time 
(hours) 

MPI 
processes Runs 

mCHIMERA Explosion  
(750 ms) 256 × 128 × 256 20 10 TB 0.6GB 300 16K 3 

bCHIMERA Explosion  
(750 ms) 128 × 128 × 256 20×8 32 TB 2GB 700 16K 1 

ZENITH Explosion  
(750 ms) 256 × 128 × 256 20 10 TB 0.6GB 300 16K 3 

V3D Explosion  
(750 ms) 256 × 256 × 256 20 10 TB 500MB 500 20K 2 

GENASIS Explosion  
(750 ms) 128 × 64 × 128 20 × 4 × 4 160 TB 8GB 700 20K 1 
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Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries  
and functions 

Operating system 
functions 

F90 MPI HDF5, pnetCDF None 

Code Reference 

Anthony Mezzacappa (mezzacappaa@ornl.gov) 

S. W. Bruenn et al., “Modeling Core Collapse Supernovae in 2 and 3 Dimensions with Spectral Neutrino 

Transport,” Journal of Physics: Conference Series 46, 393–402 (2006). 

NCCS Point of Contact 

Bronson Messer 

bronson@ornl.gov 

FLASH 

Physics Models 

FLASH is designed to solve compressible, reactive flow problems in dense stellar environments, like 

those found in novae, X-ray bursts, and Type Ia supernova. The code incorporates solvers for 

hydrodynamics, nuclear burning, gravity, and a variety of other physical processes. The code also has 

considerable functionality for cosmology problems in the form of particle-mesh solvers. 

Algorithms 

FLASH uses an explicit, PPM-based method, hence a finite volume, nearest-neighbor code. It uses 

block-structured AMR. FLASH includes modules to perform passive and active particle tracing, nuclear 

burning, multigrid and multipole gravity solves, complex equations of state, and front tracking via 

massive scalar advection. 

Scaling 

FLASH recently completed a 64,000 processor-driven turbulence run on the LLNL BG/L. The code 

exhibited good scaling (Fig. E.4).  

mailto:mezzacappaa@ornl.gov


 National Center for Computational Sciences 
 

 78 

Fig. E.4. FLASH exhibited good scaling. 

If Chosen for Acceptance 

FLASH could easily be used for a performance (i.e., scaling) acceptance test. Previous experience on 

BG/L would provide adequate guidance. FLASH would be able to perform turbulence simulation with 

some prescribed performance boost.  

If Chosen for Science Day One 

The code could perform a full-star deflagration simulation, including any possible transition to 

detonation, in the white dwarf at resolutions finer than 0.01 km. This would be a 100× leap in resolution 

for these kinds of simulations and would allow for real validation of the chosen subgrid model for flame 

turbulence.  

Additional development effort in formulating a new subgrid model would be necessary, along with 

the development of fast nuclear burning modules designed to capture any deflagration to detonation 

transition. 
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Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries  
and functions 

Operating system 
functions 

Python, F90, C MPI HDF5, pnetCDF GNU make 

Libraries and Tools 

Math Libraries: The basic FLASH code-base has no external dependencies on math libraries, but 

users can easily add functionality that changes this. 

Code Reference 

Don Lamb (lamb@oddjob.uchicago.edu) 

http://flash.uchicago.edu 

NCCS Point of Contact 

Bronson Messer 

bronson@ornl.gov 

GTC 

Physics Models 

There are three versions of GTC. GTC, developed at Princeton Plasma Physics Laboratory (PPPL), is 

a global code for turbulence transport simulations. It uses a shaped plasma in general geometry with 

electrostatic electron dynamics based on the delta-h scheme with nonadiabatic part of delta-f. The GTC 

version developed at the University of California–Irvine (UCI) has electromagnetic electron dynamics 

based on the hybrid scheme along with a global code for both turbulence and gyrokinetic MHD 

simulations. Finally, the GTC-neo (PPPL) code has neoclassical transport simulations in general toroidal 

geometry and in fully operational collision operators.  

The GTC code has shown steady state simulations of ion temperature gradient (ITG) turbulence with 

adiabatic electrons. The GTC code developers were able to add the velocity space nonlinearity term, 

which helps produce an ion current ration of 2.5%. Using ITG simulations with GTC, they were able to 

show turbulence spreading for shaped and circle plasmas. 

mailto:lamb@oddjob.uchicago.edu
http://flash/
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Algorithms 

Gyrokinetic Vlasov equation PDE in Eulerian coordinates: MHD equations are time dependent PDEs 

in Eulerian coordinates, and the Gyrokinetic-Darwin-Maxwell equations are time independent PDE in 

Eulerian coordinates. 

GTC solves the Gyrokinetic Vlasov equation using a PIC method (ODE in Lagrangian coordinates). 

It also solves the Gyrokinetic-Darwin-Maxwell equations with finite elements with multigrid and other 

linear solvers. 

Scaling 

Mature PIC code, nearest-neighbor, good scaling to 5000 processors has been demonstrated on a number 

of systems utilizing MPI and OpenMPI (Fig. E.5). The code has run long simulations on the Cray XT 

series with 4,800 processors for over 100 wall clock hours per simulation. The code has scaled on over 

16K processors on the IBM Blue Gene. The code has shown 96–98% on multicore Opteron processors. 

GTC has achieved 3.7 TF on the Earth Simulator. 

 
Fig. E.5. Good scaling was achieved on up to 5000 processors. Compute power of the 
gyrokinetic toroidal code. 
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If Chosen for Acceptance 

• For a 100-TF machine, GTC has shown that it can run today’s problems on 16K processors. They 

will need 36 TB of memory to perform this test, with roughly 2 GB/core. The simulations should 

run for about 10 h on 16K processors. The basic test will be to see how many particles can be 

moved one step in 1 s. Currently, the highest has been 6 billion particles on the Earth Simulator 

with 4K processors.  

• For the 250-TF machine, we assume that the 250-TF machine will be available in 2008, and we 

should be able to use the 2-D domain decomposition (DD) for electrostatic simulation of an 

ITER-size machine (a/rho>1000) with kinetic electron. So the scaling of 2-D DD will be tested 

on the 100-TF machine with 20K cores. 

• Further down the road, a multispecies, electromagnetic simulation of ITER machine should be 

carried out on the 1-PF machine (assuming it will be available in 2010), so the finite element 

method (FEM) solver via PETSc and hypre should also be tested. 

• We have used 9 TB RAM on the 25-TF machine already, so it could be assumed that there would 

be 20 TB on the 100-TF machine. We need at least 2 GB/core. 

• The restart file size could be roughly estimated as one-tenth of the RAM size. You could then 

figure out how much time it would take to write out one-tenth of the RAM (if the bandwidth is 

known). We would need to write a restart for every 1 h of simulation. 

• Write out restarts with <1% overhead on the calculation, writing out about one-tenth of the 

memory (the particle information). 

• Push 20 billion particles 1 step in 1 s, for the 250-TF machines. 

If Chosen for Science Day One 

For 250-TF: collisionless trapped electron mode (CTEM) physics and transport (heat, particle, and 

momentum), collisional effects, and size scaling up to ITER; turbulence spreading in ITG, ETG, and 

CTEM. 

• Size and isotope scaling studies of core turbulence transport for ITER: The ultimate goal is for 

integrated simulation, combining wave heating, turbulence, MHD, and neoclassical physics. 

• For 1 PF: Electromagnetic turbulence, long time scale simulation (including transport barriers). 

• Understand anomalous particle transport for the electrons in the presence of electromagnetic 

effects due to micro-tearing near the rational surfaces.  

Turbulent transport studies for the energy transport on the 250-TF machines can be carried out using 

the present GTC code, which uses a grid based on the size of ion gyroradius. The electron particle 

transport physics, however, requires the incorporation of the electron skin depth in the code, which can be 
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an order of magnitude smaller than the size of ion gyroradius. Therefore, we need a 100-fold increase in 

terms of the grid as well as the number of particles. In addition, we need to decrease the time step by a 

factor of 10 to satisfy the Courant condition due to the smaller grid size. 

For the petaflops computer, we will need PETSC fully working with GTC without dominating the 

over cost of the calculations. This is especially true when solving the field equation, including the electron 

skin depth.  

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries  
and functions 

Operating system 
functions 

F90, C MPI, OMP 
(optional) 

PHDF5, HDF5, 
MPI-IO, NetCDF, 
XML 

Timers (through MPI) 

Math Libraries 

Library Function Functionality 
PETSC Hypre AMG Solver 

Code Reference 

Zhihong Lin (zhihongl@uci.edu) 

S. Ethier, W. M. Tang, and Z. Lin, “Gyrokinetic Particle-in-Cell Simulations of Plasma Micro-Turbulence 

on Advanced Computing Platforms,” Journal of Physics: Conference Series 16, 1 (2005). 

NCCS Point of Contact 

Scott Klasky 

klasky@ornl.gov 

GYRO 

Physics Models 

It is generally accepted within the magnetic fusion community that the dominant cause of cross-field 

transport in tokamak discharges is plasma microturbulence, and that this turbulence can be described by a 

combination of the gyrokinetic equation to describe the state of the plasma, and Maxwell˙s equations, to 

describe the self-consistent electric and magnetic fields. The model equations are often referred to as the 

gyrokinetic-Maxwell equations.  

mailto:zhihongl@uci.edu
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GYRO is a nonlinear tokamak microturbulence package designed to run on nearly all modern 

computing platforms, from an ultraportable laptop to the world’s largest CRAY X1E/XT series and IBM 

Blue Gene systems. Developed at General Atomics (starting in 1999) by J. Candy and R. Waltz, GYRO 

uses a fixed (Eulerian) grid to solve the 5-D gyrokinetic-Maxwell equations. Operation is flexible, with 

the capability to treat a local (flux-tube) or global radial domain (with an adaptive source to maintain the 

equilibrium profiles), a full or partial torus, general (Miller shaped) or simple circular plasmas, adiabatic, 

drift-kinetic or gyrokinetic electrons, electrostatic or electromagnetic fluctuations, finite parallel velocity 

and shear, and experimental or user-defined physical input parameters. All transport channels are treated: 

ion and electron energy transport plus turbulent energy exchange, plasma and impurity particle transport, 

and toroidal angular momentum transport. GYRO is also bundled with a highly-developed GUI-driven 

IDL analysis package (VUGYRO). Comprehensive code documentation (including a technical manual 

and user guide), as well as all publications, are available from the GYRO website: http://fusion.gat.com/ 

theory/Gyro. Registered users can download periodic code releases, or work directly from the CVS 

repository for the most up-to-date version. A GYRO-based SciDAC SAP project (SSGKT) is in progress 

to develop a steady-state gyrokinetic transport code for predicting reactor plasma profiles given the 

H-mode pedestal height. 

Algorithms 

GYRO uses a mixture of finite-difference, finite-element, spectral and pseudo-spectral discretization 

schemes. Radial derivatives are computed using arbitrary-order finite-difference formulae, whereas 2-D 

gyroaverages are treated using a mixed spectral (in the binormal direction), pseudo-spectral (in the radial 

direction). Orbit motion (advection) in the poloidal plane is treated using a third-order upwind scheme, 

whereas the poloidal field dependence is represented using adjustable-order finite elements. Velocity 

space integrals (2-D) are computed using novel high-order 2-D Gaussian quadrature schemes, which is 

the most accurate integration scheme used by any gyrokinetic code (Eulerian or PIC). Time integration is 

accomplished by either a semi-implicit IMEX-RK scheme (ideal for large, global-scale simulations), or 

an explicit 4th-order RK scheme (ideal for simulations which resolve the full electron-temperature-

gradient physics time and space scales). 

Scaling 

GYRO scaling studies show impressive scaling up to the full capacity of various of the world’s most 

powerful computers, including 16384 codes of the ORNL Cray XT series (see Fig. E.6). There is active 
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Fig. E.6. GYRO scaling studies on various computers. 
 

development with a SciDAC project to couple multiple instances of GYRO with a single transport 

module. When complete, the new code (currently named TGYRO) will provide a further dramatic 

enhancement of GYRO scalability and allow for the efficient use of tens of thousands of cores. 

If Chosen for Acceptance 

The GYRO code has several external math library dependencies as well as dependence on MPI. 

GYRO is known to stress the interconnect bandwidth and thus could be used to test that characteristic. 

Also, GYRO could be used to test parts of FFTW, UMFPACK, and MUMPS. 

If Chosen for Science Day One 

There are several challenges faced by gyrokinetic simulations. GYRO users have identified these in 

their attempts to accurately simulate tokamak discharges. 

High-beta turbulence: As the plasma pressure (beta) approaches the MHD critical beta, large 

resonant structures are observed in the electron heat transport. These give rise to large bursty transport 

and eventually terminate the simulation. Higher-resolution simulations are required to look for clear 

evidence of destruction of magnetic surface by electromagnetic turbulence. 

Pedestal simulations: As the plasma gradients steepen near the plasma edge, recent GYRO results 

show that grid resolution requirements increase significantly beyond nominal values required to carry out 
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typical core simulations. Probing the high-transport pedestal region and carrying out studies to determine 

optional grid resolution in this region are crucial requirements for understanding the transition between 

core and edge turbulence. 

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran 77/90 MPI MPIIO Timing only 

Math Libraries 

Library Function Functionality 

BLAS ZGEMM, ZGEMV  
(called from UMFPACK) 

Matrix-multiplication 
Minor use only 

LAPACK ZGETR[F,S,I] Dense matrix factorization, solve, 
inversion 

UMFPACK UMZ2FA, UMZ2SO, 
UMZ21I 

Factor, solve, and initialize 
double complex sparse matrix 

MUMPS ZMUMPS 
Driver to initialize, factor, and 
solve double complex sparse 
matrix 

FFTW or 
vendor FFT 

fftw_f77, 
fftw_f77_create_plan 

Create an object with information 
required to compute FFT in the 
FFTW library 

Code Reference 

Jeff Candy (candy@fusion.gat.com) 

http://fusion.gat.com/theory/Gyro 

NCCS Point of Contact 

Mark Fahey 

faheymr@ornl.gov 

LAMMPS 

Physics Models 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a classical molecular 

dynamics (MD) code developed primarily at Sandia National Laboratories over the past ten years. 

LAMMPS uses atomistic-based modeling of molecular systems such as biomolecules, material surfaces, 

and chemical systems. The atomistic modeling uses Newtonian (classical) mechanics for the system 

mailto:candy@fusion.gat.com
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where the atoms are represented by a point mass and charge. Additional terms in the physical model 

include two-, three-, and four-body terms and pairwise interaction (electrostatic and van der Waals 

interactions) beyond the fourth body interaction. Computationally, MD is similar to the N-body problem. 

Unlike gravitational or plasma simulations, the forces in MD are mostly short-range, and particle densities 

do not reach high values. The timestep in an MD simulation is limited by the need to accurately integrate 

atomic motion between strongly interacting atoms (e.g., between two atoms coupled by a harmonic bond). 

For computational efficiency, LAMMPS uses neighbor lists to keep track of nearby particles. The lists are 

optimized for systems with particles that are repulsive at short distances, so that the local density of 

particles never becomes too large. On parallel machines, LAMMPS uses spatial-decomposition 

techniques to partition the simulation domain into small 3-D subdomains, one of which is assigned to 

each processor. Processors communicate and store “ghost” atom information for atoms that border their 

subdomain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a 3-D 

rectangular box with roughly uniform density. 

Algorithms 

A spatial decomposition algorithm and a particle-particle/particle Mesh (PPPM) method and particle 

mesh Ewald algorithm. Complex 2-D and 3-D parallel FFT are also used. 

Scaling 

LAMMPS is a highly scalable program, as it has been shown to scale on 64K processors (Livermore 

BlueGene/L) in weak scaling mode. Scaling and parallel efficiencies are extremely high on the ORNL 

Jaguar system on the largest allocation (4096 processors). In the replica exchange mode, these simulations 

can scale to over 100K cores, reducing the time to solution and accuracy of samples significantly. 

Typically, the breakdown of CPU cost for a timestep is 85% for force computation, 10% for neighbor 

finding, and 5% includes time integration, application of boundary conditions, etc. The force computation 

is dominated by short-range pairwise interactions. Long-range Coulomb interactions are split into a short-

range direct portion (van der Waals) and a long-range K-space portion, which is computed by Ewald 

summation. The most efficient methods for this summation are solutions to Poisson’s equation via 3-D 

FFTs on a grid to which particle charge is interpolated. Ignoring the O(NlogN) cost of FFTs (which 

typically only require 20–30% of the force computation time), classical MD simulations scale as O(N) in 

both memory and CPU cost, where N is the number of particles simulated. They also parallelize 

efficiently, at least for large problems, with typical parallel efficiencies of 80–90% on thousands of 

processors for simulations with millions of atoms (Fig. E.7).  
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Fig. E.7. LAMMPS parallelize efficiently for large problems. 

If Chosen for Acceptance 

LAMMPS is compatible with the popular biomolecular force-fields including CHARMM and 

AMBER. It can perform energy minimization and time integration (molecular dynamics) simulations. 

Other functionalities include periodic boundary conditions, SHAKE bond and angle constraints, parallel 

tempering (replica exchange), and targeted molecular dynamics constraints. For all-atom models of 

proteins or polymers, this requires a time step of about a femtosecond (for coarse-grain models, it can be a 

few orders of magnitude larger). The current state-of-the-art for supercomputer-scale simulations is that 

tens of nanoseconds (tens of millions of time steps) can be simulated for models with tens to hundreds of  

thousands of atoms. This requires many hours or days of CPU time on hundreds of processors of a 

parallel machine. Similarly, for solid state systems, tens of millions of atoms can be simulated for shorter 

timescales. Note that this still implies a significant length-scale limitation because there are a few billion 

atoms in a cubic micron of solid material. Because of their computational intensity, such problems are 

good stress tests of the performance and scalability of large parallel machines. 

If Chosen for Science Day One 

LAMMPs runs will allow investigation of complex biomolecular systems with up to 1 million atoms 

at close to the native time-scales. At the petascale, the scalability of LAMMPS will allow microsecond-

millisecond simulations of multimillion atom systems. Data from multiple trajectories (200 to 2000) at 

microseconds-scale simulations will be collected using the long- and short-range force calculation 

methods in LAMMPS and by exploiting the replica exchange techniques that could scale to hundreds of 

thousands of processor cores. These replica exchange simulations improve convergence rates and 

sampling efficiencies in explicit solvent methods. 
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Functional Software Requirements 

System Software  

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

C++ MPI None None 

Math Libraries 

Library Function Functionality 

FFTW 
fftw_create_plan 
fftw 
fftw_destroy_plan 

Creates/destroys an object with 
information required to compute 
FFT in the FFTW library 

Code Reference 

Steve Plimpton (sjplimp@sandia.gov) 

http://lammps.sandia.gov/ 

NCCS Point of Contact 

Sadaf Alam 

alamsr@ornl.gov 

LSMS (+WL) 

Physics Models 

This code implements a first principles electronic structure calculation based on density functional 

theory. LSMS stands for locally self-consistent multiple scattering, an order-N method that is well suited 

to solve all-electron electronic structure problems as they appear in nanostructures—particularly magnetic 

nanostructures. The method is formulated within the local spin density approximation to density 

functional theory and solves the single-particle Dirac equation as well as the nonrelativistic Schrödinger 

equations. The LSMS code was the first to ever run at a sustained teraflop and was the subject of the 1998 

Gordon Bell Prize. 

Algorithms 

LSMS solves the Kohn-Sham equations of density functional theory using Multiple Scattering theory 

to calculate its Green function and consequently the resulting densities by calculating the trace of the 

product of the observables and Green’s function. The main computational effort involves inverting a 

matrix of dimension that scales linearly with the size of the system. To achieve linear overall scaling with 

system size, LSMS takes advantage of the fact that most observables only depend on their local 

mailto:sjplimp@sandia.gov
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environment, so by taking only a fixed size neighborhood of atoms into account, LSMS keeps the size of 

the matrices independent of the system size after the range of this local interaction zone has been 

determined. 

Scaling 

LSMS has run on 10,000 processors with excellent scaling. Parallelization is achieved by assigning 

system atoms to different processors. Larger system calculations are enabled by time on LC systems. 

LSMS has been run on the BG system with either one task per core or one task on two cores. To be 

efficient for one task on two cores, an implementation of ZGEMM that takes advantage of the multiple 

cores is needed. LSMS presently does not provide for structural relaxation (this is currently under 

development), therefore a second code is needed, probably VASP. Integration of these ab initio methods 

with a classical statistical physics method (generalized Wang-Landau in particular) as the energy function 

will allow another level of parallelism in the random walkers used. This combined code will naturally 

scale to >100,000 cores when investigating the thermodynamic behavior of 1000–10,000 atom 

nanoparticles. 

If Chosen for Acceptance 

LSMS can be run for a system of any size up to the number of cores available (because of the one-to-

one mapping of atoms and processors). A simple well-known bulk system (e.g., bcc Fe) can be used to 

test the stability and scaling of message-passing performance up to the full machine size. 

If Chosen for Science Day One 

The combined LSMS+Wang-Landau code will allow the computation of the temperature dependent 

magnetic free energy for nanoparticles of interest (FePt in particular). The use of a first principles-based 

method will take into account effects due to chemical order and will study the full range of magnetic 

complexity in these nanoscale systems. Not much is known about the sub-nanoscale magnetic structure of 

these particles, and this information is central to understanding and exploiting the magnetic properties of 

FePt nanoparticles. The achievability of these results will depend on the number of WL samples needed 

to compute free energies to sufficient accuracy. 
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Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Gnu make, Fortran 
77/90, C, C++ MPI2 Serial HDF5, 

XML ctime (or equivalent) 

Math Libraries 

Library Function Functionality 

BLAS ZGEMM Dense double complex matrix-
matrix multiply 

BLAS ZGEMV Dense double complex matrix-
vector multiply 

LAPACK ZGETRF Double complex factorization 
of a dense matrix 

LAPACK ZGETRS Double complex triangular 
matrix solve 

LAPACK ZGETRI Double complex matrix inverse 
formation 

Code Reference 

Thomas Schulthess (schulthesstc@ornl.gov) 

C. G. Zhou, T. C. Schulthess, and D. P. Landau, “Wang-Landau Algorithm for Continuous Models and 

Joint Density of States,” Physical Review Letters. 96, 120201 (2006). 

NCCS Point of Contact 

Markus Eisenbach 

eisenbachm@ornl.gov 

MADNESS 

Physics Models 

Numerical-based simulations will be used to predict the physical and chemical properties of 

molecules.  

Algorithms 

The mathematical, algorithmic and computational techniques used in MADNESS are based upon 

these elements:  

mailto:schulthesstc@ornl.gov
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• Multi-resolution analysis in multi-wavelet bases 

• Separated representations of functions and operators 

• Partitioned singular value representations 

• Bandwidth-limited bases for efficient sampling in space and evolution in time 

Scaling 

Although MADNESS is under continuous development, the current scaling on the Cray XT series 

system at ORNL shows good overall scaling and scalability of the component algorithms (Fig. E.8).  

Fig. E.8. MADNESS shows good overall scaling 
and scalability of the component algorithms. 

If Chosen for Science Day One 

We propose to develop and apply a petascale simulation capability for essentially exact simulation of 

the dynamics of a fully interacting few-electron system (He, H2, H3+, Li, LiH) in a general external field 

(i.e., propagation in 6-D over physical time scales of the wave function of few-electron atoms or 

molecules in the presence of a perturbing particle such as photon, electron, proton or antiproton). These 

are the fundamental and defining challenges in physics and chemistry of the 21st century, for which 

scientists have been seeking solution for more than 50 years. Passing this frontier will open completely  

new areas to quantitative scientific inquiry and pave a path to similar capabilities for many-electron 

systems because the many-electron wave function is very well approximated by (non-)linear 

combinations of pair functions. With current computing resources and numerical techniques, this is 

presently impossible, and when the equivalent task was recently first accomplished for one+one-electron 

systems in 3-D or more, the result was reported by several cover-page articles in Science and numerous 

other publications, including Nature. We believe this to be feasible due to our current work in 3-D, 

prototyping in 6-D for stationary bound states, and the use of petascale computers with vast memory and 

computational power. The numerical tools and software will be based upon MADNESS. We will 

generalize this capability to time-dependent, nonstationary states, and develop multiscale schemes to 

solve and propagate the few-electron Schrödinger equation with high accuracy. 
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Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran MPI   

Math Libraries 

Library Function Functionality 
BLAS   

Other Requirements 

The overall communication patterns and algorithms desired for the full development of dynamic 

algorithms for the MADNESS suite include the ability to utilize at least four complex programming 

models: active messages, unified parallel C, global arrays, and message passing (MPI). These models not 

only need to be available but must co-exist and allow for functional interoperability.  

Code Reference 

Robert J. Harrison (harrisonrj@ornl.gov) 

http://code.google.com/p/m-a-d-n-e-s-s/ 

NCCS Point of Contact 

Rebecca J. Hartman-Baker 

hartmanbakrj@ornl.gov 

Milc/Chroma 

We propose a set of closely related projects in the numerical study of quantum chromodynamics 

(QCD) to be part of the early research program on the ORNL 250-TF Cray XT series. QCD calculations 

address problems that are at the core of DOE’s large experimental programs in high energy and nuclear 

physics, problems on which the Cray XT series can have a major impact. 

Lattice QCD calculations are performed in two steps. In the first, one performs Monte Carlo 

calculations to generate gauge configurations, which are representative samples of the QCD ground state. 

These configurations are stored, and, in the second step, they are used to calculate a wide variety of 

physical quantities. Configuration generation is computationally intensive, but the memory, I/O, and 

storage requirements are modest. The code is compact and relatively straightforward to optimize. Jobs are 

run in a small number of streams and can be handled by a few people. By contrast, the calculations of 

mailto:harrisonrj@ornl.gov
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physical quantities from the configurations typically require many fewer floating-point operations, but 

have significantly greater I/O and storage needs than configuration generation. 

The physics analysis codes are more complex and, in some cases, more difficult to optimize. More 

researchers are usually involved in the physics analysis work. For these reasons, the projects we propose 

for early use of the 250-TF Cray XT series are the generation of gauge configurations, the part of our 

calculations in which this system can quickly produce unique results that will have major impacts on high 

energy and nuclear physics. Determination of physical quantities from these configurations will initially 

be done on clusters, the QCDOC, and at national supercomputer centers, but later in the project, we 

propose to move some of this work to the Cray XT series. 

All configurations generated on the Cray XT series will be made available immediately to all 

members of the US lattice QCD community for use in a wide range of physics applications. 

One major scientific goal of the physics community is to determine the effects of the strong 

interactions (QCD) on weak interaction processes to an accuracy needed to make precise tests of the 

Standard Model, our current set of theories describing fundamental interactions. These calculations are 

critical for a number of major ongoing experiments in high energy physics, including BaBar at the 

Stanford Linear Accelerator Center (SLAC), CDF and D0 at the Fermi National Accelerator Laboratory 

(FNAL) and CLEO-c (Cornell University). A second major goal is to calculate the masses of the strongly 

interacting particles and obtain a quantitative understanding of their internal structure and interactions. 

This work is very important for major nuclear physics experiments including RHIC at Brookhaven 

National Laboratory (BNL) and CEBAF at Jefferson Lab (JLab). To obtain accurate numerical results, 

one must generate gauge configurations with a range of lattice spacings in order to extrapolate to the 

continuum (zero lattice spacing) limit, and for a range of light quark masses to extrapolate to their 

physical value. Configurations with the smallest lattice spacings and lightest quark masses anchor these 

extrapolations, and ultimately determine their accuracy. To obtain the level of accuracy needed to fully 

support the experimental programs in high energy and nuclear physics, it is necessary to generate gauge 

configurations with smaller lattice spacings and lighter up-and-down quark masses than has been possible 

up to now. 

The Cray XT series planned for ORNL will enable us to generate such configurations. We expect 

these configurations to resolve long-standing problems, and substantially improve calculations of the 

mass spectrum of strongly interacting particles, our understanding of the structure and interactions of 

nucleons, and the extraction of fundamental parameters of the Standard Model from experimentally 

measured weak matrix elements. 
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Physics Models 

In order to carry out numerical studies of QCD, it is necessary to formulate the theory on 4-D space-

time lattices. During the past few years, a great deal of progress has been made through the use of 

improved formulations of lattice QCD (improved actions). The USQCD Collaboration, which consists of 

nearly all the lattice gauge theorists in the United States, is making use of the three formulations we 

consider to be the most promising: the improved staggered (Asqtad) action, the domain wall fermion 

(DWF) action, and the Wilson-Clover action. Each of these actions has important strengths for addressing 

different physics questions: The Asqtad action is computationally efficient, and is enabling precise tests 

of the Standard Model; the DWF action possesses nearly exact chiral symmetry for finite lattice spacing, 

eliminating many problems associated with operator mixing; and the anisotropic Wilson-Clover action 

enables correlation functions to be examined at short distances to extract excited states. Furthermore, it is 

essential that we validate our results by calculating some quantities with more than one of these actions. 

For these reasons, we propose to generate gauge configurations on the ORNL Cray XT series with all 

three actions. We describe each of these actions below, and, in Table E.3, we set out projects that we 

believe are appropriate to the ORNL 250- and 1000-TF machines. 

 

Table E.3. Proposed gauge configurations 

Lattice 
spacing 
(Fermi) 

ml/ms 
Lattice 

dimensions 

Monte 
Carlo 
steps 

Cray 
(peak TF) 

TF 
years 

Asqtad gauge configurations 
0.045 0.40 563 × 192 4000 250 0.6 
0.045 0.20 563 × 192 5000 250 1.9 
0.045 0.10 803 × 192 6000 250/1000 13.7 
0.060 0.05 843 × 144 5000 1000 18.4 

DWF gauge configurations 

0.094 0.27 323 × 64 4500 250 1.2 
0.094 0.19 483 × 64 5000 250/1000 7.8 
0.094 0.11 483 × 64 9000 1000 22.6 

Wilson-Clover gauge configurations 

0.10 0.22 323 × 128 50000 250 0.8 
0.10 0.15 403 × 128 60000 1000 4.1 
0.08 0.18 403 × 128 40000 250/1000 4.5 
0.08 0.15 483 × 128 50000 1000 22.0 
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Asqtad gauge configurations: The Asqtad action has the advantage that it requires an order of 

magnitude fewer floating point operations to generate gauge configurations with a particular lattice 

spacing and light quark mass than other improved actions. For this reason, a large set of gauge 

configurations ensembles already exists. These configurations have been made publicly available and are 

being used by many lattice gauge theorists in the United States to study a wide variety of problems in 

high energy and nuclear physics. Accuracy in the order of 3% has been obtained for a select set of 

physical observables, and, in some cases, predictions have been made that were later confirmed by 

experiment. However, to reach the level of accuracy for precise tests of the Standard Model requires 

gauge configurations with lighter quark masses and smaller lattices spacings than have been possible to 

generate to date. The Cray XT series will enable us to generate such configurations, which will have a 

dramatic impact on a wide range of calculations. The MILC Collaboration, which has generated the 

Asqtad gauge configurations mentioned above, will have responsibility for this project.  

DWF gauge configurations: A critical advantage of the DWF action is that it satisfies nearly exact 

chiral symmetry for finite lattice spacings. The spontaneous breaking of chiral in the QCD vacuum is the 

origin of most of the normal matter in the universe, and an accurate representation of this symmetry is 

ultimately essential for lattice QCD calculations of the weak matrix elements, the spectrum of strongly 

interacting particles, and the structure and interactions of nucleons, which are central goals of research for 

the USQCD Collaboration. 

At present, the DWF action is an important part of the efforts of the USQCD Collaboration both for 

calculations on existing gauge ensembles and for the generation of new ensembles. Unfortunately, current 

efforts to generate Monte Carlo ensembles using these new methods have been statistics starved and 

constrained to work with a relative coarse lattice spacing of 0.125 fm. Dramatic improvements can be 

achieved using the Cray XT series, staged according to the expected availability of equipment. By 

exploring the light quark region with reasonably small lattice spacing, the full promise of the DWF 

formulation should be realized. The RIKEN/BNL/Columbia University (RBC) and Large Hadron Physics 

Collider (LHPC) Collaborations, which have led the development and use of the DWF action will have 

responsibility for this project  

Wilson-Clover gauge configurations: A complete understanding of QCD demands that we know the 

spectrum of mesons and baryons that it implies, and test these spectra against high quality data. 

The combined analysis of experimental data on the photo production of nucleon resonances is the 

nuclear physics 2009 milestone in hadronic physics, and the GlueX Collaboration’s proposal to explore 

the spectrum of exotic mesons is a flagship component of the proposed 12-GeV upgrade at Jefferson 

Laboratory. Beyond the spectrum of isolated hadrons, lattice QCD can teach us about the mechanism of 

hadronic interactions, a hadron physics milestone for 2014. 
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Thus the need for a comprehensive, first-principles study of the spectrum of QCD, and of the nature 

of hadronic interactions using lattice calculations is clear. These studies require precise computations of 

several low-lying energy eigenvalues, necessitating good resolution of the temporal decay of correlation 

functions. These requirements lead us to adopt anisotropic lattices, in which the temporal lattice spacing 

is finer than the spatial by around a factor of three. The LHPC Collaboration will take responsibility for 

this project. 

Table E.3 shows the gauge configurations we propose to generate on the ORNL 250- and 1000-TF 

computers. The first column gives the lattice spacing in fermi, the second the ratio of light-to-strange 

quark mass, the third the lattice dimensions, the fourth the number of Monte Carlo steps in the simulation,  

the fifth the peak speed of the ORNL computer on which we propose to generate the configurations, and 

the sixth column the estimated number of floating-point operations required in teraflop years. In the case 

of the Wilson-Clover gauge generation, we list the minimum value of the light-to-strange quark mass 

used in each stage of the calculation. 

Algorithms 

The generation of gauge configurations will be carried out with the recently developed Rational 

Hybrid Monte Carlo (RHMC) algorithm. This algorithm provides a major improvement over older ones. 

Indeed, our proposed work could not be accomplished without it. The single most computationally 

intensive step in our calculations is the inversion of large sparse matrices, which is performed using the 

conjugate gradient algorithm. 

Scaling 

Both the Chroma and MILC codes, which will be used in the proposed work, achieve excellent 

scaling on the Cray XT series. This is demonstrated in Fig. E.9, where we plot the total throughput for the 

conjugate gradient routine for both codes as a function of the number of cores on the recently upgraded 

ORNL Cray XT series. This performance, approximately 18% of peak, was obtained with vanilla versions 

of the two codes. We indicate our plans to optimize the codes for the Cray XT series below. 

If Chosen for Acceptance 

We nominate the MILC code to be one of the codes used in acceptance tests. It is publicly available at 

the URL http://www.physics.utah.edu/˜detar/milc, and has been used in recent procurements by National 

Energy Research Scientific Computing Center (NERSC) and the National Science Foundation (NSF). The 

Asqtad action has the highest ratio of data movement to floating point operations of the QCD actions in  
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Fig. E.9. The codes for the Cray XTE will be optimized. Performance of the Chroma (left panel) and 
MILC (right panel) codes for the conjugate gradient routine as a function of the number of cores. The number 
of lattice points assigned to each core is held fixed as the number of cores is increased. The black curves are 
straight lines passing through the data from 1024 and 2048 cores. 

 

current use for large-scale simulations. It therefore provides a particularly good test of each of these 

functions and the balance between them. 

The vanilla MILC Code with SciDAC enhancements achieved 18% of peak for the conjugate gradient 

routine on the current version of Jaguar without special optimization. We suggest that a reasonable 

acceptance metric would by 15% of peak, again without special optimization. 

If Chosen for Science Day One 

We would begin by generating the Asqtad configurations with lattice spacing a = 0.045 fm and light-

to-strange quark mass ratios of ml/ms = 0.40 and 0.20, the DWF configurations with a = 0.094 fm and 

ml/ms = 0.27, and the Wilson-Clover configurations with a = 0.10 fm and ml/ms down to 0.22. These 

projects could be completed quickly on the 250-TF machine, and would have an immediate impact on our 

field. We would then begin the Asqtad configurations with a = 0.045 fm and ml/ms = 0.10, the DWF 

configurations with a = 0.094 fm and ml/ms = 0.19, and the Wilson-Clover configurations with 

a = 0.08 fm and ml/ms = 0.18. Completion of these projects may turn out to be good initial tests for the 

1000-TF machine. The Asqtad configurations with a = 0.045 fm would reduce errors in physical 

quantities due to lattice artifacts by a factor of two over those arising from configurations expected to be 

available in FY 07. The completion of the DWF configurations with a = 0.094 fm will allow the 

exploration of the chiral regime with chiral fermions, and enable calculation of fundamental matrix 

elements that would suffer from operator mixing in the absence of chiral symmetry. The completion of 
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the Wilson-Clover configurations at a = 0.10 fm will enable the computation of the exotic meson 

spectrum and of the low-lying excited baryon resonances down to pion masses as low as 180 MeV, and 

the first measurement of the exotic meson photo couplings. The completion of the lattices at a = 0.08 fm 

will enable the continuum limit of these quantities to be determined. 

The objective of all of these projects is to generate gauge configurations that are representative 

samples of the QCD ground state. More specifically, importance sampling techniques are used to generate 

configurations with a probability that is proportional to their weight in the Feynman path integrals that 

define the theory. These configurations will be saved, and will be used to calculate a wide variety of 

physical quantities. As indicated above, the RHMC algorithm will be used in all of the proposed work. 

The bulk of the floating point operations are consumed in inversions of large sparse matrices, which are 

performed by the conjugate gradient algorithm. 

As can be seen from Fig. E.9, both the Chroma and MILC codes currently obtain approximately 18% 

of peak on Jaguar. They will therefore be ready to run effectively on the 250-TF machine without any 

further development effort. However, we are confident that the performance of our codes on the Cray XT 

series can be improved significantly, and we are working to do so. There are two areas that will be given 

special attention. First, the basic building blocks in QCD calculations are linear algebra operations among 

3 × 3 complex matrices and three-component complex vectors. The most frequently used of these have 

been optimized for Intel processors with SSE instructions. However, this code does not produce the boost 

in performance on Opteron processors that it does on Intel ones, so we plan to optimize key linear algebra 

operations for Opterons either using SSE instructions or assembly coding. Second, our codes make use of 

multi-core processors by treating each core as an independent processor, and running a single MPI 

process on it. However, we believe that threaded code will provide better performance, and plan to 

develop it. Both of these optimization efforts are planned for the first year of the lattice gauge theory 

community’s SciDAC-2 grant, and should be completed by the time the 250-TF Cray XT series comes on 

line. The Lattice QCD Software Committee has responsibility for this work. 

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries  
and functions 

Operating system 
functions 

C, C++ MPI 
POSIX compliant I/O 
system calls and large 
file (>2 GB) support 

Standard UNIX like system 
calls (current QK kernel 
functions appear sufficient) 
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Other Requirements 

Also required are C/C++ compilers that allow programmer control of SSE and Opteron-optimized 

instructions, and memory prefetching through compiler intrinsics or inline assembler (e.g., GNU 

Compiler Collection (gcc/g++) v 3.4 or higher), PGI compilers are insufficient because auto vectorization 

is not sought. The PathScale compilers have also proved usable. Cray SHMEM is desirable for optimizing 

our communications libraries, but not essential. 

Code Reference 

Robert Sugar (sugar@physics.ucsb.edu) 

MILC: http://physics.indiana.edu/~sg/milc.html 

CHROMA: http://usqcd.jlab.org/usqcd-docs/chroma/ 

NCCS Point of Contact 

Ricky Kendall 

kendallra@ornl.gov 

NEWTRNX 

Physics Models 

Neutronics models include a 6-D neutral-particle Boltzmann transport equation for neutron 

distribution coupled, for time-dependence, with the Bateman equations for isotopic and delayed neutron 

generation/destruction. The requirements for the Boltzmann solution span six to nine orders of magnitude 

in space, three to four in neutron direction, and two to four in neutron energy. The Bateman equations for 

isotopic generation/destruction are solved for every spatial element or region with over 2000 coupled 

isotopes and spanning 11 orders of magnitude in time (milliseconds to decades). Other phenomena to be 

considered are coupling with multiphase fluid flow, structural mechanics, fuel behavior, and nuclear 

chemistry. (Note: this is the neutronics solver and computational backplane of Collaboration for 

Advanced Nuclear Simulation [CANS]: a multi-institution collaboration with Idaho National Laboratory 

(INL), Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), and several 

universities to develop high-fidelity coupled-physics simulations for nuclear reactors.) 

Current simulations of nuclear reactors are a four-step process to solve the equation and approximate 

their coupling with fluid-flow and heat transfer: 

• Fine-energy (based on first-principles nuclear scattering) and spatial resolution on a very small 

spatial subset (single fuel particle) to estimate local effects of the global solution and weight the 

continuous energy cross sections to provide an accurate “smeared continuous-energy section set” 

for this spatial subset for a given state point (temperature, density, time).  

mailto:sugar@physics.ucsb.edu
http://physics.indiana.edu/%7Esg/milc.html
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• Fine-energy (based on first-principles nuclear scattering) and spatial resolution on a larger subset 

of the problem (a single fuel type) to estimate the local effects of the global solution and the 

weight of the spatially-smeared continuous-energy cross sections to provide an accurate 

“effective spatially smeared multigroup cross section set” for this fuel type for a given state point. 

• Multigroup in energy, with a coarser spatial resolution, on a larger piece of the problem to the 

weight of the multigroup cross sections to provide an accurate “effective two-group homogenized 

cross section set” for many perturbations in state-points (i.e., looping through steps one-three) to 

approximate the effect of various state points and coupling with the Bateman equations. 

• Two-group in energy, large homogenized (smeared) material regions for the full spatial domain, 

with approximate coupling to 1-D thermal-hydraulics solvers. 

Each step requires several million degrees of freedom and the major approximations reflect 

boundaries at each level, the coarse-level temperature feedback approximation, and the fine-mesh 

reconstruction from the coarse-solution. Many safety issues need to know peak fuel temperature (or 

similar data) so it must be “reconstructed” from a combination of the local assembly calculation and the 

global diffusion calculation. 

The NEWTRNX code incorporates the world’s leading tools in ORNL’s SCALE code package for 

steps one and two while solving the multigroup solution for the entire spatial domain (1015 degrees of 

freedom). The coupling with the Bateman equations and computational fluid-dynamics will be 

incorporated in FY 09. Also, the fine-energy treatment, which is based on first-principles nuclear 

scattering, will be available in future releases of NEWTRNX to remove the step two entirely. However, 

this will not be practical for a full commercial nuclear reactor until computing resources expand by 

several orders of magnitude (tens of petabytes and hundreds of petaflops).  

Algorithms 

The Boltzmann PDE is solved with the method of characteristics (slice-balance approach) in space, 

multigroup in energy, and discrete ordinates in neutron direction. Multigrid algorithms in 6-D phase space 

will be used for acceleration of the solution along with Krylov solvers. The sweeping algorithm allows for 

a matrix-free formulation which reduces the dimensionality of the solution vector, allowing reduced 

storage requirements and efficient solutions for 1013 unknowns on thousands of processors in less than an 

hour.  

Scaling 

In Fig. E.10, the strong scaling performance of NEWTRNX from 32 to 512 processors of Jaguar is 

shown for a problem with a single representative neutron energy-group, 80 discrete-ordinate directions,  
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Fig. E.10. Single fuel assembly of a sodium-cooled, fast-spectrum nuclear reactor. 

  

and 524,742 tetrahedral elements (167 million DOF). As with UNIC, the problem selected for this 

demonstration was chosen to study the performance on Jaguar, but the practical problems studied will 

require orders of magnitude higher resolution in phase-space, which will increase the local work load and 

improve parallel performance. Even though the spatial domain goes down by a factor of 16 (from 16k to 

1k elements per core), we still see reasonable parallel performance. 

This demonstrates that the Parallel-Block Jacobi algorithm, accelerated with a non-linear multi-grid 

solver, scales well for large problems with distributed sources and weak coupling between dispersed 

spatial blocks. As shown, the algorithm scales at 85% on 512 processors (with respect to 32 cores) on 

Jaguar for a problem with spectral radius of 0.65, which is also representative of the performance of this 

algorithm for reactor configurations. 

If Chosen for Acceptance 

The demonstration of a high-fidelity (in all phase-space) simulation of the neutron distribution within 

a nuclear reactor would revolutionize the nuclear industry, providing a functionality that could not be 

realized for generations with the present single-processor tools of today’s nuclear industry. 
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The ability, never before available, to model an entire nuclear reactor to such fidelity and comparison 

with empirical data from present international test reactors would prove the significance of high-

performance computing to the nuclear community.  

If Chosen for Science Day One 

Six dimensional (3-D space, 2-D direction, 1-D energy) neutron transport for an entire nuclear reactor 

core consisting of 250 fuel assemblies, with each assembly holding 250 fuel pins (150 fuel pellets per 

pin). A total of ~10M fuel pins will be simulated, with the solution being the energy distribution/output 

throughout the entire reactor core for a given fuel type and age.  

The idealized solver would provide fine resolution in every dimension without the current smearing 

steps, or without the use of fine-energy and spatial resolution on the entire problem with complete 

temperature feedback. This includes 3-D Sn, near-continuous energy transport on the entire reactor; S16 

(or higher) quadrature set, 1012 spatial elements, and 30,000 discrete energy points; one calculation per 

temperature feedback iteration (<10) per quasi-static time step (~100) for a basic calculation; or a total of 

1021 unknowns performed 1000 times. Some reactor types will have a very strong thermal feedback 

coupling, most will be relatively weak. 

Advanced phase-space domain decomposition must be incorporated for efficient scaling to 

100,000 processors.  

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

F90, C, C++, python MPI, cca-tools HDF5 GNU make 

Math Libraries 

Library Function Functionality 
LAPACK DGEEV Compute eigen decomposition 

PARPACK PDNEIGH Compute eigenvalues and Ritz 
estimates 

Code Reference 

Kevin Clarno (clarnokt@ornl.gov) 

K. T. Clarno, “Implementation of Generalized Coarse-Mesh Rebalance in NEWTRNX for Acceleration 

of Parallel Block-Jacobi Transport,” Transactions of the American Nuclear Society 97: 498–500 (2007). 

mailto:clarnokt@ornl.gov
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NCCS Point of Contact 

Doug Kothe 

kothe@ornl.gov 

NUCCOR 

Physics Models 

The nuclear coupled cluster — Oak Ridge (NUCCOR) code was built from scratch. Chemistry codes 

cannot be adapted to the nuclear problem since the nuclear forces are spin and isospin dependent. Thus, 

standard algorithmic savings in chemistry brought about by the symmetries of the Hamiltonian (e.g., use 

of a spin-orbital basis) cannot be employed for nuclei. Coupled-cluster techniques solve for ground- and 

excited-states of a quantum many-body system at a given level of many-body sophistication. The ground 

state energy and the cluster amplitudes result from an iterative solution of a large set of nonlinear, coupled 

algebraic equations. A compact mathematical statement of the problem is given by the expression fi(t1,t2) 

= 0, where the set of unknown amplitudes (one-particle-one-hole and two-particle-two-hole excitation 

amplitudes t1 and t2) must be found. The equations are closed if one assumes that any higher-order 

amplitudes (three-particle-three-hole amplitudes in this case) are zero. Energies of excited states are 

computed via diagonalization of a large-dimensional, sparse-eigenvalue problem. 

Algorithms 

Solution of a nonlinear set of coupled algebraic equations. A complete calculation for a give nucleus 

proceeds in the following manner. First, one must generate the effective two-body interaction for the 

problem. This is done by renormalization of bare nucleon-nucleon potentials via sums of ladder diagrams 

(the G-matrix approach), a Hamiltonian similarity transformation and projection to the model-space, and 

a renormalization group (RG) method that obtains the low-momentum part of the interaction. This step is 

not numerically intensive and can be performed on a small cluster or workstation. The RG approach, also 

known as Vlowk, will be utilized to investigate three-body effects. Second, the two-body interactions 

obtained from the first step are calculated in a “spin-coupled” representation and must be decoupled. This 

procedure is performed by first reading in the coupled matrix, and using a master-worker algorithm to 

spread the work of decoupling. Once matrix elements have been decoupled and MPI-I/O written to a file, 

the resulting 4-index array of matrix elements is block-distributed among the processors with a MPI-I/O 

read. This is an extremely efficient (and crucial) part of the overall algorithm. The final step involves 

calculation of the NUCCOR amplitudes. The present code uniformly distributes the interaction matrix 

elements across processors on two of the four indices. Each processor maintains a complete copy of the 

amplitudes. Thus each processor performs a partial sum of the equations to obtain new amplitudes. An 



 National Center for Computational Sciences 
 

 104 

allreduce (addition) is used to obtain the new copies of the amplitudes for the next iteration step. While 

keeping one copy of the amplitudes for each processor means that as we go to larger model spaces, 

memory use becomes an issue, the overall flops performance of the code has benefited from this strategy. 

For non-iterative triples corrections, we transport the resulting NUCCOR amplitudes and decoupled 

Hamiltonian to collaborators at Michigan State for analysis 

The code currently relies upon a significant use of regression tests. If we change codes, we check 

previous results. We also have pilot codes running serially for small problems which can then be tested in 

parallel applications. We also have “standard results” produced by other methods to which we can 

compare. We have diagonalization results to compare to for special cases. Comparison to experimental 

data for nuclear properties is our validation strategy. In nuclear physics, where the Hamiltonian is less 

well known, this can be a particularly challenging issue; however, given the same Hamiltonian, 

completely different methods (GFMC vs coupled-clusters, for example) should obtain the same results. 

Direct comparison to experiments is becoming more and more common. Data flows from HRIBF at 

ORNL, Atlas at Argonne National Laboratory (ANL), the National Superconducting Cyclotron 

Laboratory (NSCL) at Michigan State University (MSU) as well as from international facilities. 

Scaling 

The computational requirements scale as No
2Nu

4, where No and Nu are the number of occupied and 

unoccupied single-particle orbitals, respectively. We have checked that this scaling holds as one performs 

calculations in larger nuclei or as one increases the model space. Average computational efficiency per 

processor increases from 10% for O-16 to 25% for 40-Ca at fixed processor number, indicating that the 

current algorithm better utilizes processor power and memory bandwidth during the tensor-multiplies for 

heavier nuclei. We believe an algorithmic jump will be required to get to 10K processors. This is 

currently under active investigation. Large runs today use up the maximum memory per processor 

available. The code scales to about 1000 processors at present. This is both a flops and memory problem. 

The secondary aspect, treating scattering problems within CC theory will also require some innovation 

although we are well on the way there. We recently transformed the CC code so that it can include 

complex basis states (required for the scattering problem). Order of magnitude scaling notes (N = number 

of basis states, n = number of particles): for NUCCOR code flop scaling is O{(n2(N-n)4}; for NUCCOR, 

code memory needs are O(N4) (interaction) + O{(n2(N-n)2} (amplitudes). Current status: N = 480, n = 16–

40. (O-16 and 40-Ca), and n = 4–8 (He chain). Desired status: N = 1000, n = 40–100 (NSLER 

deliverable); scale-up from present: memory (today: N = 480, n = 16): 425 Gbytes (interaction) and 2 

Gbytes × 5 arrays; memory (3 years: N = 1000, n = 100): 8 Tbytes (interaction) and 64 Gbytes × 5 arrays; 
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Ops: today (N = 480 and n = 16): 9 × 1012 for 1 iteration (takes 20 for single solution); Ops: (3 years, N = 

1000, n = 100): 6 × 1015 for 1 iteration (takes 20 for single solution). 

If Chosen for Science Day One 

The long-term goal of the project is to compute from first principles the properties of medium mass 

nuclei (mass 40–100) with two- and three-body nuclear forces included using the coupled-cluster method. 

This will enable an ab initio understanding of both nuclear properties and nuclear reaction mechanisms. 

We will achieve a quantitative understanding of nuclei and nuclear forces and will obtain theories (and 

hence simulations) of the nuclear quantum many-body problem that will enable systematic improvements 

to the desired degrees of accuracy and predictive capability for both nuclear properties and scattering 

cross sections relevant to several applications in SC/NP, NNSA, and the future GNEP programs. Some 

exciting quantum many-body science could come out. The ability to treat medium-mass nuclei from an ab 

initio point of view has never been a possibility until now and this means that the new systems will 

produce new and exciting science. 

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries  
and functions 

Operating system 
functions 

F90 MPI MPI-IO (essential) None 

Libraries and Tools 

Library Function Functionality 
BLAS  Matrix-matrix; matrix-vector 

BLAS  tensor-tensor multiplies of size 1002 × 1002 and 
10004 (100 particles and 1000 basis states) 

Code Reference 

David Dean (deandj@ornl.gov) 

D. J. Dean and M. Hjorth-Jensen, “Coupled-Cluster Approach to Nuclear Physics,” Physical Review C 

69, 054320 (2004). 

NCCS Point of Contact 

Edoardo Apra 

aprae@ornl.gov 

mailto:deandj@ornl.gov
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NWChem 

Physics Models 

NWChem provides many methods to compute the properties of molecular and periodic systems using 

standard quantum mechanical descriptions of the electronic wave function or density. In addition, 

NWChem has the capability to perform classical molecular dynamics and free energy simulations. These 

approaches may be combined to perform mixed quantum mechanics and molecular mechanics 

simulations. 

Algorithms 

NWChem uses both local basis function (atomic orbitals) and plane waves to compute the solution of 

the Schrödinger equations. 

Scaling 

Since NWChem is made of different modules, each module has its own different scalability features.  

Various modules have showed scalability up to 300–500 processors (see density functional theory 

[DFT] scalability plot in Fig. E.11). A recent NUCCOR(T) calculations was run on 1400 processors 

EMSL-MSCF showing 60% of the aggregate peak floating-point performance. 

 
Fig. E.11. Benchmarks of the DFT code on various architectures. 
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If Chosen for Acceptance 

NWChem uses the Global Arrays library for the bulk of its communications. The global arrays use 

the aggregate remote memory copy interface (ARMCI) library as a run-time system; therefore, an 

efficient port of ARMCI on the XT series is required to get good parallel scaling of NWChem. 

NWChem relies on the ChemIO library both for parallel and serial I/O, and this requires an efficient 

ChemIO port on the XT series file system. Some software development effort is most likely needed to get 

the code to scale at O(10K) processors. 

Runtime (in wall clock time) for various fixed-size problems at various node counts are acceptance 

metrics. The correctness of results must be checked against reference results (possibly from alternative 

hardware architectures). 

If Chosen for Science Day One 

Electronic structures calculations on large carbon nanotubes and metallic nanoparticles at various 

levels (DFT, mathematics-physics platform [MP2] and coupled cluster [CC]) will be performed. The 

larger the molecular aggregate, the more likely the simulation would be to represent data to be compared 

with experiment. These calculations will allow studying phenomena pertinent to catalysis and 

nanotechnology. 

Since the DFT, MP2 and CC have a different kind of scaling with respect of system size—with DFT 

being the most affordable method, CC the most expensive, and MP2 of intermediate cost—simulations on 

the largest molecular aggregates will be feasible only with DFT; CC would be restricted to use for smaller 

molecular sizes. Quantities calculated will include energetics, structural, and vibrational properties. 

As described here, a certain amount of software development effort is needed before the code 

performs at an efficient scale on O(103) processors.  

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

GNU make, 
FORTRAN77/C 

Global Arrays, 
ARMCI ChemIO  
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Math Libraries 

Library Function Functionality 

PEIGS  Symmetric eigensolvers, 
Cholesky decomposition 

SCALAPACK  
Symmetric eigensolvers, 
Cholesky decomposition, 
Linear solvers 

LAPACK  Various dense linear algebra 
operations. 

BLAS  Various dense linear algebra 
operations 

FFTPACK  Discrete FFT 

Code Reference 

Edoardo Apra (aprae@ornl.gov) 

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html 

NCCS Point of Contact 

Edoardo Apra 

aprae@ornl.gov 

PFLOTRAN 

Physics Models 

PFLOTRAN (Parallel FLOw and TRANsport) solves multiphase, multicomponent reactive flow and 

transport equations in nonisothermal, variably saturated media. The code consists of two modules, which 

can be run separately or in coupled mode. The module PFLOW simulates Darcy flow, solving mass 

conservation equations for water and other fluids and an energy balance equation. The module PTRAN 

solves mass conservation equations for a multicomponent geochemical system. The reactions included in 

PTRAN involve aqueous species and minerals and can be written in the general form  and 

, respectively, where the set 

ij
j

ji AA ⇔∑ν

mj
j

jm MA ⇔∑ν { }jA refers to a set of primary or basis species in terms of 

which all other species are written, Ai  denotes an aqueous complex referred to as a secondary species, 

Mm  refers to a mineral, and ν ji  and ν jm  are reaction stoichiometric coefficients derived from an 

extensive database. 
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Algorithms 

PFLOTRAN uses a first-order finite-volume discretization on a Cartesian grid (extension to 

unstructured grids is being developed). Within both the PFLOW and PTRAN modules, time-stepping is 

fully implicit (backward Euler). In coupled mode, flow velocities, saturation, pressure, and temperature 

computed from PFLOW are fed into PTRAN. For transient problems, sequential coupling of PFLOW and 

PTRAN enables changes in porosity and permeability due to chemical reactions to alter the flow field. 

A PETSc-based Newton-Krylov solver framework is used to solve the system of nonlinear equations 

arising at each time step. Because we employ PETSc, a wide variety of nonlinear and linear solver 

options can be easily employed by making the appropriate selection for the given problem at runtime. We 

usually employ an outer, quasi-Newton solver with line search and an inner, BiCGSTAB Krylov solver 

preconditioned with an additive-Schwarz method with an overlap of 1, with ILU(0) applied on each 

subdomain. The Jacobian matrix can be explicitly calculated (analytically for some cases, via finite-

difference for others) or its action can be applied on the fly (though this somewhat restricts choice of 

preconditioners). 

Adaptive mesh refinement (AMR) is currently not supported; we plan to use the Chombo framework 

to introduce support for hierarchical block-structured AMR. 

Scaling 

The current version of PFLOTRAN has exhibited linear (strong) scaling on up to 2048 processors on 

Jaguar and good (though nonlinear) scaling to 4096 processors (Fig. E.12). This is for a relatively modest 

one-phase thermo-hydrologic benchmark problem on a 25 × 64 × 256 grid with three degrees of freedom 

per node (approximately 12.6 million degrees of freedom total). Simulations incorporating multiple 

phases or chemical reactions would probably exhibit excellent scaling to larger numbers of processors. 

If Chosen for Acceptance 

A functionality test would be quite useful, because PFLOTRAN exercises a large portion of the 

PETSc code base, which is employed by several codes. Code needs to be able to run at scale on a suite of 

benchmark problems and produce correct results. 

If Chosen for Science Day One 

PFLOTRAN has already been used to study uranium transport problems at the Hanford 300 site, 

radionuclide migration at the Nevada Test Site, and subsurface CO2 sequestration. Problems from any of 

these sites could benefit from a great increase in CPU power, allowing better resolution of transient flow 

features, chemical reactions, and more detailed chemistry (with more chemical species). Further 

consultation with subsurface scientists is required to determine specific problems to propose. Working  
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Fig. E.12. PFLOTRAN has exhibited linear (strong) scaling on up to 
2048 processors on Jaguar and good (though nonlinear) scaling to 
4096 processors. (Richard Mills, ORNL and Peter Lichtner, LANL) 

  

with LANL DOE Regional Partnerships on CO2 sequestration, we will identify a field site and apply 

PFLOTRAN to perform multiscale, multiphase, multicomponent modeling of a 3-D field CO2 injection 

scenario. We will include the presence of an oil phase and four-phase liquid-gas-aqueous-oil system to 

describe dissipation of the supercritical CO2 phase and escape of CO2 to the surface. We are particularly 

interested in resolving viscous fingering effects that result from buoyancy effects caused by an increase in 

density as supercritical CO2 dissolves into the formation brine. Finger widths may be on the order of 

meters or smaller depending on the reservoir properties. Better understanding of these fingering 

phenomena can result in more effective and economical sequestration as well as enhanced oil recovery. 

PFLOTRAN is already usable for solving real science problems on thousands of processors. 

Development is actively ongoing, and the types of problems that could be attempted for “Science Day 

One” depend very much on when “Day One” happens. 

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran 90 MPI None None 
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Math Libraries 

Library Function Functionality 

PETSc 
SNESSolve, KSPSolve, 
DAGlobalToLocal, 
MatFDColoring 

Newton solves, Krylov solves, 
halo exchanges, multi-color 
finite difference Jacobian 

BLAS BLAS Level 1 and 2 Dot product, etc. 

Code Reference 

Peter Lichtner (lichtner@lanl.gov) 

R. T. Mills et al., “Simulating Subsurface Flow and Transport on Ultrascale Computers Using 

PFLOTRAN,” Journal of Physics Conference Series 78, 012051 (2007). 

NCCS Point of Contact 

Richard Mills 

rmills@ornl.gov 

POP/CICE 

Physics Models 

POP is an ocean circulation model derived from earlier models in which depth is used as the vertical 

coordinate. The model solves the three-dimensional primitive equations for fluid motions on the sphere 

under hydrostatic and Boussinesq approximations. A wide variety of physical parameterizations and other 

features are available in the model and are described in detail in a reference manual distributed with the 

code. Because POP is a public code, many improvements to its physical parameterizations have resulted 

from external collaborations with other ocean-modeling groups, and such development is very much a 

community effort. 

The Los Alamos Sea Ice Model (CICE) features the energy conserving thermodynamics model with 

four layers of ice and one layer of snow in each of five ice-thickness categories, the energy-based ridging 

scheme, an ice strength parameterization, elastic-viscous-plastic ice dynamics, and horizontal advection 

via a new incremental remapping scheme. Prognostic variables for each thickness category include ice 

area fraction, ice volume, ice energy in each vertical layer, snow energy, and surface temperature. A 

nonlinear, vertical salinity profile remains constant. The temperature dependence of the longwave 

radiation and sensible and latent heat fluxes is included in the nonlinear flux balance that (iteratively) 

determines the ice or snow surface temperature. The albedo parameterization depends on surface type 

(snow or bare ice), surface temperature (not just whether it is melting or frozen), and both ice and snow 

thickness. Ice and snow albedo values are merged based on a snow “patchiness” fraction. The ice model 

can accommodate four wavelengths of radiation and thus have four associated albedos; with just one 

mailto:lichtner@lanl.gov
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wavelength available for forcing, the four albedos are weighted and merged into a single value. For more 

details, including a full set of references, see the model documentation. 

Algorithms 

Spatial derivatives in both POP and CICE are computed using finite-difference discretizations which 

are formulated to handle any generalized orthogonal grid on a sphere, including dipole and tripole grids 

which shift the North Pole singularity into land masses to avoid time-step constraints due to grid 

convergence. 

Time integration of the POP model is split into two parts. The 3-D vertically varying (baroclinic) 

tendencies are integrated explicitly using a leapfrog scheme. The very fast vertically-uniform (barotropic) 

modes are integrated using an implicit free surface formulation in which a preconditioned conjugate 

gradient solver is used to solve for the 2-D surface pressure. CICE is integrated in time using fully 

explicit methods. 

Scaling 

Although POP was originally developed for the Connection Machine, it was designed from the start 

for portability by isolating all routines involving communication into a small set (5) of modules which 

can be modified for specific architectures. Currently, versions of these routines exist for MPI and 

SHMEM communication libraries and also for serial execution. The appropriate directory is chosen at the 

time it is compiled, and no pre-processor directives are used to support different machines. Support for 

hybrid programming using threads and message passing has recently been added and is described in the 

user’s guide.  

POP tends to be compute-bound as long as the number of cells per processor is high enough to 

swamp a latency-bound, 2-D elliptic solve. 

The 0.1° problem scales to the full size of single-core Jaguar, but latency in the barotropic will soon 

dominate. Early tests on the dual-core Jaguar show that POP is having a problem with MPI wait times 

(see Figs. E.13 and E.14). Tuning of MPI and virtual-node Catamount will probably be necessary. 

If Chosen for Acceptance 

A standard benchmark configuration of stand-alone POP is available and could be used for a 

performance-based acceptance test. The problem size should be 0.1°. We have some historic data for the 

displaced-pole grid, but current production runs use the tripole grid. Acceptance metrics are (1) runtime 

(in simulated years per CPU day) for a fixed-size problem at various node counts and (2) lower bounds on 

per-socket performance. 
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Fig. E.13. Parallel Ocean Program (POP) 1.4.3: 0.1-degree benchmark, 
logarithmic axes. 

 

 

 
Fig. E.14. Parallel Ocean Program (POP) 1.4.3: 0.1-degree benchmark, linear 
axes. 
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If Chosen for Science Day One 

Eddy-resolving ocean simulations have been shown to be necessary for the accurate representation of 

the ocean circulation. To date, such simulations have been done with the ocean model only with a focus 

on the surface wind-driven circulation and at time scales of decades. Current coupled model simulations 

use coarser resolution ocean configurations because of the computational expense of an eddy-resolving 

ocean in century-scale ensemble simulations. A fully-coupled experiment with an eddy-resolving ocean 

and sea ice is necessary to reduce some of the coupled model biases, particularly in the North Atlantic, 

where the ice extent and deep water formation are governed by the accurate representation of the North 

Atlantic current systems.  

After a short spinup of the ocean-ice system at 0.1° resolution, a fully-coupled CCSM configuration 

with T85 CAM and 0.1 degree POP and CICE will be integrated for a few decades under a rapid CO2 

doubling scenario to evaluate the model in both current and future climate change regimes.  

For a fixed-size problem, POP scaling is limited by the latency-dominated conjugate gradient (CG) 

solves in the barotropic computation. Improvements to the solver could reduce the number of iterations 

and allow higher scalability. Use of OpenMP to reduce the number of MPI tasks could also help 

scalability, but tuning of the OpenMP in POP may be necessary. 

Functional Software Requirements 

System Software  

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran 90, C, 
GNU Make, CAF 
(optional) 

MPI, OpenMP 
(optional) NetCDF None 

Math Libraries 

Library Function Functionality 

None  Inline sparse linear solve (CG) 
could be a library call 

Code Reference 

Phil Jones (pwjones@lanl.gov) 

http://climate.lanl.gov/Models/POP/ 

mailto:pwjones@lanl.gov
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NCCS Point of Contact 

James B. White III 

trey@ornl.gov 

Qbox 

Physics Models 

This model describes first-principles molecular dynamics within density functional theory. 

Algorithms 

The algorithm used is the plane-wave, pseudopotential method. 

Scaling 

The scaling efficiency of Qbox was demonstrated on various parallel systems including MCR, 

Thunder and BlueGene/L at LLNL, using up to 131,072 CPUs. Examples of scaling are summarized in 

Tables E.4 and E.5 and Fig. E.15.  

Table E.4 shows the performance of the Qbox code for a calculation of the electronic structure of a 

Cd33Se33 nanoparticle. The parallel efficiency is 97% between 128 and 210 CPUs and 82% between 

128 and 420 CPUs. Results were obtained on MCR, a 1152-node dual Xeon/Quadrics cluster installed at 

the LLNL. 

 

Table E.4. Performance of the Qbox code for a calculation of the electronic 
structure of a Cd33Se33 nanoparticle 

Nodes CPUs Time/step Speedup Efficiency 

64 128 43 1.00 1.00 
105 210 27 1.59 0.97 
210 420 16 2.69 0.82 

 

Table E.5. Performance of the Qbox code for a calculation of the electronic 
structure of 512 H2O molecules 

Nodes CPUs Time/step Speedup Efficiency 

280 1120 46 1.00 1.00 
560 2240 25 1.84 0.92 
908 3920 16 3.07 0.88 
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Fig. E.15. Strong scaling Qbox results on 
BlueGene/L for 1000 molybdenum atoms with 1 
(non-zero) k-point. Also shown is the sustained 
performance on the full machine (64K nodes) with multiple 
k-points. Dashed lines indicate perfect scaling between the 
measured full machine result and the equivalent individual 
k-point calculations. 

 

Table E.5 shows the performance of the Qbox code for a calculation of the electronic structure of 

512 H2O molecules. The parallel efficiency is 92% between 1120 and 2240 CPUs and 88% between 

1120 and 3920 CPUs. Results were obtained on Thunder, a 1024-node quad Itanium2/Quadrics cluster 

installed at LLNL. 

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

C++ MPI   

Math Libraries 

Library Function Functionality 
BLAS, LAPACK All Linear algebra 
BLACS, 
ScaLAPACK All Parallel linear 

algebra 

FFTW All 1-D Fourier 
transforms 

Apache Xerces-C All XML parsing 
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Code Reference 

Francois Gygi (fgygi@ucdavis.edu) 

http://eslab.ucdavis.edu/software/qbox/index.htm 

NCCS Point of Contact 

Doug Kothe 

kothe@ornl.gov 

QMC/DCA 

Physics Models 

The two-dimensional Hubbard model is a simplified description of the electronic degrees of freedom 

of the superconducting copper-oxide planes in high-temperature superconductors (HYSC). Despite its 

simplicity, it is believed to hold the key ingredients necessary to explain the phenomenon of high-

temperature superconductivity. The QMC/DCA code is based on a dynamic cluster quantum Monte Carlo 

algorithm to solve lattice models of strongly correlated electron systems such as the 2-D Hubbard model 

in a controlled way. The dynamic cluster method approximates the effects of correlations in the bulk 

lattice with those of a finite-size quantum cluster. This enables a mapping of the bulk lattice problem to 

an effective cluster embedded in a self-consistent bath designed to represent the remaining degrees of 

freedom. Recently, this technique has been applied successfully to show that the 2-D Hubbard model of 

high-temperature superconductors does have a superconducting transition in the range of parameters and 

temperatures characteristic of the cuprates. The new computational capabilities even established the fact 

that pairing in the Hubbard model is mediated by spin fluctuations. While the success in describing the 

physics of the cuprates with high-end simulation results of the Hubbard model is remarkable, it is 

important to link a generalized Hubbard-like model to actual cuprate HTSC to understand material-

specific properties such as the huge differences in superconducting transition temperatures between 

different HTSC materials. This project will require the solution of a multiband Hubbard model with 

possibly more than one correlated band. 

Algorithm 

The computational workhorse to solve the effective quantum cluster problem is a generalized version 

of the Hirsch-Fye QMC algorithm. This algorithm performs a stochastic Markov-chain walk, along which 

measurements are made periodically. The central quantity that has to be measured and updated along this 

walk is the single-particle Green’s function G of the effective cluster problem. G is a matrix of size N*t, 

where N is the total number of sites and orbitals treated with correlations in the quantum cluster 

calculation and t is the number of time-slices used in the integration path integral. A majority of the CPU 

mailto:fgygi@ucdavis.edu
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time is spent updating G that is calculated by a vector outer product followed by a matrix update, which 

may be completed by the BLAS call DGER. Since DGER has a relatively low computational intensity 

(only two floating point operations per memory access), a reformulation of the underlying Hirsch-Fye 

algorithm is used, in which the frequent calls to DGER are delayed and hence replaced by fewer and 

much more cache-efficient matrix multiplies (BLAS call DGEMM). This allows the QMC/DCA code to 

be run for large problems with high efficiency on superscalar processors. The measurements of additional 

four-point correlation functions are represented as complex matrix-matrix products and completed with 

the BLAS call CGEMM. 

Scaling 

The QMC algorithm is inherently parallel because the measurements made along the Markov-chain 

walk need to be independent. The code therefore performs several independent, shorter Markov-chain 

walks on different processors and averages the results of the individual walks to obtain the final result 

using MPI. Apart from the fraction of the walk required to achieve equilibrium, the result is an almost 

perfect parallel speedup with increasing number of processors because no communication between 

processors is required during the Markov process. As a result, the code scales perfectly to ~1000 

processors or multicore sockets. Further scaling by a factor of 10 or more should be achievable by 

distributing one Markov chain over multiple sockets. Such hybrid parallelism will be called for because 

the size (Nt)2 of the matrices in the matrix multiplies for the multiband problems will be large, and 

therefore the runtime may be reduced by distributing the matrix multiplies over many sockets. 

If Chosen for Acceptance 

The QMC/DCA code runs on a wide variety of architectures. For the acceptance test, it is possible to 

generate test runs of virtually any size with a known or cross-checkable answer that stress MPI, BLAS, 

LAPACK, and the F90 compiler. 

If Chosen for Science Day One 

We will perform material-specific simulations of high-temperature superconductors, using 

QMC/DCA simulations of multiband Hubbard models with realistic parameters determined with 

bandstructure methods. 

Compared to the simulation of the single-band model that used, 25% of the LCF Cray X1E, a 

simulation of a three-band model will be a factor of 27 more expensive. This factor can possibly be as 

much as 200 if the number of time slices t has to be doubled because of an increase in the strength of the 

onsite Coulomb interaction parameters. Therefore, since the simulation of the single-band model is a 
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teraflop problem, the simulations of a materials-specific multiband model are a petascale computing 

problem. 

To scale the QMC/DCA code efficiently to more than 1000 sockets, the code will be further 

parallelized by distributing the individual Markov-chain walks across multiple sockets. The effort 

associated with this modification is moderate. 

Functional Software Requirements 

System Software  

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran 90 MPI None None 

Code Reference 

Thomas Schulthess (schulthesstc@ornl.gov) 

A. Maier et al., “Quantum Cluster Theories,” Review of Modern Physics 77, 1027 (2005). 

NCCS Point of Contact 

Markus Eisenbach 

eisenbachm@ornl.gov 

S3D 

Physics Models 

S3D solves a fully coupled system of time-varying partial differential equations (PDEs) governing the 

full compressible reacting Navier-Stokes, total energy, species continuity and continuity equations 

coupled with detailed chemistry. The PDEs are supplemented with additional constitutive relationships 

for the ideal gas equation of state, and detailed high-fidelity models for reaction rate, molecular transport, 

and thermodynamic properties. A summary of this formulation follows: 

After the initialization of the primitive variables for each time step the convective, diffusive and 

chemical terms in the conservation equations are updated, once for each of the six stages of the fourth-

order accurate explicit Runge-Kutta time advancement solver. The main kernels in this solver where over 

95% of the computation occurs are given below:  

• Chemistry: Computes chemical reaction rate source terms for species equations. The chemical 

kinetics data are preprocessed and the code to compute the reaction rates, named as “getrates,” is 

generated by the Chemkin compatible preprocessing utility Autogetrates package. The routines 

are packaged in a separate module that acts as an interface to the code and abstracts the actual 

mailto:schulthesstc@ornl.gov
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implementation of the reaction rates computation. This will allow the use of different versions of 

the getrates subroutine targeted at different systems.  

• Transport: Computes molecular transport properties for the species. The properties computed 

include the viscosity, thermal diffusivity, and species mass diffusivities. The code is linked with 

the transport library that is part of the standard Chemkin suite.  

• Thermodynamics: Computes the thermodynamic properties, such as enthalpy and specific heats 

of the mixture. The thermodynamic data are given in the Chemkin compatible format and are 

preprocessed through the Chemkin interpreter (http://reactiondesign.com). Rather than directly 

evaluate the properties using the Chemkin routines, the code employs a tabulation and lookup 

strategy.  

• Derivatives: Computes the spatial derivatives of the primitive and conserved variables using 

higher-order finite difference operators. The code uses nonblocking sends and receives to 

exchange the data at the processor boundaries among different processors.  

• Other RHS: The right-hand side of the time advance equation involves all of the above-

mentioned operations and the convection terms. These terms are summed up according to the 

governing equations. All operations involved in this procedure are lumped into the other RHS 

module for accounting purposes.  

• Time Integration: Advances the solution in time using a fourth-order accurate Runge-Kutta 

scheme. This module also includes an error controller that routinely checks for the time accuracy 

of the solution and adjusts the time step to achieve the desired error tolerances. 

Algorithms 

S3D is based on a high-order accurate, non-dissipative numerical scheme. It has been used 

extensively to investigate first-of-a-kind fundamental turbulence-chemistry interactions in combustion 

topics, including premixed nonpremixed flames and autoignition. Time advancement is achieved through 

a fourth-order explicit Runge-Kutta method, spatial differencing is achieved through high-order (eighth-

order with tenth-order filters) finite differences on a Cartesian structured grid, and Navier-Stokes 

Characteristic Boundary Conditions (NSCBC) are used to prescribe the boundary conditions. The 

equations are solved on a conventional structured mesh.  

This computational approach is very appropriate for the problems selected. The coupling of high-

order finite difference methods with explicit R-K time integration make very effective use of the available 

resources, obtaining spectral-like spatial resolution without excessive communication overheads and 

allowing scalable parallelism.  
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Scaling 

The parallelism in S3D can be basically described as explicit nearest-neighbor local communication 

(Fig. E.16). With this design, the code is compute-bound, which has been empirically observed. The 

scaling of the code is demonstrated with a weak-scaling test; that is, as the processor count increases so 

does the total amount of work (i.e., the work per process stays constant.) The scaling efficiency on the 

Cray XT series has been observed to be over 90% for up to 5120 processors. 

 
Fig. E.16. S3D scaling demonstrated with a weak-scaling test. 

If Chosen for Acceptance 

Acceptance test criteria for S3D are 

• Simulation with realistic I/O works/produces correct answers, 

• Capable of running correctly at a variety of processor counts from 1 up to maximum size of 

machine, and 

• (For upgrades only) the flame benchmark time/step/gridpoint rate remains the same (within 5%) 

or gets shorter. 

If Chosen for Science Day One 

Flame stabilization in low temperature mixing-controlled diesel combustion: a Petascale 

simulation. Diesel combustion has the potential to be a “game changer” for energy surety because diesels 

are 30–40% more efficient than comparable gasoline engines. But to gain acceptance, diesels must be 

cleaner. Successfully meeting upcoming ultra-low emission standards could mean widespread adoption of 

diesels and major reductions in foreign oil dependency. Low temperature mixing-controlled diesel 
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combustion has shown promise in meeting NOx and soot emission standards and is easier to control than 

HCCI. However, optimization requires accurate understanding and modeling. Alongside experiments in 

an optically accessible combustion vessel at Sandia National Laboratories’ Combustion Research Facility, 

we propose to perform high fidelity DNS of high-pressure, n-heptane jets. With access to the full 

unsteady thermo-chemical fields from the DNS, augmented by chemiluminescence diagnostics, we will 

study mechanisms for lift-off stabilization and formation of key soot precursors. An important 

outstanding question is whether or not the lift-off stabilization is supported by premixed flame 

propagation into autoigniting cool flame mixture or by transition to second-stage chemistry through self-

ignition. Cool flame autoignition is expected to have a strong effect on flame speed and may support 

flame propagation even at very low flame temperature. Alternatively, cool flame (low-temperature 

ignition) activity may also lead directly to second-stage reaction in the absence of flame propagation. 

More detail is needed to understand the importance of flame propagation versus autoignition in the high-

temperature reaction zone at the lift-off length. This information can uniquely be obtained from DNS with 

detailed n-heptane chemical kinetics.  

This set of simulations would require the use of a stiff explicit-implicit time integrator which we have 

developed known as the additive fourth-order Runge-Kutta method. Alternatively, the chemical kinetic 

mechanism for n-heptane spanning low, intermediate and high-temperature kinetics would need to have 

the stiffness removed. Our preliminary estimates suggest that the grid resolution required to resolve the 

ignition fronts at high pressure is small (in the order of microns). Therefore, compared to our atmospheric 

flames, the number of grids will be expensive. Also, the runs need to be simulated to ignition delay times 

of several milliseconds. This run will require petascale computing to be feasible in three-dimensions. 

Stabilization mechanisms in lifted, vitiated flames: a 250-TF simulation. In many modern 

combustion systems, fuel is injected into an environment of hot gases, and a flame may be stabilized 

through the recirculation of hot air and combustion products. Under many conditions, this leads to a lifted 

flame, and the hot environment admits the possibility of autoignition as a mechanism of stabilization of 

the flame base. Clear understanding of turbulent flame stabilization in an environment of hot combustion 

products will aid the advancement of combustion technology, including modern recirculation burners, and 

understanding of possible auto-igniting stabilization modes may be also relevant to diesel engines.  
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Functional Software Requirements 

System Software  

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran 90 MPI None Tar, Cp, Mkdir, Rm 
(optional) 

Code Reference 

Jacquelin Chen (jhchen@sandia.gov) 

E. R. Hawkes et al., “Direct Numerical Simulation of Turbulent Combustion: Fundamental Insights 

Towards Predictive Models,” Journal of Physics: Conference Series 16, 65–79 (2005). 

NCCS Point of Contact 

Ramanan Sankaran 

sankaranr@ornl.gov 

T3P 

Physics Models 

T3P is one of a suite of codes used in the design of a low-loss accelerating cavity for the International 

Linear Accelerator (ILC). T3P solves Maxwell’s equations, defined on a 3-D unstructured grid, via a 

finite element discretization using basis functions of up to the sixth order. This is used to describe the 

transit of a particle beam through an accelerating cavity and under the proper boundary conditions to 

calculate the longitudinal and transverse wakefields. 

Algorithms 

T3P is based on a finite element method using basis functions of up to the sixth order, using the 

implicit Newark-Beta method for time stepping. The resulting sparse matrices are real, symmetric 

positive definite. With a good mesh, convergence typically requires about 200 iterations using CG with 

incomplete Cholesky preconditioning. However, this can significantly increase if the mesh get badly 

distorted, which results in poorly conditioned systems.  

Sparsity is a function of the order of the basis functions: first-order results in about 15 nonzero 

elements per row; second-order, about 50 nonzero elements per row; third-order are a little denser. In 

terms of the pattern of the nonzero elements, using second-order basis functions will have two-by-two 

dense blocks; using third-order basis functions will have 3 × 3 blocks and 6 × 6 blocks. The choice of 

method, direct or iterative, involves a trade-off between speed (direct solver) and memory requirements 

(sparse solver).  

mailto:jhchen@sandia.gov
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Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

C++ MPI netcdf – 

Math Libraries 

Library Function Functionality 
Pnetcdf nc_<open,put_xy,inq_xy,close> I/O 

ParMetis PARKMETIS, PARRMETIS, 
PARUAMETIS, PARKMETIS, 

Discretized domain 
partitioning (preferred) 

Zoltan 

Zoltan_Create, 
Zoltan_Set_Param, 
Zoltan_Set_Fn,  
Zoltan_Destroy, 
Zoltan_LB_Balance, 
Zoltan_LB_Eval 

Discretized domain 
partitioning 

MUMPS dmumps_c,cmumps_c, 
zmumps_c,smumps_c 

Direct solver of sparse 
linear systems.  

ScaLAPACK MUMPS dependency Linear system solver; 
called by MUMPS. 

SLAC code proper 

Conjugate gradient method, with 
various preconditioners: 
incomplete Cholsky, hierarchical 
methods, etc. 

Sparse linear system 
solver option. 

Code Reference 

Rich Lee (liequn@slac.stanford.edu) 

K. Ko et al., “Advances in Electromagnetic Modeling Through High Performance Computing,” 

Physica C 441 258–262 (2006). 

NCCS Point of Contact 

Richard Barrett 

rbarrett@ornl.gov 

VASP (+WL) 

Physics Models 

Plane wave-based density functional calculations, together with all-electron-derived pseudo 

potentials, are a powerful and flexible method. Their well-controlled accuracy vs. computational cost 

makes them ideal for the study of novel systems in which the electronic structure is not well understood, 

mailto:liequn@slac.stanford.edu
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or in which tiny differences determine the outcome of the simulations. Such accuracy is critical when 

performing quantum molecular dynamics (QMD) simulations, which enable studies of the evolution of 

nanoscale systems and their environment at finite temperature, as well as investigations of biomolecular 

reaction mechanisms, structural changes and temperature-dependent phase transitions. Although the 

method is in-principle cubic scaling, in practice it scales quadratically up to 1000 atoms using recent 

numerical advances. 

Algorithms 

Planewave codes density functional codes solve the density functional equations in a plane wave 

basis defined by a sphere of vectors in Fourier space. All atoms are represented by ab initio 

pseudopotentials, of either a norm-conserving, ultrasoft, or projector-augmented wave type. The latter two 

offer much improved accuracy and reduced computational costs (flops and memory) over the simpler 

norm-conserving potentials, particularly for systems containing transition metal atoms. VASP implements 

all of these options at the expense of complexity, whereas, for example, the Qbox code only implements 

norm-conserving potentials. For calculations of up to 1000 atoms, the main computational effort involves 

(1) evaluation of the pseudopotential contributions to the energy and forces, and (2) parallel Fourier 

transforms between real and reciprocal (Fourier) space. The former involve linear algebra operations 

using standard BLAS, while the latter utilize vendor 1-D FFT transforms and custom routines for highly 

efficient parallel 3-D transforms. Appropriately configured, VASP currently delivers a large fraction of 

peak performance, typically 30–50%, up to 1000 processors. 

Scaling 

VASP presently scales to about 1000 processors for a system of hundreds of atoms. An optimized 

version on the Cray X1/X1E, achieves over 1 TF for a prototypical 807 atom FePt atom nanoparticle on 

128–512 multi-streaming vector processors MSPs. Experience with other codes suggests that hard scaling 

can be improved by at least one order of magnitude if the parallel FFTs and some global MPI operations 

are carefully optimized. Soft scaling should allow systems of several thousand atoms to be studied. 
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If Chosen for Acceptance 

VASP is a very robust code that runs on a wide variety of architectures. It has not exotic library 

dependencies and could readily form part of an acceptance or performance test. It is possible to generate 

test runs of virtually any size with a known or cross-checkable answer that stress MPI, BLAS, 

SCALAPACK, and F90 compiler. 

If Chosen for Science Day One 

A combined VASP+gWL code will allow the study of the chemical phase diagram of FePt 

nanoparticles as a function of size. Not much is presently known about the chemical order in these 

nanoparticles, information that seems crucial for the understanding of magnetic properties. Knowing the 

temperature- and size-dependent free energy and phase diagram of these particles could give important 

experimental guidance for synthesis. Such detailed sub-nanoscale information is almost impossible to 

extract from experiment alone and computational results will play a key role. The achievability of these 

results will depend on the number of WL samples needed to compute free energies to sufficient accuracy. 

Functional Software Requirements 

System Software 

Programming 
languages 

Communication 
libraries 

I/O libraries 
and functions 

Operating system 
functions 

Fortran90 C  
(minor utility only) MPI None Getrusage  

(easily changed) 

Math Libraries 

Library Function Functionality 

BLAS ZGEMM, 
DGEMM 

Double complex/real general matrix-matrix 
multiply 

BLAS ZTRMM, 
DTRMM 

Double complex/real triangular matrix-
matrix multiply 

SCALAPACK 

PDTRTRI 
PZTRTRI 
 
PDPOTRF 
PZPOTRF 
 
PZHEEVX 
PDSYEVX 

Matrix inverse, Cholesky decomposition, 
Eigenvector computation 
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Code Reference 

Paul Kent (kentpr@ornl.gov) 

http://cms.mpi.univie.ac.at/vasp/ 

NCCS Point of Contact 

Markus Eisenbach 

eisenbachm@ornl.gov 

 

 

mailto:kentpr@ornl.gov
http://cms.mpi.univie/


 

 



 

 




