

ORNL/TM-2007/44

Leadership Computing Facility
National Center for Computational Sciences

Oak Ridge National Laboratory

COMPUTATIONAL SCIENCE REQUIREMENTS
FOR LEADERSHIP COMPUTING

Douglas Kothe
Ricky Kendall

Date Published: July 2007

Prepared by
OAK RIDGE NATIONAL LABORATORY

P.O. Box 2008
Oak Ridge, Tennessee 37831-6254

managed by
UT-Battelle, LLC

for the
U.S. DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

Computational Science Requirements Contents

iii

CONTENTS

FIGURES .. v

TABLES ... vii

ABBREVIATIONS AND ACRONYMS ... ix

EXECUTIVE SUMMARY .. xiii

INTRODUCTION .. 1

 SCIENCE DRIVERS ... 3
 REFERENCES ... 5

SCIENCE QUALITY AND PRODUCTIVITY REQUIREMENTS ... 7

 MODEL AND ALGORITHM REQUIREMENTS ... 9

SOFTWARE REQUIREMENTS ... 13

RUNTIME REQUIREMENTS... 17

DATA ANALYSIS AND DATA MANAGEMENT REQUIREMENTS ... 21

SUMMARY AND RECOMMENDATIONS ... 27

 SCIENCE ... 27
 MODELS AND ALGORITHMS ... 27
 SOFTWARE .. 28
 RUNTIME FOOTPRINT ... 29
 DATA ANALYSIS AND DATA MANAGEMENT ... 29

ACKNOWLEDGMENTS .. 31

APPENDIX A: GLOSSARY OF APPLICATION CODES .. 37

APPENDIX B: PROJECT ALLOCATIONS AND USAGE ON THE NCCS LCF
SYSTEMS IN 2006 .. 43

APPENDIX C: APPLICATIONS REQUIREMENT COUNCIL .. 51

APPENDIX D: ASCAC CODE PROJECT QUESTIONNAIRE ... 61

APPENDIX E: SURVEY OF ACCEPTANCE AND EARLY ACCESS SCIENCE
APPLICATIONS .. 67

Computational Science Requirements Figures

v

FIGURES

B.1. Job size distribution of allocated science applications on the NCCS LCF systems

in the January to September 2006 time period ... 45

B.2. Percentage of total NCCS LCF system utilization for each project receiving a

2006 allocation award in the January to September 2006 time period .. 46

B.3. Month-by-month change in the job size distribution of the allocated science

applications on the NCCS Cray XT3 (Jaguar) system in the January to
September 2006 time period. ... 46

B.4. Month-by-month change in the job size distribution of the allocated science

applications on the NCCS Cray X1E (Phoenix) system in the January to
September 2006 time period .. 47

B.5. FY 06 utilization on the Cray XT3 (Jaguar) system by scientific discipline. 47

B.6. FY 06 utilization on the Cray X1E (Phoenix) system by scientific discipline. 48

E.1. AORSA on the Cray XT series Jaguar system compared with an IBM Power3 69

E.2. Performance of the CAM 3.1 atmospheric model. .. 71

E.3. Explicit Eulerian hydrodynamics. VH-1 weak scaling. ... 76

E.4. FLASH exhibited good scaling. ... 78

E.5. Good scaling was achieved on up to 5000 processors ... 80

E.6. GYRO scaling studies on various computers. ... 84

E.7. LAMMPS parallelize efficiently for large problems. .. 87

E.8. MADNESS shows good overall scaling and scalability of the component algorithms. 91

E.9. The codes for the Cray XTE will be optimized ... 97

E.10. Single fuel assembly of a sodium-cooled, fast-spectrum nuclear reactor. 101

E.11. Benchmarks of the DFT code on various architectures. .. 106

E.12. PFLOTRAN has exhibited linear (strong) scaling on up to 2048 processors on Jaguar

and good (though nonlinear) scaling to 4096 processors ... 110

E.13. Parallel Ocean Program (POP) 1.4.3: 0.1-degree benchmark, logarithmic axes. 113

 National Center for Computational Sciences

 vi

E.14. Parallel Ocean Program (POP) 1.4.3: 0.1-degree benchmark, linear axes................................... 113

E.15. Strong scaling Qbox results on BlueGene/L for 1000 molybdenum atoms

with 1 (non-zero) k-point ... 116

E.16. S3D scaling demonstrated with a weak-scaling test. ... 121

Computational Science Requirements Tables

 vii

TABLES

1. Science drivers projects receiving a 2006 allocation on LCF systems at the NCCS 3

2. Science investigations and achievements possible on a 1-PF LC system for specific

application codes in relevant science domains .. 7

3. Increase in science simulation fidelity possible with a 1-PF LC system for specific

application codes in various science domains .. 8

4. Examples of how physical model attributes might change on a 1-PF LC system for

specific application codes in various science domains .. 10

5. The “seven dwarfs” categorization of algorithms employed by specific application

codes in various science domains .. 11

6. Functional software requirements (and options) for specific application codes

in various science domains .. 13

7. Typical features and associated suggested requirements for components of an LC

system software stack .. 14

8. Proposed solutions to specific requirements for components of the NCCS LCF

software stack .. 15

9. Science application behavioral and algorithmic drivers for LC system attributes 18

10. Three-tier prioritization of 12 system attributes for relevant science domains 19

11. Typical development characteristics and runtime requirements of a single simulation

(job) for selected application codes on the NCCS LCF systems circa June 2006 20

12. Typical per-simulation I/O requirements for the largest data-producing application

codes on the NCCS LCF systems .. 21

13. Prescription for estimating local storage bandwidth requirements for science

applications on LC systems ... 22

14. Estimates of science application local storage bandwidth requirements using the

prescription outlined in Table 13 ... 23

15. Prescription for estimating local storage capacity requirements for science

applications on LC systems .. 24

16. Estimates of science application local storage capacity requirements using the

prescription outlined in Table 15 ... 25

 National Center for Computational Sciences

 viii

17. Estimates of science application archival storage capacity requirements based on
scaling current capacities with either system memory, memory bandwidth,
or peak flops ... 25

B.1. Projects receiving allocation awards on the NCCS LCF systems in 2006 43

B.2. Job size distribution of allocated science applications on the NCCS LCF systems

in the January–October 2006 time period .. 45

E.1. Acceptance test utility, description, and metrics for selected science application codes 67

E.2. Details of calculation(s) ... 76

E.3. Proposed gauge configurations .. 94

E.4. Performance of the Qbox code for a calculation of the electronic structure of

a Cd33Se33 nanoparticle ... 115

E.5. Performance of the Qbox code for a calculation of the electronic structure

of 512 H2O molecules .. 115

Computational Science Requirements Abbreviations and Acronyms

 ix

ABBREVIATIONS AND ACRONYMS

AMR adaptive mesh refinement

ANL Argonne National Laboratory

ARMCI aggregate remote memory copy interface

ARC Application Requirements Council

ASCAC Advanced Scientific Computing Advisory Committee

ASCR Advanced Scientific Computing Research

BLAS basic linear algebra subprograms

BNL Brookhaven National Laboratory

CAF Co-Array Fortran

CC coupled cluster

CCSM Community Climate System Model

CET center for enabling technologies

CFD computational fluid dynamics

CG conjugate gradient

CIOD control and I/O daemon

CTEM collisionless trapped electron mode

CY calendar year

DFT density functional theory

DNA deoxyribonucleic acid

DOE Department of Energy

DOF degrees of freedom

DWF domain wall fermion

ESSL Engineering Scientific Subroutine Library

FEM finite element method

FPGA field-programmable gate array

FFT fast Fourier transform

FY fiscal year

GB gigabyte or 109 bytes

HDF hierarchical data format

HPC High Performance Computing

I/O input/output

IDE integrated development environment

 National Center for Computational Sciences

 x

ILC International Linear Collider

INCITE Innovative and Novel Computational Impact on Theory and Experiment

INL Idaho National Laboratory

ITER International Thermonuclear Experimental Reactor

ITG ion temperature gradient

Jaguar Cray XT supercomputer at ORNL NCCS

KKR Korringa-Kohn-Rostoker

LANL Los Alamos National Laboratory

LAPACK linear algebra package

LC Leadership Computing

LCF Leadership Computing Facility

LHC Large Hadron Collider

LHPC Large Hadron Physics Collider

LOC Lines of Code

MB megabyte or 106 bytes

MD molecular dynamics

MOC meridianal overturning circulation

MPI message-passing interface

MP2 mathematics-physics platform

MSP multistreaming vector processor

MTTI mean time to interrupt

NCCS National Center for Computational Sciences

NERSC National Energy Research Scientific Computing Center

netCDF network common data form

NNSA National Nuclear Security Agency

NSF National Science Foundation

NSLER nuclear structure and low energy reactions

NUCCOR Nuclear Coupled Cluster — Oak Ridge

ODE ordinary differential equation

ORNL Oak Ridge National Laboratory

PB Petabyte or 1015 bytes

PDE partial differential equation

PETSc portable, extensible toolkit for scientific computation

PF Petaflops or 1015 floating-point operations per second

Computational Science Requirements Abbreviations and Acronyms

 xi

PI principal investigator

Phoenix Cray X1E supercomputer at ORNL NCCS

PPPL Princeton Plasma Physics Laboratory

QCD quantum chromodynamics

QMC Quantum Monte Carlo

QMD quantum molecular dynamics

RAM random access memory

RBC RIKEN/BNL/Columbia University

RG renormalization group

RHMC Rational Hybrid Monte Carlo

SAP Scientific Application Partnership

SC Office of Science

SciDAC Scientific Discovery through Advanced Computing

SLAC Stanford Linear Accelerator Center

SMP Symmetric Multi-Processor

SPRNG Scalable Parallel Pseudo Random Number Generator

SUSY supersymmetry

TB terabyte or 1012 bytes

TC Technology Council

TF teraflops or 1012 floating-point operations per second

WAN wide area network

XML extensible markup language

Computational Science Requirements Executive Summary

 xiii

EXECUTIVE SUMMARY

In 2006 the Department of Energy (DOE) Leadership Computing Facility (LCF) at the Oak Ridge

National Laboratory (ORNL) National Center for Computational Sciences (NCCS) elicited petascale

computational science requirements from leading computational scientists in the international science

community. Targeted were those scientific teams whose projects were recipients of large computer

allocation awards on DOE LCF systems (such as the ORNL NCCS) and National Science Foundation

(NSF) Centers. The overwhelming response from this distinguished group of scientists was a call for a

balanced, well-integrated, and reliable system.

We found, not surprisingly, that each of approximate dozen principal LCF system attributes is

interdependent upon one another. With scientific discovery as the principal objective, greatly increasing

the potential of one particular attribute (e.g., peak flops) can and should only be done while

simultaneously increasing other attributes (e.g., memory) having a “shared fate,” thus the need for a

“balanced” system. Each system attribute (e.g., peak flops, mean time to interrupt, network bandwidth,

node memory, local storage, archival storage, memory latency, communication latency, disk latency,

interconnect bandwidth, memory bandwidth, disk bandwidth) cannot be considered and optimized in

isolation.

Requirements elication, analysis, validation, and management is a difficult and inexact process. It is

especially difficult when reliable, quantitative extrapolations are sought. The results of this first annual

leadership computational science requirements elication and analysis by the ORNL NCCS are more

qualitative in nature (e.g., science achievable at the petascale), but important nevertheless. As this annual

process continues, the analyses and extrapolations will become more quantitative and actionable. With

that said, the analysis contained herein did lead to tangible, actionable decisions for the ORNL NCCS

(e.g., required local and archival I/O bandwidth and capacity).

Based on interactions with leading scientists in the field, the LCF system attributes expected to have

the greatest impact on existing and developing science applications have been identified. In the area of

system hardware, the attributes found to be most critical to maximizing the potential for breakthrough

science were peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and

memory bandwidth. Scientific applications of course impose requirements on the LCF systems, but the

LCF systems, in fact, impose real requirements on the applications as well. For applications to execute

efficiently on LCF systems, for example, they must possess algorithm and software attributes such as

105–106 task and hybrid (task/thread) parallelism, multilevel (in time and space) linear/nonlinear solution

techniques, multiphysics coupling and time integration schemes, data structures that minimize bandwidth

and maximize locality, and efficient parallel I/O.

 National Center for Computational Sciences

 xiv

We conclude with recommendations for the computing capabilities that scientists will need in future

LCF systems. Scientific discoveries and breakthroughs cannot be “planned” with LCF systems, but by

optimally matching these systems with the scientific needs and goals, discoveries and new levels of

fundamental understanding are virtually guaranteed. The HPC and computational science communities

now are truly at the forefront of a very exciting scientific renaissance.

Computational Science Requirements Introduction

 1

INTRODUCTION

Refining requirements is a two-way street. The code developers must understand the

petascale computer’s capabilities and limitations, and HPC architects must understand the

needs of a wide variety of science domain codes.

A requirement is a condition or capability needed by a user to solve a problem or achieve an

objective. A requirement is also a condition or capability that must be met or possessed by a system to

satisfy a contract, standard, specification, or other formally imposed document. Both definitions apply for

the breakthrough computational science requirements used in the design, procurement, deployment, and

operation of the Department of Energy (DOE) Leadership Computing Facility (LCF) at the National

Center for Computational Sciences (NCCS). This document contains critical leadership computational

science requirements for the key science areas of interest to the DOE, for improved science quality and

productivity, for higher fidelity physical model and numerical algorithm requirements, for more efficient

and higher quality software, and for in-depth data analytics and work flow.

By articulating these requirements and using them to manage and arbitrate decisions, the NCCS will

align LCF systems to the maximum extent possible with the needs and goals of the breakthrough science

projects using these resources. LCF requirements for the NCCS apply to the entire end-to-end analysis

process that scientists follow when using the NCCS facilities. This process comprises system hardware,

system software, the integrated development environment, and the problem-solving environment that

includes data analysis, management, and visualization. We expect that effective requirements

development, management, and planning will positively influence the design, procurement, deployment,

and operation of an NCCS system by improving the quality, quantity, or fidelity of the output of one or

more breakthrough science simulation applications in a measurable way. For requirements to be useful to

the NCCS, they must be actionable and as quantitative as possible without being solutions themselves. In

reality, requirements flow in both directions: applications impose requirements on the LCF systems, and

the LCF systems in turn impose requirements upon the applications.

A valid requirements process must follow three basic steps: planning, development, and management.

The NCCS requirements effort in 2006 was principally devoted to establishing the methods by which the

three-step requirements process is executed, and to initiating the first step in the requirements process—

requirements development. Elicitation is key in requirements development. It is the ongoing process of

analyzing existing documentation (see refs. 1–7 at the end of this section) and interviewing stakeholders.

 National Center for Computational Sciences

 2

Information from stakeholders was elicited with three separate surveys that were derived and/or given

directly to the science project team members. These surveys were

• A requirements survey constructed and collected by the Application Requirements Council

(ARC) (see Appendix C);

• A code project survey constructed by the ASCAC subpanel on science metrics for the Advanced

Scientific Computing Research (ASCR) computing facility metrics (see Appendix D); and

• Answers to science and code questions from LCF and Innovative and Novel Computational

Impact on Theory and Experiment (INCITE) project proposal applications (see Appendix E).

For the 22 projects allocated on the NCCS LCF systems in 2006, 8 projects responded to the ARC

survey, 19 responded to the ASCAC survey, and all 22 filled out proposal applications (necessary for

allocation awards). Answers to these surveys helped to define requirements from the following points of

reference: science motivation and impact, science quality and productivity, application models,

application algorithms, application software, application footprint, and data management and analysis.

Requirements in general fall into four categories:

• Business (“why”) requirements reflect the goals and objectives of the organization. Sources

include project sponsors and key clients. Business requirements are described in project charters

and vision statements.

• Functional (“what”) requirements dictate what the product must do. Sources include end users,

customers, regulations, and internal brainstorming. Functional requirements are found in use

cases, specifications, interview notes, and models.

• Quality (“how well”) requirements define the properties that the product must have: look and

feel, usability, performance, operational environment, maintainability and portability, security,

etc. Sources include end users, standards, and support teams. Quality requirements are found in

models, specifications, use cases, and notes.

• Design (“how”) requirements depict imposed design choices. Design requirements are found in

models, specifications, and high-level designs.

In a broad sense, science motivation and impact reflect business requirements; science quality and

productivity reflect quality requirements; application models reflect functional requirements; and

algorithm, software, application footprint, and data analysis/management reflect design requirements. The

elicitation process yields a series of documented responses that represent potential LCF requirements.

These responses must then be analyzed and validated to ensure that they will result in workable

requirements. Good requirements must be unambiguous, testable, correct, in scope, modifiable, feasible,

traceable, written in clear (customer’s) language, acceptable to all clients, and not themselves a solution.

Computational Science Requirements Introduction

 3

Science Drivers

Over the past 5 years, DOE’s Office of Science (SC), Scientific Discovery through Advanced

Computing (SciDAC) Program, has achieved simulation-based scientific accomplishments through

focused collaboration and active partnership of domain scientists, applied mathematicians, and computer

scientists. The LCF at NCCS has played a role in many of these successes (e.g., nanoscience, accelerator

design, astrophysics, chemistry, combustion, climate modeling, and fusion). Even more compelling

opportunities for scientific discovery have fostered the new SciDAC-2 Program in which a series of

coordinated investments across all DOE/SC Programs (Basic Energy Sciences, Biological and

Environment Research, Fusion Energy Sciences, High-Energy Physics, and Nuclear Physics) promises to

further the achievement of breakthrough science through (1) focusing efforts on scientific applications in

specific domains and (2) enabling technologies in computer science, software infrastructure, and applied

mathematics through centers for enabling technologies (CETs), university-led institutes, and scientific

application partnerships (SAPs). SciDAC-2 thrust areas (with examples) include accelerator science

[International Linear Collider (ILC) design], astrophysics (understanding of nucleosynthesis), climate

modeling (global carbon cycle prediction), biology (protein interaction networks), fusion [International

Thermonuclear Experimental Reactor (ITER) design], groundwater (subsurface reactive transport), high

energy physics (dark universe and neutrinos), nuclear physics [National Nuclear Security Agency

(NNSA) physics], and quantum chromodynamics (QCD) (lattice gauge theory). Other science areas ripe

for discovery include nanoscience, chemistry, nuclear energy, and manufacturing (Table 1).

Table 1. Science drivers projects receiving a 2006 allocation
on LCF systems at the NCCS

Science
domain Example science driver

Accelerator
physics

Evaluate and optimize a new low-loss cavity design for the International Linear Collider (ILC) that
has a lower operating cost and higher performance than existing designs.

Astrophysics

Determine the explosion mechanism of core-collapse supernova, one of the universe’s most
important sites for nucleosynthesis and galactic chemical enrichment.
Determine details of the explosion mechanism of Type Ia supernova (thermonuclear explosions of
white dwarf stars), helping to determine key characteristics for their use as standard candles for
cosmology.

Biology Help address the current oil and gasoline crisis by studying the ethanol option, including the most
efficient means of converting cellulose to ethanol.

Chemistry Study the catalytic transformation of hydrocarbons, clean energy and hydrogen production and
storage, and the chemistry of transition metal clusters, including metal oxide.

Climate

Focus on the Grand Challenge of climate change science: predict future climates based on
scenarios of anthropogenic emissions and other changes resulting from options in energy policies.
Simulate the dynamic ecological and chemical evolution the climate system.
Develop, deliver, and support the Community Climate System Model (CCSM).

 National Center for Computational Sciences

 4

Table 1 (continued)

Science
domain Example science driver

Combustion Develop cleaner-burning, more efficient devices for combustion.

Engineering

Develop and correlate/validate large-scale computational tools for flight vehicles.
Demonstrate the applicability and predictive accuracy of computational fluid dynamics (CFD)
tools in a production environment.
Investigate flight vehicle phenomena such as fluid-structure/flutter interaction, and control surface
free-plays.

Fusion

Resolve fundamental science and engineering questions in fusion reactor technology.
Understand interactions that both RF wave and particle sources have on extended MHD
phenomena.
Understand and control plasma turbulent fluctuations that can cause loss of heat needed to
maintain the fusion reaction.

High energy
physics

Seek to find the Higgs particles thought to be responsible for mass, using the Large Hadron
Collider (LHC) physics program.
Seek to find evidence of supersymmetry (SUSY), a necessary element of String Theory that may
unify all of nature’s fundamental interactions.

Materials
science

Understand the initiation of failure in a local region, the appearance of a macro-crack due to the
coalescence of subscale cracks, the localization of deformation due to coalescence of voids, the
dynamic propagation of cracks or shear bands, and all causes leading to eventual fragmentation
and failure of a solid.

Nanoscience

Understand the quantitative differences in the transition temperatures of high temperature
superconductors.
Understand and improve colossally magneto-resistive oxides and magnetic semiconductors.
Develop new switching mechanism in magnetic nanoparticles for ultra high density storage.
Simulate and design molecular-scale electronics devices.
Elucidate the physical-chemical factors mechanisms that control damage to DNA.

Nuclear
energy

Design and deploy efficient and safe closed nuclear fuel cycle facilities, including next-generation
power generation and recycle reactors, separations reprocessing facilities, and fuel
fabrication/storage facilities.

Nuclear
physics

Develop ways to describe nuclei whose properties cannot be measured (e.g., thermal nuclear
properties in the mass 80–150 region).

Leadership Computing (LC) will make possible many breakthroughs in science in the next decade.

Many exciting opportunities present themselves as evidenced by accomplishments already attained in

science disciplines supported by petascale computing. These opportunities are realizable, but they are also

confronted with challenges, uncertainties, and issues on the horizon.

For a science application to be mission relevant, alignment with the DOE ASCR Strategic Plan is

important, which includes (1) enabling new materials through nanoscience; (2) enabling the design and

engineering of fusion power plants to produce energy without CO2; (3) understanding the regional effects

of global climate change; (4) developing new bacteria that can produce hydrogen, sequester carbon, and

clean up toxic wastes; (5) understanding the fundamental nature of matter; and (6) understanding the

processes that underpin combustion of fossil fuels to reduce pollution and increase efficiency. Business

Computational Science Requirements Introduction

 5

requirements, which broadly address science motivation and impact, are elicited from all LCF projects by

probing the

• need for LC and mission relevancy;
• science questions (what/when/why) being answered with LC;
• need for and quality of simulation validation;
• identification of the clients, customers, and users, defined as those who pay for product

development, pay for product, and use the product; and
• list of all end products.

Appendix A of this document is a glossary of application codes; Appendix B provides information on

project allocations and usage; Appendix C gives the charter and mission of the Applications

Requirements Council; Appendix D gives the code project questionnaire developed by the Advanced

Scientific Computing Advisory Committee (ASCAC); and Appendix E is the survey of acceptance and

early access science applications.

References

1. Kenneth J. Roche et al., Application Software Case Studies in FY05 for the Mathematical,

Information, and Computational Sciences Office of the U.S. Department of Energy, Internal document

on file at the Office of Advanced Scientific Computing Research, DOE point of contact: Dr. Michael

Strayer, DOE Office SC-21; ORNL point of contact: Kenneth J. Roche, rochekj@ornl.gov, Oak

Ridge National Laboratory, Oak Ridge, TN 37831-6173, 2006.

2. Wibe A. de Jong and Theresa L. Windus, Editors, Scientific Challenges: Linking Across Scales,

Pacific Northwest National Laboratory, PNNL-15144, July 2005.

3. S. C. Jardin, Editor, DOE Greenbook: Needs and Directions in High Performance Computing for the

Office of Science, Princeton Plasma Physics Laboratory, PPPL-4090, June 2005.

4. U.S. Department of Energy Office of Science, Scientific Discovery Through Advanced Computing:

Progress and Opportunities, D. Gracio, J. Mitchell, N Samatova, T. Straatsma, Eds., Point of contact:

Deborah Gracio, debbie.gracio@pnl.gov, Draft, September 2005.

5. U.S. Department of Energy, Office of Science, A Science-Based Case for Large-Scale Simulation,

Vol. 1, July 2003 (see http://www.pnl.gov/scales/).

6. U.S. Department of Energy Office of Science, A Science-Based Case for Large-Scale Simulation,

Vol. 2, September 2004 (see http://www.pnl.gov/scales/).

7. High-End Computing Revitalization Task Force, Federal Plan for High-End Computing, May 2004.

Computational Science Requirements Science Quality and Productivity Requirements

 7

SCIENCE QUALITY AND PRODUCTIVITY REQUIREMENTS

Science quality and productivity requirements define simulation capabilities and output that

LCF systems must support so that science applications can embody more predictive models

and run to completion more quickly so that more accelerated decision-making, discovery, and

understanding results.

From one point of view, science quality and productivity requirements directly reflect the DOE Office

of Science “Joule Metrics,” namely, efficiency and improvement in simulation time to solution for a

given problem size (one measure of productivity) and constant (or improving) simulation time to solution

for ever-larger problems (one measure of quality) (Table 2). In a broader sense, science quality and

Table 2. Science investigations and achievements possible on a 1-PF LC system
for specific application codes in relevant science domains

Science
domain Science achievements possible

Accelerator
physics Design the ILC.

Astrophysics Determine the explosion mechanisms of core-collapse and Type Ia supernovae.
Biology Help to make biofuels economically feasible.

Chemistry Improved processes for clean coal, hydrogen production and storage, and catalyst design.

Climate Simulate the dynamic ecological and chemical evolution the climate system.

Combustion Develop a fundamental understanding of high-efficiency, low-emissions combustion devices
required for transportation and power generation.

Engineering Demonstrate the applicability and predictive accuracy of continuum engineering tools in a
production environment.

Fusion
Improve our capability for predicting and optimizing the performance of burning plasmas.
Attain a more realistic assessment of ignition margins using more accurate calculations of
steady-state temperature and density profiles for ions, electrons, and helium ash.

High energy
physics Close in on the unifying theory for all of nature’s fundamental interactions.

Materials
science Predictive simulation of brittle and ductile materials subjected to high-speed loads.

Nanoscience Hone in on the theory for high temperature superconductors; design and construct nanoparticles
for specific tasks (magnetic storage, electronic devices, semiconductors, etc.)

Nuclear energy A virtual “flight simulator” for an operating closed fuel cycle facility.

Nuclear physics Accurate nuclear properties for material whose properties cannot be measured.

 National Center for Computational Sciences

 8

productivity requirements define properties that LC systems must possess so that science applications are

able to embody higher-fidelity physics models (becoming more predictable) and to run to completion

quicker so that researchers can more quickly arrive at decisions, discovery, or understanding (allowing the

researcher to be more productive) (Table 3). Science quality and productivity requirements are elicited

from all LCF projects by understanding the

• quality (fidelity of physics models) of current applications and how this might improve with LC

system specifications [e.g., peak speed from 25 teraflops (TF) to a sustained 1 petaflops (PF)];

• productivity of science output, and how this might change with LC system specifications (e.g.,

peak speed from 25 TF to a sustained 1 PF);

• work flow of the science simulations being performed (e.g., simulation turn-around times,

problem setup times, use cases, bottlenecks);

• extent to which applications are validated (physical models compared against experimental data)

and the breadth/depth/quality of simulation testing needed to improve the validation state;

• confidence level (level of predictability) of current applications, whether or not this be quantified

(e.g., error bars), and how it might change as a function of LC system specifications.

Table 3. Increase in science simulation fidelity possible with a 1-PF LC system
for specific application codes in various science domains

Science
domain Code Fidelity at 25 TF Fidelity at >1 PF

Astrophysics Chimera
3-D hydro simulations to follow the
shock evolution out to several times the
stalled shock radius.

Improved transport scheme (Boltzmann Sn)
Improved nuclear kinetics (150 species
versus an alpha network)

Astrophysics Vulcan2D
2-D multigroup, time-dependent radiation
hydrodynamics with 10,000-km and 2-s
resolution.

3-D multigroup, time-dependent radiation
hydrodynamics. More integration time, more
state variables, increased complexity
reaction networks.

Biology LAMMPS
Dynamics of 700K-atom systems for
5–10 ns of model time per day of
simulation time.

Multimillion atom systems evolved for
0.1–1.0 ms.

Climate CCSM

Eulerian spectral atmospheric circulation
model with diurnal cycle resolved
columnar radiation and moist convection
(CAM3), Brian-Cox free-surface ocean
model with Gent-McWilliams eddy
parameterization (POP1.4), dynamic sea-
ice model with visco-plastic rheolgy
(CICE), land surface model with soil,
river and vegetation components
(CLM3).

Tropospheric chemistry (100 species),
dynamic vegetation, terrestrial carbon pools,
ocean ecosystems, land ice sheets,
stratospheric chemistry, full sulfur cycle,
increase in ensemble size for climate change
studies, coupled-ocean eddy-resolving
simulations, cloud microphysics, realistic
land-use patterns, tropical event simulation
on climate timescales.

Computational Science Requirements Science Quality and Productivity Requirements

 9

Table 3 (continued)

Science
domain Code Fidelity at 25 TF Fidelity at >1 PF

Climate MITgcm

4-km horizontal and variable (30 levels)
vertical resolution in a 2000 by 4000 km
domain 2000 m deep. Time step of 500 s
and integration of the primitive equations
(3 diagnostic and 2 prognostic variables)
for several decades
(20–40 years).

Understanding the role of non-hydrostatic
physics and internal wave breaking in deep
ocean mixing, required to close the heat and
salinity budget suggested by the current
sinking rates in high latitudes and in the
establishment of the thermohaline
circulation.

Combustion S3D

Chemical mechanism for CO/H2 and
reduced mechanism for CH4 and
molecular transport model. 2.5 decades
of time and length scales resolved for
reactive turbulent flow. Moderate
Reynolds numbers of 5–15K.

Increase Reynolds numbers to >20K,
(consistent with internal combustion
engines) and pressures to 10–20 atm.
Chemical mechanisms include multi-stage
n-heptane ignition.

Fusion GTC

Gyrokinetic ions with drift-kinetic
electrons and electrostatic perturbations.
Resolved time scale is the electron transit
time and the resolved length scale is the
ion gyroradius.

Integrated simulation with gyrating ions and
drift-kinetic electrons with electromagnetic
perturbations by resolving ion cyclotron
waves and electron skin depth. Transport
time scale simulations (evolving plasma
background equilibrium).

Fusion GYRO

Test of first-principles models of plasma
turbulence against measured levels of
heat and particle transport in tokamaks
(DIII-D, C-mod, NSTX) to build reduced
models of plasma transport to predict
performance of prototypes.

ITER performance predictions. Possible to
introduce feedback loop to adjust input
profiles to match target heat and particle
flows for truly predictive simulation.

Model and Algorithm Requirements

Application models represent functional (“what”) requirements that drive the need for certain

numerical algorithms and software implementations. They are also often pre-determined by the given

features and specifications in LC systems (Table 4). A choice and specification of LCF system attributes

(e.g., peak speed or node memory capacity) tends to constrain the functional attributes employed usefully

in a given physical model on that system. For example, attributes such as the following all depend in part

upon the LCF system for which implementation of the models was targeted.

• model state variables (how many now, how many planned in the future),

• model characteristics [partial differential equations (PDE) or ordinary differential equation

(ODE); deterministic or stochastic: formulation of equations],

• the presence of multiple, simultaneous phenomena, and the required degree of coupling,

• the domain of dependence (local with specific patterns, global), and

• data dependency (degree of parallelizability)

 National Center for Computational Sciences

 10

Table 4. Examples of how physical model attributes might change on a 1-PF LC system for
specific application codes in various science domains

Science
domain Code Current physical model attributes Physical model attributes

at >1 PF

Astrophysics Chimera Deterministic nonlinear integro-PDEs;
63 variables.

High-resolution energy and angle
phase space and a 200-species nuclear
network; >1000 variables.

Climate CCSM
Deterministic nonlinear PDEs;
5–10 prognostics and ~100 diagnostic
variables.

Could add another ~100 diagnostic
variables for biogeochemical
processes.

Climate MITgcm Deterministic nonlinear PDEs; 3 prognostic
and 2 diagnostic variables.

Could add stochastic component.
5 prognostic and 1 diagnostic
variables; can vary key forcing
parameters to study the response to
changed climate scenarios.

Combustion S3D Deterministic nonlinear PDEs; 16 variables. Better chemical kinetics could result in
75 variables.

Fusion GTC

Vlasov equation in Lagrangian coordinates as
ODEs, Maxwell equations in Eulerian
coordinates as PDEs, and collisions as
stochastic Monte Carlo processes; 2 field
equations and 5 phase variables per particle.

5 field equations and 6 phase variables
per particle.

Fusion GYRO 2 field, no feedback. 3 field with profile feedback.

After a physical model has been postulated, the application developer must devise and/or use one or

more algorithms to generate numerical solutions to the model as formulated. For most of the applications

surveyed, the physical models tend to be sets of coupled linear and nonlinear PDEs and ODEs. Most of

the time application model requirements inherently imply algorithm requirements because they are

closely tied to the algorithms chosen to find numerical solutions.

Application algorithm requirements are design (“how”) requirements that clarify the ramifications of

these choices in the science applications on LCF specifications. Algorithm requirements are elicited from

each application by understanding:

• the parallelism paradigm (distributed, domain replicated, coupled distributed models, etc.) and
method for implementation [message-passing interface (MPI) tasks, threads, etc.];

• scalability (how many execution threads/tasks can be handled) and any identified obstacles to
scalability;

• the extent of algorithm convergence, accuracy, and verification;
• solution methods (linear/nonlinear sets of equations, matrix properties, etc.), categorized

according to Colella’s “Seven Dwarfs” *(Table 5); and
• algorithm adaptivity as a function of space, time, and data.

* Defining Software Requirements for Scientific Computing, Phillip Colella (2004).

Computational Science Requirements Science Quality and Productivity Requirements

 11

Table 5. The “seven dwarfs” categorization of algorithms employed

by specific application codes in various science domains

Science
domain Code Structured

grids
Unstructured

grids FFT
Dense
linear

algebra

Sparse
linear

algebra
Particles Monte

Carlo

Accelerator
physics T3P X X

Astrophysics
CHIMERA X X X X

VULCAN/2D X X

Biology LAMMPS X X

Chemistry
MADNESS X X

NWChem X X

Climate

CAM X X X

POP/CICE X X X

MITgcm X X X

Combustion S3D X

Fusion

AORSA X X X

GTC X X X X

GYRO X X X X

Geophysics PFLOTRAN X X X

Materials
science

QMC/DCA X X

QBOX X X X

Nanoscience
CASINO X X

LSMS X X
Nuclear
energy NEWTRNX X X X

Nuclear
physics NUCCOR X

QCD MILC X X

Note: The “X” denotes a particular algorithm is utilized by that code.

For each one of these areas, it is important to understand how and where these algorithms are likely to

change in the next 5 years or when a 1-PF system becomes available.

Several trends are noteworthy in the “seven dwarfs” categorization of codes in

• The seven algorithm types are scattered broadly among science domains, with no one particular

algorithm being ubiquitous and no one algorithm going unused.

• Structured grids and dense linear algebra algorithms are the most widely used algorithms (used by

over half of the representative codes), hence system attributes such as node peak flops and

memory capacity, memory latency, and interconnect latency will be important (see the section on

Runtime Requirements in this document).

 National Center for Computational Sciences

 12

• Particle-based and Monte Carlo algorithms, which have similar properties from a system

standpoint, are also broadly used, and can tax interconnect latency and in some cases node

memory capacity, depending upon implementation and usage.

Computational Science Requirements Software Requirements

13

SOFTWARE REQUIREMENTS

Applications impose software requirements on LC systems in the form of programming

models and languages and I/O and math libraries. This well-defined set will become more

complex with the advent of multicore and accelerator-based architectures.

Application software requirements are design (“how”) requirements that elucidate the ramifications of

current and planned science application software implementations on LC systems (Table 6). These

requirements not only lead in part to a predefined set of tools that must be present on LC systems, but

they also help to point out potential pitfalls and dead ends in some current software choices. Science

application software requirements are elicited from each application by analyzing the following:

• the programming languages, external libraries, and tools used and needed and where any

productivity bottlenecks might exist;

• the breadth, depth, and quality of software verification and testing employed;

• the software engineering attributes (best practices, team development); and

• the quality and maturity of software (as judged by the application team).

Table 6. Functional software requirements (and options) for specific application codes
in various science domains

Science
domain Code Programming

language
Programming

model I/O libraries Math libraries

Accelerator
design T3P C/C++ MPI NetCDF MUMPS, ParMETIS, Zoltan

Astrophysics
CHIMERA F90 MPI HDF5

(pNetCDF) LAPACK

VULCAN/2D F90 MPI HDF5 PETSc

Biology LAMMPS C/C++ MPI FFTW

Chemistry
MADNESS F90 MPI BLAS

NWChem F77, C/C++ MPI, Global Arrays,
ARMCI BLAS, ScaLAPACK,

FFTPACK

Climate

CAM F90, C (CAF) MPI (OpenMP) NetCDF (SciLib)

POP/CICE F90 (CAF) MPI (OpenMP) NetCDF

MITgcm F90, C MPI (OpenMP) NetCDF

Combustion S3D F90 MPI

 National Center for Computational Sciences

 14

Table 6 (continued)

Science
domain Code Programming

language
Programming

model I/O libraries Math libraries

Fusion

AORSA F77, F90 MPI NetCDF ScaLAPACK, FFTPACK

GTC F90, C/C++ MPI (OpenMP) MPI-IO, HDF5,
NetCDF, XML PetSC

GYRO F90, Python MPI MPI-IO,
NetCDF

BLAS, LAPACK,
UMFPACK, MUMPS,
FFTW (SciLib, ESSL)

Geophysics PFLOTRAN F90 MPI BLAS, PetSC

Materials
science

LSMS F77, F90, C/C++ MPI2 HDF5, XML BLAS, LAPACK

QBOX C/C++ MPI XML LAPACK, ScaLAPACK,
FFTW

QMC F90 MPI BLAS, LAPACK, SPRNG

Nanoscience
CASINO F90 MPI BLAS

VASP F90 MPI BLAS, ScaLAPACK

Nuclear energy NEWTRNX F90, C/C++, Python HDF5 LAPACK, PARPACK

Nuclear
physics NUCCOR F90 MPI MPI-IO BLAS

QCD MILC,
Chroma C/C++ MPI

For each one of these areas, it is important to understand how and where software needs to change

and is likely to do so in the coming years (Table 7). A very important theme emerged upon analyzing

application software requirements: too many application software designs are monolithic and not

component-based. Such designs will not be able to adequately exploit future LC architectures, where the

ability to use optimized, hardware-specific middleware (e.g., math libraries) will be critical.

System software is considered here to be the software associated with the operating system, file

system, and run-time libraries.

Table 8 presents proposed solutions to specific software requirements.

Computational Science Requirements Software Requirements

 15

Table 7. Typical features and associated suggested requirements for components
of an LC system software stack

System software
feature Requirement

Mathematical libraries BLAS, LAPACK, SCALAPACK, PETSc, SuperLU, and Parallel FFT tuned to the LC
systems and modified to exploit multicore.

Communication library High-performance, fault-tolerant communication library able to deal with dead nodes.
Specialized
mathematical libraries

Specialized, high-performance O(N) libraries (USFFT, KFFMM, MRA, LSR,
Generalize Gaussian Quadrature) optimized for the LC systems.

Lightweight OS kernel Scalable and robust kernel with support for multicore processors as an SMP node.
I/O and storage Increased scalability and updated algorithms for data and metadata servers.
Reliability and fault
tolerance

Development of advanced systems software enabling applications to have and use built-
in fault handling.

Advanced debugging Comparative debugging tools to support the simultaneous execution of two versions of
an application, allowing the selection of comparison points for verification.

Automatic performance
analysis

Easy-to-use, automated performance tools able to handle large amounts of data.
Development of an infrastructure to support scalability and automation.

Integrated compilation Compilation environment for applications simultaneously targeted for different systems
(scalar/vector processors, FPGAs, stream-based coprocessors, etc.).

Table 8. Proposed solutions to specific requirements for components
of the NCCS LCF software stack

Requirement NCCS LCF software stack

Resource manager/scheduler Torque, Moab, CRMS (will become ALPS)
Workflow tools Kepler, bbcp
User mgmt, ticket system, accounting ORNL Resource Accounting and Tracking (RATS), RT
Security and fault detection Nagios, Inmon, OSIRIS, SNORT/BRO
Compilers PGI, Pathscale
Vendor math libraries SciLIB, ACML
Community math libraries FFTW, PETSc, LAPACK, ScaLAPACK, Atlas, Goto BLAS
Programming languages Fortran, C/C++, CAF
Performance and debugging tools CrayPat, Apprentice, TotalView, PAPI
Parallel I/O libraries HDF5, pNetCDF, MPI-IO
MPI MPT
Low-level communication layers Portals, ARMCI
Shared memory layers OpenMP, Threads
CN and ION kernels, CIOD CVN, CNOS (Linux) and SUSE
Visualization and data analysis VisIt, EnSight, IDL, AVS/Express, Parallel R, VTK, Matlab
Production file system Lustre
Archive tools hsi, htar

Computational Science Requirements Runtime Requirements

 17

RUNTIME REQUIREMENTS

Detailed knowledge of the application runtime footprint, expressed in a relative sense, allows

reliable extrapolation to future LC systems.

Application runtime requirements are design (“how”) requirements that specify the application

“footprint” on LC systems. The footprint is what the system sees from the application while it is

executing: its memory usage, memory patterns, communication usage and attributes, I/O usage and

attributes, etc. Often applications requirements are solely determined by collecting runtime attributes

only. While these are important, they should be derivable from detailed knowledge of other types of

requirements (model, algorithm, software), and they do not help to elucidate future applications needs

unless they are specified in a normalized sense. An example of a useful requirement is a statement that an

application must dump 20% of its simulation images every 100 time steps. A less useful requirement is a

statement that an application needs 100 TB of locally attached disk space. If runtime requirements are

expressed in a relative or normalized sense, then more accurate and reliable extrapolations to future

systems are possible. Application runtime requirements are elicited by probing its

• I/O model and volume (size, bandwidth, parallel scalability),

• extent of indirect addressing,

• ability to execute on a heterogeneous system,

• need for and ability to do dynamic data repartitioning,

• extent of load imbalance,

• communication patterns (global, local, size of message, number of messages),

• performance bottlenecks and metrics, and

• memory usage.

A given LCF system has many attributes that uniquely characterize it relative to other systems, but

the following 12 attributes in particular have been found to be useful and important to consider from the

application’s perspective:

• peak flops per node,

• mean time to interrupt (MTTI),

• wide area network (WAN) bandwidth,

• node memory capacity,

• local storage capacity,

• archival storage capacity,

 National Center for Computational Sciences

 18

• memory latency,

• interconnect latency,

• disk latency,

• interconnect bandwidth,

• memory bandwidth, and

• disk bandwidth.

For each of these 12 system attributes, certain behaviors and properties of a given application may

expose one particular attribute relative to another. Table 9 summarizes application behaviors and

properties that serve as drivers for system attributes.

Table 9. Science application behavioral and algorithmic drivers
for LC system attributes

LC system
attribute

Application algorithms
driving

a need for this attribute
Application behaviors driving a need

for this attribute

Node peak
flops

Dense linear algebra, FFT,
sparse linear algebra, Monte
Carlo

Scalable and required spatial resolution low; would benefit from
a doubling of clock speed; only a problem domain that has
strong scaling, completely unscalable algorithms;
embarrassingly parallel algorithms.

Mean time to
interrupt Particles, Monte Carlo Naïve restart capability; large restart files; large restart R/W

time.
WAN

bandwidth
Long time evolution,
multiphysics, multiscale

Community data/repositories; remote visualization and analysis;
data analysis.

Node memory
capacity

Dense linear algebra, sparse
linear algebra, unstructured
grids, particles

High DOFs per node, multi-component/multi-physics, volume
visualization, data replication parallelism, restarted Krylov
subspace with large bases, subgrid models.

Local storage
capacity

Particles, out-of-core
algorithms

High-frequency/large dumps, out-of-core state, debugging at
scale.

Archival
storage
capacity

Long time evolution,
multiphysics, multiscale

Large data (relative to local storage) that must be preserved for
future analysis, for comparison, for community data (e.g., EOS
tables, wind surface, and ozone data); expensive to recreate;
nowhere else to store.

Memory
latency

Sparse linear algebra,
unstructured grids

Data structures with stride-one access patterns (e.g., cache-
aware algorithms); random data-access patterns for small data.

Interconnect
latency

Structured grids, particles,
FFT, sparse linear algebra
(global), Monte Carlo

Global reduction of scalars; explicit algorithms using nearest-
neighbor or systolic communication; interactive visualization;
iterative solvers; pipelined algorithms.

Disk latency Out-of-core algorithms Naïve out-of-core memory usage; many small I/O files; small
record direct-access files.

Interconnect
bandwidth

FFT and other spectral
methods, coupled models

Large messages, global reductions of large data; implicit
algorithms with large DOFs per grid point.

Computational Science Requirements Runtime Requirements

 19

Table 9 (continued)

LC system
attribute

Application algorithms
driving

a need for this attribute
Application behaviors driving a need

for this attribute

Memory
bandwidth

Sparse linear algebra,
unstructured grids

Large multidimensional data structures and indirect addressing;
lots of data copying; lots of library calls, requiring data copies if
algorithms require data retransformations; sparse matrix
operations.

Disk
bandwidth Out-of-core algorithms

Reads/writes large amounts of data at a relatively low
frequency; read/writes large amounts of large intermediate
temporary data; well-structured out-of-core memory usage.

A qualitative prioritization of these system attributes for each domain science is shown in Table 10.

Priorities are presented according to color: green is highest, yellow is moderate, and grey is lowest

priority. A high priority (green) attribute should be maximized over a lower (yellow or grey) priority

attribute for a computer system designed for that science domain. For each domain, four attributes were

given a high (green) priority, four a moderate (yellow) priority, and four a low (grey) priority.

Table 10. Three-tier prioritization of 12 system attributes
for relevant science domains*

System attribute Climate Astrophysics Fusion Chemistry Combustion Accelerator
physics Biology Materials

science

Node peak
flops

MTTI

WAN network
bandwidth

Node memory capacity

Local storage capacity

Archival storage
capacity

Memory latency

Interconnect latency

Disk latency

Interconnect bandwidth

Memory bandwidth

Disk bandwidth

*In each science domain, green denotes an attribute with the highest priority for maximizing, yellow is moderate priority, and grey lowest
priority.

An example of moving from qualitative to more quantitative runtime requirements is the analysis of

what currently constitutes a single simulation for selected application codes. Such analysis helps to

validate the importance of system attributes for these codes. Table 11 presents typical development

 National Center for Computational Sciences

 20

characteristics and runtime requirements of a single simulation for selected application codes on the

NCCS LCF systems.

Table 11. Typical development characteristics and runtime requirements of a single simulation
(job) for selected application codes on the

NCCS LCF systems circa June 2006

Science
domain Code Code attributes

Job
size

(nodes,
time)

Storage
capacity

needs (local,
archive)

Node
memory
capacity
needs

Number of
queue dwell

times needed for
full simulation

Accelerator
design Omega3D

9 years old, 173-K
C++ LOC, 12
developers

128–256,
24 hours

1 TB,
12 TB 8 GB 3–4

Astrophysics CHIMERA
Components
10–15 years old,
5 developers, F90

128–256,
24 hours

300 GB,
2 TB ≥2 GB 10–15

Astrophysics Vulcan2D 9 developers, F90 48,
24 hours

300 GB,
5 TB 2 GB 30

Climate CCSM

Components 20 years
old, 690 K Fortran
LOC, over
40 developers

250,
24 hours

5 TB,
10 TB 2 GB 10–30

Combustion S3D
16 years old, 100 K
Fortran LOC, 5
developers

4000,
24 hours

10–20 TB,
300 TB 1 GB 7–10

Fusion GTC 7 years old,
~30 developers

4800,
24 hours

10 TB,
10 TB 2 GB 4–5

Nuclear
physics NUCCOR 3 years old,

10 developers, F90

200–
1000,
4–8

hours

300 GB,
1 TB 2 GB 1

Computational Science Requirements Data Analysis and Data Management Requirements

 21

DATA ANALYSIS AND DATA MANAGEMENT REQUIREMENTS

Application data analysis and management requirements are more quantifiable, dictating

onerous constraints on LC system I/O infrastructure unless end-to-end workflows change.

Data analysis and management requirements specify end-to-end application analysis characteristics

and needs on LCF systems. These requirements are collected for each application by determining:

• the analysis tools (visualization, data mining, etc.) needed,

• file system storage needs per simulation,

• the maximum desired read/write time as a percentage of simulation time; and

• archival storage needs per simulation.

Given the above, several other important application-specific data analysis requirements directly

follow; for example, output bandwidth (GB/s) from the LC system to local storage. The most demanding

data management requirements often come from applications that incorporate multiphysics and multiscale

models. This kind of coupling leads to high dimensionality in evolved quantities (e.g., radiation fields,

chemical and nuclear species, and particle phase spaces). These applications also tend to involve long

time evolutions. Therefore, large multidimensional datasets are output at many regular intervals to allow

for analysis of time-dependent correlations and the overall evolution of the modeled systems. The

particular science objectives for these types of applications are often directly relatable to a set of

resolution requirements—in time, space, and tangent or phase space—which in turn determines the

overall size of the datasets output and their number. This scaling also holds for the I/O requirements for

checkpoint (restarts). The infrastructure requirements for the LCF that stem from these application

requirements ultimately set the scale of the scientific simulations that can be performed on the system.

The I/O requirements for LCF systems can be broken down into two distinct categories, namely,

those required to

• output results in the form of restart dumps and other analysis files, and

• postprocess data files for analysis and visualization.

The “output” portion of I/O requirements can be determined for the LCF by examining the needs of

the largest data-producing codes on the current systems. The current largest data producers are the

following application codes: CHIMERA, GTC, S3D, T3P/Omega3P, and POP. I/O requirements were

therefore explicitly elicited from users and developers of these codes, with the results highlighted in Table

12 for per-simulation requirements on a 1-PF LC system with 200 TB of memory. Most application

 National Center for Computational Sciences

 22

Table 12. Typical per-simulation I/O requirements for the largest data-producing application
codes on the NCCS LCF systems*

Science
domain Code Restart

file size
Restart

frequency
Analysis
file size

Analysis
dump

frequency
File type Analysis tools

Astrophysics
CHIMERA 160 TB 1/hour 160 TB 1/hour

pnetCDF or
binary,
collective

IDL, xmgrace,
EnSight

VULCAN/2D 20 GB 1/day 200 GB 10/day Binary,
HDF5

VTK, Open-DX,
IDL

Climate POP 26 GB 1/hour 1.4 GB
per field 1/minute Binary,

1 serial file
IDL, NCAR
graphics

Combustion S3D 5 TB 1/hour 5 TB 2/hour
Binary,
individual
files

TecPlot, VisIt,
Post_S3D,
Matlab

Fusion GTC 20 TB 1/hour 10 GB 1/minute
Binary,
individual
files

IDL, gnuplot,
Matlab,
AVS/Express,
EnSight

Fusion GYRO 50 GB 1/hour 10 GB 1/minute Binary,
collective

IDL, VTK,
Asymptote

*A 1-PF LC system with 200 TB of memory is the assumed system.

codes were found to write restart files on a per-processor basis to get the best performance on the system.

Ideally, users would like to write out the data via pNetCDF or parallel HDF5, thereby producing a single

inode per restart dump. Users also require that the system have minimal impact while writing the restart

and analysis files, namely by keeping I/O overhead at less than 5% of the total run time. This study has

found that the users would ideally like to generate restart files ranging from 10 to 80% of the total

memory on the nodes used in the run, but often do much less (like 1–20%) because the I/O overhead

would be much larger than 5%. This information, along with a conservative estimate of MTTI, helps set

the restart dump frequency, which in turn can be used to determine a minimum write bandwidth to local

storage. The prescription is given in Table 13; required local storage bandwidth can be reasonably

estimated as the ratio of restart file size to time tolerated by the user necessary to write out the data. The

time tolerated for output is usually some small fraction (5–10%) of the restart output periods. Application

restart output periods are usually 1–2 hours for LC systems, set ultimately by the system MTTI or queue

dwell-time maximum, which is often 24 hours (or less).

Computational Science Requirements Data Analysis and Data Management Requirements

 23

Table 13. Prescription for estimating local storage bandwidth requirements
for science applications on LC systems*

Variable Description Typical values

M Total system memory 100–400 TB for a 1-PF system

f Fraction of application runtime memory captured and
written out per restart 20–80%

T Runtime intervals between successive restart file outputs 1–3 hours when MTTI is 12–24 hours or
maximum queue runtimes ~24 hours

O Maximum allowable fraction of total runtime devoted to I/O
operations 10%

B Required bandwidth to local storage
fM
TO

=

*I/O activity is assumed to follow a periodic saw tooth pattern, namely short bursts of I/O activity followed by
longer periods of I/O inactivity.

Using the range of local storage bandwidth requirements, users can compute bandwidth requirements

as shown in Table 14. As an example, assume an application is running on the entire 1-PF system,

occupying at or near the entire 200-TB system memory, and must write out every hour a restart file whose

size is roughly 10% of the occupied memory, or 20 TB. If the tolerable I/O overhead is 5%, then the

20-TB file must be written out in 3 minutes (180 seconds), corresponding to an output bandwidth of

111 GB/s. This analysis can be performed for all ranges spanning known requirements.

Table 14. Estimates of science application local storage bandwidth requirements

using the prescription outlined in Table 13*

Restart file size/
total system memory

Restart
period
(hours)

Allowable I/O
overhead

(%)
Required local storage

bandwidth (GB/s)

0.10
1 5

10
111
56

2 5
10

56
28

0.20
1 5

10
222
111

2 5
10

111
56

0.80
1 5

10
888
444

2 5
10

444
222

*Simulations are assumed to run on a full 200-TB LC system.

 National Center for Computational Sciences

 24

It is important to note in this analysis that use of asynchronous I/O by the application was not

assumed, either for historical reasons or because memory constraints render buffering I/O unfeasible for

the largest simulations. Nevertheless, the use of asynchronous I/O could markedly reduce bandwidth

requirements, introducing at the same time a new set of software infrastructure requirements. Bandwidth

requirements could easily be reduced by an order of magnitude (relative to Table 14) if applications

employed asynchronous I/O; this will be investigated further.

Storage requirements for all produced data can be estimated in a number of ways. A good estimate

can be determined by simply aggregating typical restart and analysis file sizes for each application and

multiplying by the total number of projects according to the prescription laid out in Table 15 and

Table 16. Given the total system memory, the total number of LC projects, a reasonable estimate of

project output file size per simulation, and an average number of simulations whose output will be

retained on local storage, a local storage capacity estimate follows from their collective product.

Table 15. Prescription for estimating local storage capacity

requirements for science applications
on LC systems

Variable Description Typical values

M Total system memory 100–400 TB for a
1-PF system

P Total number of projects with LC
allocations annually 20–40

F Fraction of application runtime memory
captured and written out per restart 20–80%

R Average number of simulations per project
whose output is retained on local storage 10–20

C Required local storage capacity fMPR=

If, for example, each of 20 projects required saving 20% of the total application memory per

simulation (with applications occupying the entire system), and 10 such simulations (~1 per month) were

retained, then 8 PB of local storage capacity is required to support this workload.

Archival storage requirements are more difficult to estimate because the use cases for archived data

vary widely from application to application. A reasonable methodology is to scale current archival storage

usage with a system attribute that is directly tied to data generation (e.g., peak flops, total memory,

memory bandwidth). From an application point of view, however, application storage requirements are

mostly driven by total memory used per simulation, hence, total system memory scaling is most

Computational Science Requirements Data Analysis and Data Management Requirements

 25

Table 16. Estimates of science application local storage capacity
requirements using the prescription outlined in Table 15

Number of
projects

Restart file
size/total
system
memory

Number of runs
per project

retained on local
storage

Required local
storage

capacity (PB)

10
0.20 2

10
0.8
4.0

0.80 2
10

3.2
16.0

20
0.20 2

10
1.6
8.0

0.80 2
10

6.4
32.0

40
0.20 2

10
3.2

16.0

0.80 2
10

12.8
64.0

*An LC system memory of 200 TB is assumed.

appropriate. It is interesting, however (as shown in), that estimates of archival storage capacity needs

based on any of these three system attributes yield results for the 1-PF system that are all

within a factor of two of one another. The memory-scaled or memory bandwidth-scaled estimates are

likely to be the most reliable, however, because application output requirements directly follow from

memory used per application simulation. Another defensible approach for estimating archival storage

requirements is to take the local storage requirements (e.g., those in Table 16) and assume that some or all

of these data must also be archived (admittedly neglecting any experimental data storage requirements).

If, for example, the requirements in Table 16 are expected to occur annually during those years the 1-PF

system is deployed, then archival storage requirements for any given year would represent the

Table 17. Estimates of science application archival storage capacity requirements
based on scaling current capacities with either system memory,

memory bandwidth, or peak flops

System attribute
assumed to govern

archival storage
requirements

Estimated
capacity needs by
end of CY06 (PB)

Estimated 250-
TF capacity
needs (PB)

Estimated 1-PF
capacity needs (PB)

Memory 2.8 4.6 15.9
Memory bandwidth 3.8 10.8 36.0

Peak flop rate 3.6 7.1 18.5

 National Center for Computational Sciences

 26

 accumulation of local storage requirements over some previous number of years. Other system

characteristics can lead to considerably different results, as archival storage requirements are cumulative

over the lifetime of the system.

Computational Science Requirements Summary and Recommendations

 27

SUMMARY AND RECOMMENDATIONS

Leadership Class Facilities must engage in a regular and evolving applications requirements

process that is rigorous and quantitative. This process is difficult, time-consuming, yet

necessary. High-consequence decisions about current and future systems informed by this

process are virtually guaranteed to deliver what is best for accelerating scientific discovery

and understanding.

Establishing a formal, rigorous, and useful requirements management process is very challenging

when applied to breakthrough science applications for leadership computing, where the research is by its

very nature exploratory and high risk. The requirements process must always evolve, continuing to

improve as guided by lessons learned, just as this document must be a living document, ever-changing to

keep up with the applications themselves. Computational science requirements for LC computing flow

both ways—LCF systems set requirements for the science applications just as the science applications

must set requirements for the LCF systems. Nevertheless, given current experience, we provide the

following set of preliminary specific observations and recommendations:

Science

• The annual number of allocated projects must be small (<25) to ensure science output and access

to LCF resources are maximized.

• Science roadmaps in every field call for not only increased fidelity but also increased productivity

upon access to a petascale LCF system. An example of increased fidelity is executing a larger

simulation in the same turn-around time as on a smaller system; an example of increased

productivity is executing the same size simulation in a shorter turn-around time.

Models and Algorithms

• As applications are ported to, developed on, and used on petascale LCF systems, the change in

physical models employed is likely to be more evolutionary than revolutionary. The prototypical

example is the solution of nonlinear PDEs—a petascale LCF system affords more spatial and

temporal resolution, which modern solution methods should easily support given a correct

formulation. A drastic change in physical models (e.g., from a deterministic PDE to a

nondeterministic model) as motivated by access to a petascale LCF system is not likely to be the

norm. Exceptions could be climate, biology, and chemistry, among others.

 National Center for Computational Sciences

 28

• Parallel algorithm maturity and efficiency vary widely from one field to another and from one

code to another. For example, fields focused on “atomistics” (nanoscience, materials science,

chemistry, biology, etc.) have parallelism challenges that are unique enough to make it difficult

for other fields to contribute useful approaches.

• A “seven dwarfs” algorithm analysis of applications indicates, not surprisingly, that there are no

algorithm “sweet spots,” thereby disallowing an LCF system to pursue a hardware architecture

designed to specifically optimize a particular algorithm (e.g., FFT).

Software

• Standard programming languages (e.g., Fortran, C, and C++) remain the scientific computing

staple on LCF systems. To a lesser extent, Co-array Fortran and scripting languages like Python

are also needed, but a demand for brand new and/or unanticipated languages is not evident at

present.

• Parallel programming strategies continue to emphasize MPI, along with, in some cases, OpenMP

and Global Arrays. Other paradigms need to be examined, at least in prototype form, in order to

demonstrate proof of principle.

• “Critical” math libraries needed by a large fraction of applications include BLAS, LAPACK,

FFTPACK, FFTW, and PETSc. Others needed (but not as prevalent) include ParMETIS,

MUMPS, and Zoltan.

• Most applications have chosen to implement fault-tolerance via their own checkpoint restart

capability rather than rely on the need for a fault-tolerant communication library. Further

possibilities in this regard should be pursued.

• Hybrid parallel programming models for efficient scaling on multicore processors need to be

pursued vigorously.

• Large-scale application codes can easily have useful lifetimes of 20–50 years (corresponding to

5–10 generations of LCF systems), with the first 5–10 years (and ~100 person-years of effort)

needed just to reach maturity. Expecting applications code developers to rewrite a mature code

from scratch (e.g., in a new language) in order to achieve better scaling or parallel performance is

therefore naïve. Applications code developers are talented; they are adept at and used to

refactoring existing code to achieve better performance. This will be the approach of preference

on petascale LCF systems. There is no magic language or compiler that can do better in this short

time frame.

• With petascale LCF systems consisting of 100K (or more) nodes and/or processors, parallel

algorithms must not only work, but their implementation must also conform to the highest

Computational Science Requirements Summary and Recommendations

 29

software quality assurance (SQA) standards. Software quality, and the breadth and depth of

testing required to ensure and maintain this quality, is too often underemphasized or neglected

under the pressure of producing timely science results. This trend could be exacerbated on LCF

systems.

Runtime Footprint

• The path forward for many application areas includes either enhanced resolution or additional

physics or both. This necessarily translates to increased aggregate and per-node memory

requirements. Given the present cost of memory relative to processing power, this requirement

represents a fundamental tension that must be carefully examined.

• Developer estimates for many code characteristics (e.g., memory usage, network bandwidth,

wallclock time) are often misguided by poor implementations of algorithms and poor choices of

software infrastructure (e.g., data structures). A basic understanding of fundamental algorithm

characteristics (e.g., floating-point operations required, memory operations required) is necessary

to accurately evaluate such requirements.

Data Analysis and Data Management

• I/O software packages and library requirements can be captured in a relatively small list.

• The NCCS LCF should consider procuring a cluster of “fat” nodes, each with multiple multicore

processors and many gigabytes of memory. This fat-node cluster should have direct access to the

local file systems on the LCF supercomputers, allowing efficient analysis, with standard tools

such as IDL and Matlab, without having to move data over the WAN. Furthermore, for the

visualization and analysis of the largest datasets, we believe that the aggregate memory of the

cluster must be large enough to hold one full time step of state data.

• Developers should explore the use of asynchronous I/O, which could give the potential for

decreasing output bandwidth requirements by an order of magnitude.

• Developers should explore performing analysis and data reduction within the parallel application

itself, thus decreasing output bandwidth significantly and dramatically speeding analysis.

Computational Science Requirements Acknowledgments

 31

ACKNOWLEDGMENTS

The staff in the NCCS, particularly members of the Scientific Computing Group, would like to thank

the computer and computational scientists involved in the INCITE Projects with allocation awards on the

NCCS LCF in 2006 and 2007. Without their projects, applications, and time and insight responding to our

requirements questions, this analysis would not have been possible. We would also like to thank the

members of the ASCAC subpanel (in particular, chair Gordon Bell) who spent time with us and provided

insight and guidance on science-based performance metrics for ASCR computational facilities. This work

has been supported by the U.S. Department of Energy Office of Science Advanced Scientific Computing

Research (ASCR) Program at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with

UT-Battelle, LLC.

Appendix A: Glossary of Application Codes

Computational Science Requirements Appendix A

 37

APPENDIX A: GLOSSARY OF APPLICATION CODES

The following is an alphabetical list of science application codes (by name) and the science domains

in which they are used that have been installed and run on the NCCS LCF systems during the calendar

year 2006. This list is not exhaustive, but it is representative of the codes possessed by the 22 projects

(17 LCF and 5 INCITE projects) that received over 36 million processor hours of allocation on the NCCS

Cray XT3 and Cray X1E LCF systems.

Active Harmony Computer Science

ABinit Chemistry

AMBER Biology

AMRMHD Fusion

AORSA Fusion

BOLTZTRAN Astrophysics

CASINO Nanoscience

CCSM Climate (Includes CAM, POP/CICE, CN, CASA, CLM)

CFL3D Engineering

CHARMM Biology

(m.b)CHIMERA Astrophysics

CHROMA High Energy Physics

CMS High Energy Physics

CompHEP High Energy Physics

CPMD Chemistry

CQL3D Fusion

DELTA5D Fusion

ESPRESSO Chemistry

FLASH Astrophysics

FPMPI Computer Science

GAMESS-US Biology

GEM Fusion

GeNASiS Astrophysics

GEOS5 Climate

GTC Fusion

GYRO Fusion

HFB Nuclear Physics

 National Center for Computational Sciences

 38

HPCC Computer Science

HPCTOOLKIT Computer Science

IPM Computer Science

KOJAK Computer Science

LAMMPS Biology

LCG High Energy Physics

LSMS Materials and Nanoscience

MADNESS Chemistry

M3D Fusion

MILC High Energy Physics

MITgcm Climate

mpiP Computer Science

NAMD Biology

NIMROD Fusion

NUCCOR Nuclear Coupled Cluster — Oak Ridge

NWChem Chemistry

OCTOPUS Chemistry

Omega3P Accelerator Physics

PAPI Computer Science

PARADYN Computer Science

PMaC Computer Science

PWSCF Chemistry

PYTHIA High Energy Physics

QBOX Materials Science

QMC/DCA Materials & Nanoscience

ROOT High Energy Physics

ROSE Computer Science

S3D Combustion

S3P Accelerator Physics

SMMC Nuclear Physics

SPF Materials and Nanoscience

SUPERNOVA Astrophysics

SvPablo Computer Science

T3P Accelerator Physics

Computational Science Requirements Appendix A

 39

TAU Computer Science

TORIC Fusion

V2D Astrophysics

VASP Materials and Nanoscience, Chemistry

VH1/EVH1 Astrophysics

VULCAN/2D Astrophysics

WRF Climate

XGC-ET Fusion

ZEUS-MP Astrophysics

Appendix B: Project Allocations and Usage
on the NCCS LCF Systems in 2006

Computational Science Requirements Appendix B

 43

APPENDIX B: PROJECT ALLOCATIONS AND USAGE
ON THE NCCS LCF SYSTEMS IN 2006

Table B.1 summarizes the 22 projects awarded allocations on the NCCS LCF systems during the

calendar year 2006: 17 of these projects were LCF projects, with the stipulation that the principal

investigator’s (PI’s) research be funded by DOE, and the remaining 5 project were INCITE projects,

which were broadly open to PIs from industry and academia, whose research was not necessarily funded

by DOE.

Table B.1. Projects receiving allocation awards on the NCCS LCF
systems in 2006

Science
domain Project title Project

type
Principal

investigator
Cray XT3
allocation

Cray X1E
allocation

Astrophysics Multi-dimensional Simulations
of Core-Collapse Supernovae LCF Adam Burrows

1.25M
4.1%

0
0.0%

Astrophysics
Ignition and Flame
Propagation in Type la
Supernovae

LCF Stan Woosley
3.00M

9.9%
0

0.0%

Astrophysics Multi-dimensional Simulations
of Core-Collapse Supernovae LCF Tony

Mezzacappa
3.55M
11.7%

0.70M
11.9%

Biology Next Generation Simulations in
Biology LCF Pratul Agarwal

0.50M
1.7%

0
0.0%

Biology
Molecular Dynamics
Simulations of Molecular
Motors

INCITE Martin Karplus
1.48M

4.9%
0

0.0%

Chemistry Rational Design of Chemical
Catalysts LCF Robert Harrison

1.00M
3.3%

0.30M
5.1%

Climate Role of Eddies in Thermohaline
Circulation LCF Paoli Cessi

0
0.0%

0.03M
0.5%

Climate Climate-Science
Computational End Station LCF Warren

Washington
3.00M

9.9%
2.00M
33.9%

Climate Studies of Turbulent Transport
in the Global Ocean LCF Synte Peacock

1.50M
4.9%

0
0.0%

Computer
Science PEAC End Station LCF Patrick Worley

1.00M
3.3%

0.20M
3.4%

Computer
science Real-Time Ray-Tracing INCITE Evan Smyth

0.95M
3.1%

0
0.0%

Materials
science

Simulations in Strongly
Correlated Electron Systems LCF Thomas

Schulthess
3.50M
11.6%

0.30M
5.1%

Engineering Large Scale Computational
Tools for Flight Vehicles INCITE Moeljo Hong

0
0.0%

0.20M
3.4%

 National Center for Computational Sciences

 44

Table B.1 (continued)

Science
domain Project title Project

type
Principal

investigator
Cray XT3
allocation

Cray X1E
allocation

Materials
science

Numerical Simulation of Brittle
and Ductile Materials INCITE Michael Ortiz

0.50M
1.7%

0
0.0%

Fusion Gyrokinetic Plasma Simulation LCF W. W. Lee
2.00M

6.6%
0.23M

3.8%

Fusion Tokamak Operating Regimes
Using Gyrokinetic Simulations LCF Jeff Candy

0
0.0%

0.44M
7.5%

Fusion
Wave-Plasma Interaction and
Extended MHD in Fusion
Systems

LCF Don Batchelor
3.00M

9.9%
0

0.0%

Fusion
Interaction of ETG and
ITG/TEM Gyrokinetic
Turbulence

INCITE Ronald Waltz
0

0.0%
0.40M

6.8%

High energy
physics

Reconstruction of CompHEP-
produced Hadronic
Backgrounds

LCF Harvey Newman
0.03M

0.1%
0

0.0%

Accelerator
physics

Design of Low-loss
Accelerating Cavity for the ILC LCF Kwok Ko

0
0.0%

0.50M
8.5%

Nuclear
physics

Ab-inito Nuclear Structure
Computations LCF David Dean

1.00M
3.3%

0
0.0%

Combustion
High-Fidelity Numerical
Simulations of Turbulent
Combustion

LCF Jackie Chen
3.00M

9.9%
0.60M
10.2%

During the 9-month period from January to September 2006, the science application codes associated

with the 22 LCF and INCITE projects executed on the NCCS LCF Cray XT3 (Jaguar) and Cray X1E

(Phoenix) resources according to the job size distribution shown in the bar chart in Fig. B.1 and

Table B.2. Job size is defined as the number of processors utilized during any given calculation (placed in

discrete bins), the percentage of utilization for a job distribution bin is defined as the total number of

processor hours utilized in that job size range (e.g., 129–256 nodes) divided by the total number of

processor hours used on that particular system over the time period of interest (Fig. B.2). Note that both

of the LCF systems have a job distribution load characteristic of a leadership (or capability) usage model,

namely, skewed heavily toward usage of a large percentage (e.g., >25%) of the total available resource for

any given calculation. Also shown in Figs. B.3–B.6 is month-to-month evolution of job distribution and

utilization on each LCF system.

Computational Science Requirements Appendix B

 45

Fig. B.1. Job size distribution of allocated science applications on the NCCS LCF systems in
the January to September 2006 time period. Shown is the percentage of total utilization as a function
of calculation size (number of processors).

Table B.2. Job size distribution of allocated science applications on the NCCS LCF systems in
the January–October 2006 time period

Job Size
(processor

count)

Jaguar
(Jan 2006–Oct 2006)

Phoenix
(Jan 2006–Oct 2006)

Fraction of total
system (%)

Fraction of total
utilization (%)

Fraction of total
system (%)

Fraction of total
utilization (%)

1–2 <0.04 0.01 <0.2 0.02

3–4 <0.08 0.02 <0.4 0.05

5–8 <0.2 0.11 <0.8 0.39

9–16 <0.3 0.92 <1.6 0.89

17–32 <0.6 2.73 <3.1 10.15

33–64 <1.2 9.99 <6.3 24.87

65–128 <2.5 18.96 <12.5 40.65

129–256 <4.9 28.40 <25.0 79.26

257–512 <9.8 37.43 <50.0 93.58

513–1024 <19.7 47.69 <100.0 100.0

1025–2048 <39.3 58.39 N/A N/A

2049–4096 <78.6 72.46 N/A N/A

4097+ <100.0 100.0 N/A N/A

 National Center for Computational Sciences

 46

Fig. B.2. Percentage of total NCCS LCF system utilization for each project receiving a 2006
allocation award in the January to September 2006 time period. Shown is the percentage of total
utilization as a function of calculation size (number of processors).

Fig. B.3. Month-by-month change in the job size distribution of the allocated science
applications on the NCCS Cray XT3 (Jaguar) system in the January to September 2006 time
period. Shown is the percentage of total utilization as a function of calculation size (number of processors).

Computational Science Requirements Appendix B

 47

Fig. B.4. Month-by-month change in the job size distribution of the allocated science
applications on the NCCS Cray X1E (Phoenix) system in the January to September 2006
time period. Shown is the percentage of total utilization as a function of calculation size (number of
processors).

Fig. B.5. FY 06 utilization on the Cray XT3 (Jaguar) system by scientific discipline.

 National Center for Computational Sciences

Fig. B.6. FY 06 utilization on the Cray X1E (Phoenix) system by scientific discipline.

As expected, the distribution of jobs over the course of the year tends to reflect an evolving leadership

usage distribution (i.e., skewed more toward capacity early in the year when the applications are more

immature and not as adept with regard to scalability). As the parallel algorithms are tuned, optimized, and

in some cases redesigned, the applications make more effective use of the full resource, and by the end of

the year the job distribution tends to skew toward fuller utilization of the LCF resources.

 48

 49

Appendix C: Applications Requirement Council

Computational Science Requirements Appendix C

 51

APPENDIX C: APPLICATIONS REQUIREMENT COUNCIL

The NCCS requirements process—the development, management, and planning of requirements for

NCCS clients, customers, and users (the “stakeholders”)—is the responsibility of the Applications

Requirements Council (ARC). The ARC, whose charter is given below, is the NCCS requirements board

in a formal project-management sense. ARC requirements are passed on to the NCCS Technology

Council (TC), where they serve as guidance, constraints, and specifications for the upgrade, selection,

procurement, acceptance testing, and even design of current and next-generation leadership systems.

The ARC develops, manages, and plans the breakthrough science requirements imposed upon the

NCCS leadership computing systems. These requirements are embodied within the simulation tools used,

developed, and envisioned by scientists pursuing these tools as vehicles for discovery, exploration, and

validation of their research. The principal product of the ARC is the documentation, publication, and

handoff of requirements to the NCCS TC, which is responsible for implementing and/or aligning these

requirements with deployed NCCS leadership computing systems. By articulating requirements, the ARC

will help to ensure that all NCCS systems are aligned to the maximum extent possible with the needs and

goals of the breakthrough science projects using the NCCS resources. ARC requirements apply to the

entire end-to-end analysis process followed by scientists using the NCCS facilities. The process includes

system hardware, system software, the integrated development environment, and the problem-solving

environment, which includes data analysis, management, and visualization. It is our vision that the ARC

will positively influence the design, procurement, deployment, and/or operation (e.g., user and technical

support) of an NCCS system by improving the quality, quantity, or fidelity of the output of one or more

breakthrough science simulation applications in a measurable way.

The remainder of this section gives the process for the development, management, and planning of

NCCS stakeholder requirements. This process translates into explicit ARC tasks and milestones, many of

which are repeated on an annual basis. The ARC requirements process follows three basic steps:

development, management, and planning.

Requirements Development

Requirements are developed after (in sequence) elicitation, analysis, validation, and specification.

Requirements Elicitation

Requirements elicitation was performed by reformulating the four basic types of requirements

(business, functional, quality, and design) into a series of questions to ask specific people, who were in

one of three categories—client, customer, or user. Clients are those who pay for product development;

customers pay for the product; and users use the product. The next task was to identify people to

 National Center for Computational Sciences

 52

interview (preferably at least one per category) and formulate several questions per requirement. We then

sought answers to these questions from the selected people through e-mail, phone calls, meetings

(interviews), or workshops. The answers were then documented and verified by the interviewee to ensure

that the answers correctly reflected the opinion of the person interviewed. We found that using models

during the interview and encouraging the interviewee to change them was an effective method for

clarifying responses. Asking negative questions was an effective means for soliciting quantitative

answers. The elicitation process is a two-step process: (1) identify the stakeholders and (2) interview the

stakeholders.

The following questions are suggested as guidance in the elicitation process:

Science motivation and impact

• Why does your science need leadership computing? Without leadership computing, can progress

be made at all? Or as fast?

• What science questions are you answering? When are these answers needed? Why are these

answers needed? What are the impacts of having the answers to these questions? Will having

those answers mean you are finished or lead to new questions?

• Is your science to be validated against observation (experimental validation) or solely the

instantiation of theory?

• Who are your clients (who pays for product development)?

• Who are your customers (who pays for the product)?

• What is your product? Answers to fundamental understanding or to guide theory? Will the

software be released to others? Will you provide guidance and/or optimization in designing an

experiment or actual end product? All of the above?

Science quality and productivity

• How might the quality (fidelity of physics models) of your science quality change with system

peak speed and aggregate memory?

o 25 TF

• List of physics models currently in your application

• Specify the time and length scales resolved (if appropriate)

o 100 TF, 250 TF, 1 PF, sustained PF

• List of new and improved physics models now possible

• Specify the time and length scales resolvable (if appropriate)

Computational Science Requirements Appendix C

 53

• How might the productivity of your science output change with system peak speed and aggregate

memory? Is this important?

o 25 TF

• Estimate the time with your current simulation tool that it takes to arrive at a simulation-

informed decision, discovery, experimental design, or training/education exercise

o 100 TF, 250 TF, 1 PF, sustained PF

• Estimate time improvement

• What maximum simulation turn-around time can you tolerate and still move your science

forward? What turn-around time would allow detailed parameter studies and optimization?

• What are the current time-intensive bottlenecks for your workflow process? What might this

process be for you in 5 years (e.g., with >1 PF)?

• Can you give a use case for today’s resources? A use case is characterized by workflow (problem

definition, problem setup, main compute phase, post processing, data analysis and visualization,

dissemination of results), reason for simulation, recipient of the result, physics/algorithm aspects

of the simulation. How might a use case look in 5 years?

• How many instances of use cases are required for scientific discovery?

• Are your computational experiments sequential (the current dependent upon the previous result)?

How many experiments might be performed in a year?

• Can your simulations be validated (physical models compared against experimental data)? If so,

have they been? To what extent (breadth, depth, and quality) has your simulation tool been

validated?

• What confidence level (level of predictability) do you have in your current simulations? Can this

be quantified (e.g., “error bars”)? If not, is this possible with more computational resources?

What physics models are crudely represented today (have the highest uncertainties)? How might

this change in 5 years (with >1 PF)?

Application models

• How many state variables currently describe your physical system? How might this change in

5 years (with >1 PF)?

• Are your models deterministic? Stochastic? Both? If deterministic, how are your models

expressed (e.g., PDEs)? How might this change in 5 years (> 1 PF)?

• Are multiple, simultaneous physical processes modeled? If so, are fully coupled solutions

obtained? How might this approach change in 5 years (> 1 PF)?

 National Center for Computational Sciences

 54

• Is the domain of dependence for any given state variable local (dependent upon other nearby state

variables) or global?

• Is your physical model data dependent, meaning that the actual physical model invoked

dynamically depends upon data itself (e.g., an interfacial physics model is only invoked along

interfaces)?

Application algorithms

• What is your current parallelism model (distributed, domain replicated, etc.)? Are you

instantiating parallelism with MPI tasks, threads, or both?

• We are currently at 5K threads of execution. Do you have any algorithms that may not scale to

100K threads of execution? If so, why and what are the obstacles?

• Have you been able to quantify numerical errors and convergence properties of your algorithms?

How might this change on larger systems?

• Do your algorithms require solutions to linear and/or nonlinear sets of equations? If so, are these

local, global, sparse, dense? How might this change in 5 years (> 1 PF)?

• Do your algorithms adaptively change as a function of space and time, based on the data (e.g.,

AMR)? How might this change in 5 years (> 1 PF)?

Application software

• What programming languages and external libraries, and tools (compilers, debuggers) do you

require? How might this change in 5 (> 1 PF) years?

• How are your simulations verified (solving equations correctly)?

• What kind of testing (e.g., unit, regression, integral, etc.) do you perform? Is the breadth, depth,

and quality of your software and algorithm verification testing adequate?

• What development tools (IDE, editors, compilers, debuggers) do you require?

• What is the biggest time bottleneck in the IDE cycle?

• Is your software under active development? If so, by a single individual or a team? Are software

engineering and software project management best practices found useful and followed?

• How would you rate the quality and maturity of your software?

Application footprint on the system (hardware)

• What is your current I/O model (parallel, serial through a single PE)?

• What are the frequency and size (in terms of fraction of simulation image) of your restart and

graphics dumps?

• Does your application require an extensive amount of indirect addressing?

Computational Science Requirements Appendix C

 55

• Can your application execute on a heterogeneous system? If not, would the workload be

amenable to this?

• Does your application require dynamic repartitioning? Might it in 5 years (>1 PF)?

• Is your application load balanced?

• What are your application communication needs in terms of locality and regularity? How might

this change in 5 years (>1 PF)?

• Does your application have a few identifiable performance bottlenecks? Are these bottlenecks

localized in software?

• Do you have a normalized performance metric for your application (e.g., grind time)? If so, what

is it and is it being tracked? What fraction of peak system speed is being realized? What fraction

of the total cycles is devoted to floating point ops, integer ops, logical ops, data movement, etc.?

• What is your application’s normalized memory usage (e.g., double precision words required per

discrete solution point or cell)? What fraction of this can be accounted for by the permanent state

variables representing the physical system you are modeling?

Data management and analysis

• What analysis tools (data mining, visualization, etc.) do you require?

• For a typical leadership simulation, what is your temporary and archival storage size needs

(expressed as a function of the simulation image size)?

• For a typical leadership simulation, what are your needs for maximum allowable read/write times

to temporary storage (expressed as a function of the total simulation time)?

• Why do you need archival storage? Are your simulation datasets analyzed and used by many

others or are they for single-user backup?

Miscellaneous

• What keeps you awake at night about your simulation tool?

• What are the highest risks or impediments to success?

Analysis

Analysis is the process by which gaps or missing requirements are identified, which includes possibly

new elicitation, negotiation of scope, and establishment of consistency. Models such as state diagrams,

information/class diagrams, and data flow diagrams are used to analyze requirements. Analysis also

involves prioritization (based on issues like scale, cost, benefit, risk) of existing requirements; this

information is often obtained by interviewing the key players once again. Prioritization schemes based on

 National Center for Computational Sciences

 56

numerical scales (1–10), enumerated scales, or timelines can be used. In setting priorities, a forced

distribution should be used: 25% in the top tier, 50% in the middle tier, and 25% in the low tier.

Validation

Validation is determining whether the requirements are “good enough” (attained) as well as being the

correct set (allocation). Requirements are validated through peer reviews, test case creation, and

target/estimation alignment. Good requirements must be unambiguous, testable, correct, in scope,

modifiable, feasible, traceable, written in clear (customer’s) language, acceptable to all clients, and not a

solution.

Specification

Requirements can be specified in templates (text or models), user manuals, test cases, or prototypes.

Requirements Management

Requirements are managed by scrubbing, tracking change, and matching scope.

Scrubbing

Specified requirements are scrubbed by eliminating those that are not “important” and simplifying

those that are unnecessarily complicated. Scrubbing occurs via a requirements review (peer review)

board, which is currently the ARC.

Change Management

Changes in requirements must be documented, tracked, and approved, just like change control of any

software. The ARC serves as the change board.

Scope Matching

In considering changes to requirements, attention must be paid to the impact the change has on

benefits, cost, risk, schedule, quality, resource allocation, timing, and stability.

Requirements Planning

Since requirements development and management is an ongoing process, the necessary supporting

activities must be planned ahead of time. A requirements plan is the documentation of the process by

which requirements are developed and managed. The ARC, chaired by the NCCS Director of Science,

owns and executes requirements development and management.

Computational Science Requirements Appendix C

 57

ARC Implementation

ARC membership consists of the NCCS Director of Science (co-chair), the group leader and staff of

NCCS Scientific Computing (SC), and external users and scientists selected by the ARC chair to

represent each domain science (at least one member per domain) currently supported by NCCS resources.

One external member will serve as co-chair along with the Director of Science. ARC membership will be

for one year with ongoing renewals acceptable. The ARC shall communicate regularly through monthly

teleconference calls, face-to-face group meetings (at least one annually), electronic mailing lists,

sharepoint Web sites, one-on-one meetings, phone conversations, and e-mail messages.

ARC Tasks and Milestones

To develop, manage, and plan applications requirements, the ARC will

• Maintain regular phone conversations and e-mail exchanges about requirements issues among its

members (NCCS Director of Science, SC group staff, and LCF INCITE project points of

contact),

• Conduct regular (every four to six week) teleconferences to develop, manage, and plan

requirements,

• Keep abreast of other related computational science requirements management efforts and any

associated documentation, workshops, and activities,

• Document and publicize an annual applications requirements document,

• Hold an annual (end of fiscal year) PI meeting where LCF and INCITE projects discuss and

present their science results as well as current and anticipated requirements,

• Hold at least one face-to-face meeting annually (e.g., at the users or PI meeting),

• Produce quarterly LCF and INCITE project updates on science results and requirements,

• Maintain a sharepoint Web site, and

• Provide formal requirements-based technology recommendations to the TC that are as actionable

as possible since the TC helps to design, procure, and deploy computer systems that best meet the

requirements submitted by the ARC.

The functions, actions, and outcomes of the ARC are the responsibility of the NCCS Director of

Science.

Appendix D: ASCAC Code Project Questionnaire

Computational Science Requirements Appendix D

 61

APPENDIX D: ASCAC CODE PROJECT QUESTIONNAIRE

The following is the project survey template developed by members of the ASCAC subpanel on

science-based performance metrics for ASCR computational facilities. These surveys were used by

members of the NCCS Scientific Computing Group in gathering requirements-relevant information from

each LCF and INCITE project teams receiving an allocation on the NCCS LCF systems in 2006.

Experiment Project Overview

• Project name

• Contact information for the project

o Principal investigators, e-mails, phones

o URL

• DOE Office support: DOE program manager; SC Office (BES, BER, NP, HEP, ASCR, FES,

other)

• Scientific domain (chemistry, fusion, high energy, nuclear, other)

• What are the technical goals of the project?

o What problem or “grand challenge” are you trying to solve?

o What is the expect impact of project success? (e.g., better understanding of supernova

explosions, prediction of ITER performance)?

• Support for the development of the code

o Degree of DOE support to develop the code

o Other agency support

• What is the project profile in total human resources, including

o Trained scientists

o Program development and maintenance

o User(s) of the team codes

• Size of any or all external communities that your code or datasets support:

Project Team Resources

• Team size

• Team institutional affiliation(s)

• To what extent are the code team members affiliated with the computer center institution? Team

composition and experience total

o Domain scientists

 National Center for Computational Sciences

 62

• Team composition by educational level (total)

o Ph.D.

o M.S., B.S., undergraduate students, graduate students

• Team resources utilization: time spent on code and algorithm development, maintenance, and

problem setup, production, and results analysis

Project Code

• Problem type (data analysis, data mining, simulation, experimental design, etc.)

• Types of algorithms and computational mathematics (e.g., finite element, finite volume, Monte-

Carlo, Krylov methods, adaptive mesh refinement, etc.)

• What systems does your code run on?

• What is your preferred system?

• Code size (single lines of code, function points, etc.)

• Code age

• Amount of code added per year

• Computer languages employed

o Fortran

o C

o C++

• Structure of the codes

o What libraries are used?

o What fraction of the effort do they represent?

• Code mix

o To what extent does your team develop and use your own codes?

o Codes developed by others in the DOE and general scientific community?

• What is the present parallel scalability?

o Projected or maximum scalability?

o How is measured?

o Is the code massively parallel?

• What memory/processor ratio does your project require? (i.e., gigabytes/processor)?

• Parallelization model

o Does your team use domain decomposition and if so what tools do you use?

• What is the “efficiency” of the code?

o How is it measured?

Computational Science Requirements Appendix D

 63

• What are the major bottlenecks for scaling your code?

• What is the split between interactive and batch use?

• What is the split between code development on the computer center computers and on computers

at other institutions?

Project resources input from the centers

• Steady state user of resources on a production basis per month

o Processor number

o Processor time

o Disk

o Tertiary rate of change

• Annual use of resources

o Processor time

o Disk

o Tertiary storage rate of change

• Software provided by center

• Consulting

• Direct project support as a team member

• What is the size of the job in terms of memory, concurrency (processors), disk, and tertiary store?

• What is the scalability of these codes?

• What is the wall-clock time for typical runs?

Software Engineering, Development, Verification and Validation
Processes

• Software development tools used

o Parallel development

o Debuggers

o Visualization

o Production management and steering

• Software engineering practices. Please list the specific tools or processes used for:

o Configuration management

o Quality control

o Bug reporting an tracking

o Code reviews

 National Center for Computational Sciences

 64

o Project planning

o Project scheduling an tracking

• What is your verification strategy?

• What use do you make of regression tests?

• What is your validation strategy?

• What experimental facilities do you use for validation?

• Does your project have adequate resources for validation?

Project output (t) and user metrics

• Enumerate project output, consisting mainly of journal publications, dissertations, and research

reports

• In addition provide: number of publications, citations, dissertations, prizes and other honors

• Residual and supported, living datasets and/or databases that are accessed by a community

• Describe size of the external user community for the datasets

• Change in code capabilities and quality (t)

• Code contributed to the centers

• Code contributed to the scientific community at large

• Company spin-offs based on code or trained people and/or CRADAs

• Corporation, extra-agency, etc. use

• Increase in trained scientists during 2001–2005

• Increase in trained code developers capable of writing project-level codes during 2001–2005

Project Future (qualitative)

• What is today’s greatest impediment in terms of your use of the center’s computational facilities?

• With the projected increases resources over next 3 years?

• What do you believe the proposed increases in capacity at the facilities will provide (e.g., based

on observations of historical increases)?

o Better turn-around time for the project

o More users and incremental improvement in use with little or no change in scale or quality

o Reduced granularity, resulting in constant solution time, though more accurate results

o New applications permitting in new approaches and new science

o How, specifically, has your use changed with specific facilities increases

• How is the project effort projected to change in the next 5 years?

• What is your plan for utilizing increased resources?

Appendix E: Survey of Acceptance and Early Access
Science Applications

Computational Science Requirements Appendix E

 67

APPENDIX E: SURVEY OF ACCEPTANCE AND EARLY
ACCESS SCIENCE APPLICATIONS

This appendix contains a representative list of science application codes considered to be priority

petascale applications. These codes are suitable for acceptance testing as well as possessing high potential

for achieving breakthrough science results. The science outlined by each application would benefit greatly

from early access to “science at scale” simulation time on the planned 250-TF and 1000-TF Leadership

Computing Facility (LCF) systems at Oak Ridge National Laboratory. This candidate list, which is not

exhaustive, represents what we believe to be an excellent set of codes that have high potential of scaling

to fully utilize the 250-TF and 1000-TF systems while achieving breakthrough science with the resulting

simulations. The codes span many domains of science and a wide variety of models, algorithms, and

software that collectively stress all aspects of a petascale computational resource. These applications

originate from many different institutions. For each code in this list the following are summarized:

physical models, numerical algorithms, current and project scaling performance, ways to be used in an

acceptance test, the science it might probe with early access simulations, its functional software

requirements (system software and math libraries), and points of contact. The code data is based in large

part on details graciously provided by the relevant code authors and subject matter experts. The authors of

this document have attempted to compile a complete list of available codes in Table E.1. Details for each

code are provided in the text following the table.

Table E.1. Acceptance test utility, description, and metrics for selected science application
codes

Code Acceptance test
utility Acceptance test description and metrics

AORSA Scalability;
functionality

Scale up on full system with problem having a known
answer; test complex factorization of dense matrices
(ScaLAPACK/PBLAS)

CAM Single PE performance Test problem of finite volume dynamical core with
atmospheric chemistry

CASINO Single PE performance Perform a 10000 electron system calculation
NUCCOR Functionality Reproduce regression tests

CHIMERA Functionality;
interconnect B/W

Standard explicit hydro test problem with a known answer
(Sod)

FLASH Scalability; I/O

Reproduce isotropic DNS run on BG/L; whole star type
1A simulation, ensuring amount of burned mass at same
resolution is identical to a prior result obtained on another
system; write out restarts with <10% overhead

GTC I/O; scalability Write out restarts with <1% of overhead; push 20B
particles in one step in one second

 National Center for Computational Sciences

 68

Table E.1 (continued)

Code Acceptance test
utility Acceptance test description and metrics

LAMMPS Functionality ~1M atom simulation generating reproducible answers

LSMS (+WL) Scalability; stability Use a simple, well known bulk system (bcc Fe) to test
stability and scaling of message-passing performance

MADNESS Functionality Compile and run code with correct answers

MILC/CHROMA Scalability >15% of peak performance realized in the conjugate
gradient portion of standard MILC without optimization

NEWTRNX Functionality Reproduce regression tests
NWChem Functionality Test proper implementation of global arrays

PFLOTRAN Functionality Exercises a large portion of the PETSc code base

POP/CICE Single PE performance;
interconnect latency

Runtime in simulated years per CPU day for a fixed-size
problem (0.10 degree)

QBOX Scalability Parallel efficiency; percent of peak

QMC/DCA Functionality
Generate test runs of virtually any size with a known
answer that checks MPI, BLAS, LAPACK, and F90
compiler

S3D Interconnect latency;
I/O

Simulation with production I/O works and generates
correct answers; runs correctly at a variety of PE counts;
flame benchmark (time/step/grid point) is constant or
better

T3P Functionality Test functionality of Zoltan, MUMPS, ScaLAPACK
VASP (+WL) Functionality Test functionality of BLAS, ScaLAPACK

AORSA

Physics Models

The All-Orders Spectral Algorithm (AORSA) code solves Maxwell-Boltzmann equations for the

wave electric and magnetic fields and for the distribution function fs(r, v, t), representing the density of

species in a 6-D phase space. The time-evolution of this function is determined using self-consistent

electric and magnetic fields. The wave fields and particle distribution function can be separated into a

time-averaged slowly varying part, (E0, B0, fs
0), and a time harmonic rapidly oscillating part, [E(r)e-iωt,

B(r) e-iωt, fs
1(r,v)e-iωt] where ω is the frequency of the wave. Solving the linearized Boltzmann equation

gives the rapidly varying part of the distribution function fs
1(r, v) in terms of the equilibrium part fs

0. For

the rapidly oscillating, time harmonic wave fields, Maxwell’s equations reduce to a generalization of the

Helmholtz wave equation. The numerical solution is expensive because of the nonlocal nature of the

plasma current, the geometric complexity of the plasma boundary, and the enormous range of spatial

scales that must be treated. AORSA takes advantage of today’s parallel computers and solves its

equations in the general integral form with no restriction on wavelength relative to orbit size and no limit

Computational Science Requirements Appendix E

 69

on the number of cyclotron harmonics. AORSA has been generalized to treat nonthermal (i.e., non-

Maxwellian) plasma components.

Algorithms

AORSA uses a fully spectral method to solve the wave equation and the resulting set of linear

equations is solved using ScaLAPACK libraries or HPL, modified for use with complex coefficient

systems (E. F. D’Azevedo et al., “Complex Version of High Performance Computing Linpack

Benchmark [HPL],” SIAM Conference on Computational Science and Engineering, 2007). This avoids

complicated convolutions associated with calculating the plasma current, and at the same time, includes

cyclotron harmonics of arbitrarily high order. For an N × N grid in 2-D, AORSA generates a dense matrix

of approximately 0.70*(3*N2). For example, the medium-size ITER problem (128 × 128) requires the

solution of a double complex valued linear system of order 34,692. The larger ITER problem (256 × 256)

required to resolve the mode-converted waves requires solution of a linear system of order 124,587.

Scaling

Linear scaling up to 4096 processors; prefer twice the memory of Jaguar’s processors

(2 Gbytes/processor available to code); domain decomposition with MPI; 50% of peak on Jaguar; and

757 GF on 2024 Seaborg processors (Fig. E.1).

Fig. E.1. AORSA on the Cray XT series Jaguar system compared with an IBM Power3.
The columns represent execution phases of the code. The aggregate is the total wall time, with Jaguar
showing more than a factor of 3 improvements over Seaborg.

 National Center for Computational Sciences

 70

If Chosen for Science Day One

On day one with a petaflop, AORSA could do a complete simulation of mode conversion heating in

ITER with a realistic antenna geometry and non-Maxwellian alpha particles. Right now, it takes

5000 processor hours to simulate mode conversion for a single toroidal mode with Maxwellian alphas.

Non-Maxwellian alphas would take three times as long (15,000 processing hours) and then ten nonlinear

iterations of this case with CQL3D (150,000 processor hours.) Then the realistic antenna would take

about 100 toroidal modes or 15,000,000 processing hours.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran 77/90 BLACS NetCDF None

Libraries and Tools

Library Function Functionality

SCALAPACK PZGETRF Double complex factorization of a dense
matrix

SCALAPACK PZGETRS Double complex triangular matrix solve
PBLAS PZSCAL Double complex scaling of a submatrix
PBLAS PZGECOPY Double complex copying of a submatrix

FFTPACK ZFFTF, ZFFTB,
ZFFTI

Double complex forward, backward, and
initialization

BLACS ZGSUM2D Double complex reduction sum of a
submatrix

BLACS BLACS_BARRIER Interprocess barrier

Code Reference

Fred Jaeger (jaegeref@ornl.gov)

E. F. Jaeger et al., “Self-Consistent Full-Wave and Fokker-Planck Calculations for Ion Cyclotron Heating

in Non-Maxwellian Plasmas,” Physics of Plasmas 13, 056101 (2006).

NCCS Point of Contact

Richard Barrett

rbarrett@ornl.gov

mailto:jaegeref@ornl.gov

Computational Science Requirements Appendix E

 71

CAM

Physics Models

The general circulation of the atmosphere and ocean are modeled by the primitive equations of

geophysical flows in a hydrostatic formulation. These are conservation laws for mass, momentum,

energy, and species expressed as partial differential (and integral) equations. They are time dependent

with the ocean surface, forming a boundary condition across which fluxes are exchanged between

atmosphere and ocean. Similarly, the land surface with vegetation modeling and soil hydrology and river

routing is also coupled with the atmosphere. The physics of the Community Atmosphere Model (CAM)

embodies radiation balance with adsorption and emissivity calculated across 16 spectral bands, depending

on the chemical constituents of the atmospheric grid point. Moist thermodynamics with cloud water as a

prognostic variable and sulfate aerosol dynamics are some of the other formulation specifics of the

atmospheric model (Fig. E.2).

Fig. E.2. Performance of the CAM 3.1 atmospheric model.

Algorithms

The atmospheric model utilizes two different formulations, depending on the form of the

discretization. The spectral models (Eulerian and semi-Lagrange spectral) are in “advective form” while

the semi-Lagrange finite volume discretization is in “flux form.”

 National Center for Computational Sciences

 72

Scaling

Scalability has hard limits from the data-distribution algorithm, not from parallel inefficiency. Current

development will enable scaling to thousands of processors by increasing resolution, adding

computational complexity, and implementing more-scalable data distributions. Two GBs/processor are

adequate. MPI with 2-D domain decomposition is the primary mechanism for parallelism. OpenMP

parallelism is also implemented and used on systems for which it is appropriate. On the nonvector XT

series system, the maximum useful processor counts are higher, though throughput compared with the

X1E is lower. The finite volume dynamical core of the atmosphere will also effectively utilize the entire

system, particularly with active atmospheric chemistry. In this configuration, the embarrassingly parallel

chemistry and physics calculations dominate the dynamics by a factor of 5 to 8.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran 90, C, Co-
Array Fortran
(optional), GNU Make

MPI, OpenMP (optional),
SHMEM (optional),
MPI-2 One-sided (optional)

NetCDF Getrusage (optional)

Math Libraries

Library Function Functionality

Cray SciLib dz/zdfftm
(optional)

Multiple real-to-complex or complex-to-
real fast Fourier transforms

SGI SCSL dz/zdfftm1du
(optional)

Multiple real-to-complex or complex-to-
real fast Fourier transforms

Other Requirements

Good connectivity to the Earth System grid is required.

Code Reference

Mariana Vertenstein (mvertens@ucar.edu)

http://www.ccsm.ucar.edu/models/atm-cam/

NCCS Point of Contact

James B. White III

trey@ornl.gov

mailto:mvertens@ucar.edu

Computational Science Requirements Appendix E

 73

CASINO

Physics Models

This code performs a first-principles electronic structure calculation using Quantum Monte Carlo

(QMC) to directly solve the Schrodinger equation. In contrast to other first-principles methods, such as

density functional theory (DFT), QMC provides essentially exact answers, with no or few approximations

in the entire method. The method is therefore ideal for providing benchmark answers for delicate

problems such as those in optical properties of nanostructures, catalysis, reaction pathways, and many

other problems involving transition metals where common DFT approaches are suspect. Indeed, practical

implementations of DFT are based on a parameterization of QMC data. Although calculations are

substantially more expensive than DFT, structures of several hundred atoms have been examined. Several

QMC algorithms exist; the most accurate involve a set of interacting “walkers” of sets of electron

positions that are guided through space by Monte Carlo. Walkers are created and destroyed dynamically

according to the underlying quantum problem. The computational requirements scale with the second to

fourth power of the number of electrons and atoms, depending on the quantities being measured. A trial

wave function partially based on results from a more approximate method (such as DFT) is used to

provide importance sampling.

Algorithms

Atomistic QMC calculations have many features in common with both molecular dynamics

calculations (e.g., the movement of individual particles, Ewald sums for long range forces) and with

quantum chemical and DFT electronic structure methods (e.g., representation of wave functions in an

underlying Gaussian or plane-wave basis, possible use of pseudopotentials). A generalized Metropolis

algorithm is used for Monte Carlo. The population of walkers is dynamically load balanced across

processors ensuring very high parallel efficiency (>90%). The Monte Carlo and dynamic nature of the

algorithms could take advantage of fault-tolerant parallel environments, if available: the loss of a few

walkers due a failed processor can be rigorously accounted for with only minor overhead.

Scaling

The scalability of QMC calculations depends on a combination of the size of materials system under

study, the physical quantities of interest (energies, forces, optical excitations), as well as the quality of

trial wave function that can be obtained using more approximate methods. Based on current experience

with these governing factors, publication-quality QMC calculations will scale to systems of 1000–10000

electrons on 10000–100000 processors without major developments to existing code. These system sizes

are necessary to tackle the problems mentioned above. Hard scaling could be further improved by

dividing each walker over several processors. Although this development has not been done, an additional

 National Center for Computational Sciences

 74

order of magnitude of scalability might be reasonably achieved. QMC calculations of the type

implemented by CASINO have been routinely run on 1000 processors on LLNL systems with >90%

parallel efficiency for systems of a few hundred electrons.

If Chosen for Acceptance

The CASINO QMC code has few external dependencies and could be part of an acceptance test. The

code stresses the F90 compiler for performance. MPI and communications are not heavily stressed

because of the loosely coupled nature of the algorithm.

If Chosen for Science Day One

If chosen for science on day one, it would immediately be possible to study a key scientific problem

in an area of materials science such as catalysis, hydrogen production (photodissociation of water on

titanium dioxide surface), hydrogen storage in organic and solid state nanostructures, as well as magnetic

systems. Calculations on intermediate sized problems (on 10000 cores) are required to determine the

exact science and system size that could be achieved on 100000 cores.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O Libraries
and functions

Operating System
functions

Fortran 90 MPI None Timing only

Math Libraries

Library Function Functionality

BLAS xGEMM,
xGEMV

Matrix-multiplication
Minor use only

Code Reference

Paul Kent (kentpr@ornl.gov)

http://www.tcm.phy.cam.ac.uk/~mdt26/casino2.html

NCCS Point of Contact

Markus Eisenbach

eisenbachm@ornl.gov

mailto:kentpr@ornl.gov
http://www.tcm.phy.cam.ac.uk/%7Emdt26/casino2.html

Computational Science Requirements Appendix E

 75

CHIMERA

Physics Models

VH-1 solves the compressible Euler equations for fluid flow. It has been coupled to a variety of

neutrino transport solvers as part of the Terascale Supernova Initiative. CHIMERA is one of these “code-

chimeras,” being a combination of VH-1 and the neutrino transport code MGFLD-TRANS (Bruenn,

Florida Atlantic U.). CHIMERA solves the equations of radiation hydrodynamics in a ray-by-ray

approach: the hydrodynamic evolution is followed in two or three spatial dimensions and the neutrino

radiation transport is constrained along radial rays. This is an excellent approximation for the core-

collapse supernova problem: for much of the evolution, the configuration is roughly spherical on scales

probed by the neutrino interactions with the surrounding matter (Table E.2).

Algorithms

Piecewise Parabolic Method (PPM) is a finite-volume discretization of the Euler equations (a

particular example of a Godunov method). VH1 is a Lagrangian remap version of PPM (i.e., the hydro

step is performed on a Lagrangian mesh and remapped back to the primary Eulerian mesh during each

timestep. CHIMERA includes all the PPM technology of VH-1 along with a fully implicit, multigroup

flux-limited diffusion neutrino transport solver. The transport solver uses a variety of Krylov solvers.

Scaling

Explicit Eulerian hydrodynamics is shown to scale to thousands of processors on the NCCS XT series

in Fig. E.3. CHIMERA is under active development on the Cray XT series. Its scaling characteristics are

essentially identical to VH-1, as the transport solves that mark the added physics in CHIMERA are local.

If Chosen for Acceptance

CHIMERA is under active development and as such is not available to be used as production-level

code in an acceptance test.

If Chosen for Science Day One

CHIMERA would perform the world’s first core-collapse supernova simulation in 3-D with realistic

neutrino transport. The simulation would also likely include magnetic fields, some approximation to

general relativistic gravity, and realistic nuclear burning (Table E.2 gives details of calculation for various

codes).

A second variant of CHIMERA, bCHIMERA, is also under development. This variant replaces the

MGFLD transport in CHIMERA (mCHIMERA) with full Boltzmann neutrino transport.

 National Center for Computational Sciences

 76

Fig. E.3. Explicit Eulerian hydrodynamics. VH-1 weak scaling.

Table E.2. Details of calculation(s)

Code Simulation
target

Spatial
resolution

Phase space
resolution

Global
memory
required

Memory/
process
required

Run-time
(hours)

MPI
processes Runs

mCHIMERA Explosion
(750 ms) 256 × 128 × 256 20 10 TB 0.6GB 300 16K 3

bCHIMERA Explosion
(750 ms) 128 × 128 × 256 20×8 32 TB 2GB 700 16K 1

ZENITH Explosion
(750 ms) 256 × 128 × 256 20 10 TB 0.6GB 300 16K 3

V3D Explosion
(750 ms) 256 × 256 × 256 20 10 TB 500MB 500 20K 2

GENASIS Explosion
(750 ms) 128 × 64 × 128 20 × 4 × 4 160 TB 8GB 700 20K 1

Computational Science Requirements Appendix E

 77

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

F90 MPI HDF5, pnetCDF None

Code Reference

Anthony Mezzacappa (mezzacappaa@ornl.gov)

S. W. Bruenn et al., “Modeling Core Collapse Supernovae in 2 and 3 Dimensions with Spectral Neutrino

Transport,” Journal of Physics: Conference Series 46, 393–402 (2006).

NCCS Point of Contact

Bronson Messer

bronson@ornl.gov

FLASH

Physics Models

FLASH is designed to solve compressible, reactive flow problems in dense stellar environments, like

those found in novae, X-ray bursts, and Type Ia supernova. The code incorporates solvers for

hydrodynamics, nuclear burning, gravity, and a variety of other physical processes. The code also has

considerable functionality for cosmology problems in the form of particle-mesh solvers.

Algorithms

FLASH uses an explicit, PPM-based method, hence a finite volume, nearest-neighbor code. It uses

block-structured AMR. FLASH includes modules to perform passive and active particle tracing, nuclear

burning, multigrid and multipole gravity solves, complex equations of state, and front tracking via

massive scalar advection.

Scaling

FLASH recently completed a 64,000 processor-driven turbulence run on the LLNL BG/L. The code

exhibited good scaling (Fig. E.4).

mailto:mezzacappaa@ornl.gov

 National Center for Computational Sciences

 78

Fig. E.4. FLASH exhibited good scaling.

If Chosen for Acceptance

FLASH could easily be used for a performance (i.e., scaling) acceptance test. Previous experience on

BG/L would provide adequate guidance. FLASH would be able to perform turbulence simulation with

some prescribed performance boost.

If Chosen for Science Day One

The code could perform a full-star deflagration simulation, including any possible transition to

detonation, in the white dwarf at resolutions finer than 0.01 km. This would be a 100× leap in resolution

for these kinds of simulations and would allow for real validation of the chosen subgrid model for flame

turbulence.

Additional development effort in formulating a new subgrid model would be necessary, along with

the development of fast nuclear burning modules designed to capture any deflagration to detonation

transition.

Computational Science Requirements Appendix E

 79

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Python, F90, C MPI HDF5, pnetCDF GNU make

Libraries and Tools

Math Libraries: The basic FLASH code-base has no external dependencies on math libraries, but

users can easily add functionality that changes this.

Code Reference

Don Lamb (lamb@oddjob.uchicago.edu)

http://flash.uchicago.edu

NCCS Point of Contact

Bronson Messer

bronson@ornl.gov

GTC

Physics Models

There are three versions of GTC. GTC, developed at Princeton Plasma Physics Laboratory (PPPL), is

a global code for turbulence transport simulations. It uses a shaped plasma in general geometry with

electrostatic electron dynamics based on the delta-h scheme with nonadiabatic part of delta-f. The GTC

version developed at the University of California–Irvine (UCI) has electromagnetic electron dynamics

based on the hybrid scheme along with a global code for both turbulence and gyrokinetic MHD

simulations. Finally, the GTC-neo (PPPL) code has neoclassical transport simulations in general toroidal

geometry and in fully operational collision operators.

The GTC code has shown steady state simulations of ion temperature gradient (ITG) turbulence with

adiabatic electrons. The GTC code developers were able to add the velocity space nonlinearity term,

which helps produce an ion current ration of 2.5%. Using ITG simulations with GTC, they were able to

show turbulence spreading for shaped and circle plasmas.

mailto:lamb@oddjob.uchicago.edu
http://flash/

 National Center for Computational Sciences

 80

Algorithms

Gyrokinetic Vlasov equation PDE in Eulerian coordinates: MHD equations are time dependent PDEs

in Eulerian coordinates, and the Gyrokinetic-Darwin-Maxwell equations are time independent PDE in

Eulerian coordinates.

GTC solves the Gyrokinetic Vlasov equation using a PIC method (ODE in Lagrangian coordinates).

It also solves the Gyrokinetic-Darwin-Maxwell equations with finite elements with multigrid and other

linear solvers.

Scaling

Mature PIC code, nearest-neighbor, good scaling to 5000 processors has been demonstrated on a number

of systems utilizing MPI and OpenMPI (Fig. E.5). The code has run long simulations on the Cray XT

series with 4,800 processors for over 100 wall clock hours per simulation. The code has scaled on over

16K processors on the IBM Blue Gene. The code has shown 96–98% on multicore Opteron processors.

GTC has achieved 3.7 TF on the Earth Simulator.

Fig. E.5. Good scaling was achieved on up to 5000 processors. Compute power of the
gyrokinetic toroidal code.

Computational Science Requirements Appendix E

 81

If Chosen for Acceptance

• For a 100-TF machine, GTC has shown that it can run today’s problems on 16K processors. They

will need 36 TB of memory to perform this test, with roughly 2 GB/core. The simulations should

run for about 10 h on 16K processors. The basic test will be to see how many particles can be

moved one step in 1 s. Currently, the highest has been 6 billion particles on the Earth Simulator

with 4K processors.

• For the 250-TF machine, we assume that the 250-TF machine will be available in 2008, and we

should be able to use the 2-D domain decomposition (DD) for electrostatic simulation of an

ITER-size machine (a/rho>1000) with kinetic electron. So the scaling of 2-D DD will be tested

on the 100-TF machine with 20K cores.

• Further down the road, a multispecies, electromagnetic simulation of ITER machine should be

carried out on the 1-PF machine (assuming it will be available in 2010), so the finite element

method (FEM) solver via PETSc and hypre should also be tested.

• We have used 9 TB RAM on the 25-TF machine already, so it could be assumed that there would

be 20 TB on the 100-TF machine. We need at least 2 GB/core.

• The restart file size could be roughly estimated as one-tenth of the RAM size. You could then

figure out how much time it would take to write out one-tenth of the RAM (if the bandwidth is

known). We would need to write a restart for every 1 h of simulation.

• Write out restarts with <1% overhead on the calculation, writing out about one-tenth of the

memory (the particle information).

• Push 20 billion particles 1 step in 1 s, for the 250-TF machines.

If Chosen for Science Day One

For 250-TF: collisionless trapped electron mode (CTEM) physics and transport (heat, particle, and

momentum), collisional effects, and size scaling up to ITER; turbulence spreading in ITG, ETG, and

CTEM.

• Size and isotope scaling studies of core turbulence transport for ITER: The ultimate goal is for

integrated simulation, combining wave heating, turbulence, MHD, and neoclassical physics.

• For 1 PF: Electromagnetic turbulence, long time scale simulation (including transport barriers).

• Understand anomalous particle transport for the electrons in the presence of electromagnetic

effects due to micro-tearing near the rational surfaces.

Turbulent transport studies for the energy transport on the 250-TF machines can be carried out using

the present GTC code, which uses a grid based on the size of ion gyroradius. The electron particle

transport physics, however, requires the incorporation of the electron skin depth in the code, which can be

 National Center for Computational Sciences

 82

an order of magnitude smaller than the size of ion gyroradius. Therefore, we need a 100-fold increase in

terms of the grid as well as the number of particles. In addition, we need to decrease the time step by a

factor of 10 to satisfy the Courant condition due to the smaller grid size.

For the petaflops computer, we will need PETSC fully working with GTC without dominating the

over cost of the calculations. This is especially true when solving the field equation, including the electron

skin depth.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

F90, C MPI, OMP
(optional)

PHDF5, HDF5,
MPI-IO, NetCDF,
XML

Timers (through MPI)

Math Libraries

Library Function Functionality
PETSC Hypre AMG Solver

Code Reference

Zhihong Lin (zhihongl@uci.edu)

S. Ethier, W. M. Tang, and Z. Lin, “Gyrokinetic Particle-in-Cell Simulations of Plasma Micro-Turbulence

on Advanced Computing Platforms,” Journal of Physics: Conference Series 16, 1 (2005).

NCCS Point of Contact

Scott Klasky

klasky@ornl.gov

GYRO

Physics Models

It is generally accepted within the magnetic fusion community that the dominant cause of cross-field

transport in tokamak discharges is plasma microturbulence, and that this turbulence can be described by a

combination of the gyrokinetic equation to describe the state of the plasma, and Maxwell˙s equations, to

describe the self-consistent electric and magnetic fields. The model equations are often referred to as the

gyrokinetic-Maxwell equations.

mailto:zhihongl@uci.edu

Computational Science Requirements Appendix E

 83

GYRO is a nonlinear tokamak microturbulence package designed to run on nearly all modern

computing platforms, from an ultraportable laptop to the world’s largest CRAY X1E/XT series and IBM

Blue Gene systems. Developed at General Atomics (starting in 1999) by J. Candy and R. Waltz, GYRO

uses a fixed (Eulerian) grid to solve the 5-D gyrokinetic-Maxwell equations. Operation is flexible, with

the capability to treat a local (flux-tube) or global radial domain (with an adaptive source to maintain the

equilibrium profiles), a full or partial torus, general (Miller shaped) or simple circular plasmas, adiabatic,

drift-kinetic or gyrokinetic electrons, electrostatic or electromagnetic fluctuations, finite parallel velocity

and shear, and experimental or user-defined physical input parameters. All transport channels are treated:

ion and electron energy transport plus turbulent energy exchange, plasma and impurity particle transport,

and toroidal angular momentum transport. GYRO is also bundled with a highly-developed GUI-driven

IDL analysis package (VUGYRO). Comprehensive code documentation (including a technical manual

and user guide), as well as all publications, are available from the GYRO website: http://fusion.gat.com/

theory/Gyro. Registered users can download periodic code releases, or work directly from the CVS

repository for the most up-to-date version. A GYRO-based SciDAC SAP project (SSGKT) is in progress

to develop a steady-state gyrokinetic transport code for predicting reactor plasma profiles given the

H-mode pedestal height.

Algorithms

GYRO uses a mixture of finite-difference, finite-element, spectral and pseudo-spectral discretization

schemes. Radial derivatives are computed using arbitrary-order finite-difference formulae, whereas 2-D

gyroaverages are treated using a mixed spectral (in the binormal direction), pseudo-spectral (in the radial

direction). Orbit motion (advection) in the poloidal plane is treated using a third-order upwind scheme,

whereas the poloidal field dependence is represented using adjustable-order finite elements. Velocity

space integrals (2-D) are computed using novel high-order 2-D Gaussian quadrature schemes, which is

the most accurate integration scheme used by any gyrokinetic code (Eulerian or PIC). Time integration is

accomplished by either a semi-implicit IMEX-RK scheme (ideal for large, global-scale simulations), or

an explicit 4th-order RK scheme (ideal for simulations which resolve the full electron-temperature-

gradient physics time and space scales).

Scaling

GYRO scaling studies show impressive scaling up to the full capacity of various of the world’s most

powerful computers, including 16384 codes of the ORNL Cray XT series (see Fig. E.6). There is active

 National Center for Computational Sciences

Fig. E.6. GYRO scaling studies on various computers.

development with a SciDAC project to couple multiple instances of GYRO with a single transport

module. When complete, the new code (currently named TGYRO) will provide a further dramatic

enhancement of GYRO scalability and allow for the efficient use of tens of thousands of cores.

If Chosen for Acceptance

The GYRO code has several external math library dependencies as well as dependence on MPI.

GYRO is known to stress the interconnect bandwidth and thus could be used to test that characteristic.

Also, GYRO could be used to test parts of FFTW, UMFPACK, and MUMPS.

If Chosen for Science Day One

There are several challenges faced by gyrokinetic simulations. GYRO users have identified these in

their attempts to accurately simulate tokamak discharges.

High-beta turbulence: As the plasma pressure (beta) approaches the MHD critical beta, large

resonant structures are observed in the electron heat transport. These give rise to large bursty transport

and eventually terminate the simulation. Higher-resolution simulations are required to look for clear

evidence of destruction of magnetic surface by electromagnetic turbulence.

Pedestal simulations: As the plasma gradients steepen near the plasma edge, recent GYRO results

show that grid resolution requirements increase significantly beyond nominal values required to carry out

84

Computational Science Requirements Appendix E

 85

typical core simulations. Probing the high-transport pedestal region and carrying out studies to determine

optional grid resolution in this region are crucial requirements for understanding the transition between

core and edge turbulence.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran 77/90 MPI MPIIO Timing only

Math Libraries

Library Function Functionality

BLAS ZGEMM, ZGEMV
(called from UMFPACK)

Matrix-multiplication
Minor use only

LAPACK ZGETR[F,S,I] Dense matrix factorization, solve,
inversion

UMFPACK UMZ2FA, UMZ2SO,
UMZ21I

Factor, solve, and initialize
double complex sparse matrix

MUMPS ZMUMPS
Driver to initialize, factor, and
solve double complex sparse
matrix

FFTW or
vendor FFT

fftw_f77,
fftw_f77_create_plan

Create an object with information
required to compute FFT in the
FFTW library

Code Reference

Jeff Candy (candy@fusion.gat.com)

http://fusion.gat.com/theory/Gyro

NCCS Point of Contact

Mark Fahey

faheymr@ornl.gov

LAMMPS

Physics Models

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a classical molecular

dynamics (MD) code developed primarily at Sandia National Laboratories over the past ten years.

LAMMPS uses atomistic-based modeling of molecular systems such as biomolecules, material surfaces,

and chemical systems. The atomistic modeling uses Newtonian (classical) mechanics for the system

mailto:candy@fusion.gat.com

 National Center for Computational Sciences

 86

where the atoms are represented by a point mass and charge. Additional terms in the physical model

include two-, three-, and four-body terms and pairwise interaction (electrostatic and van der Waals

interactions) beyond the fourth body interaction. Computationally, MD is similar to the N-body problem.

Unlike gravitational or plasma simulations, the forces in MD are mostly short-range, and particle densities

do not reach high values. The timestep in an MD simulation is limited by the need to accurately integrate

atomic motion between strongly interacting atoms (e.g., between two atoms coupled by a harmonic bond).

For computational efficiency, LAMMPS uses neighbor lists to keep track of nearby particles. The lists are

optimized for systems with particles that are repulsive at short distances, so that the local density of

particles never becomes too large. On parallel machines, LAMMPS uses spatial-decomposition

techniques to partition the simulation domain into small 3-D subdomains, one of which is assigned to

each processor. Processors communicate and store “ghost” atom information for atoms that border their

subdomain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a 3-D

rectangular box with roughly uniform density.

Algorithms

A spatial decomposition algorithm and a particle-particle/particle Mesh (PPPM) method and particle

mesh Ewald algorithm. Complex 2-D and 3-D parallel FFT are also used.

Scaling

LAMMPS is a highly scalable program, as it has been shown to scale on 64K processors (Livermore

BlueGene/L) in weak scaling mode. Scaling and parallel efficiencies are extremely high on the ORNL

Jaguar system on the largest allocation (4096 processors). In the replica exchange mode, these simulations

can scale to over 100K cores, reducing the time to solution and accuracy of samples significantly.

Typically, the breakdown of CPU cost for a timestep is 85% for force computation, 10% for neighbor

finding, and 5% includes time integration, application of boundary conditions, etc. The force computation

is dominated by short-range pairwise interactions. Long-range Coulomb interactions are split into a short-

range direct portion (van der Waals) and a long-range K-space portion, which is computed by Ewald

summation. The most efficient methods for this summation are solutions to Poisson’s equation via 3-D

FFTs on a grid to which particle charge is interpolated. Ignoring the O(NlogN) cost of FFTs (which

typically only require 20–30% of the force computation time), classical MD simulations scale as O(N) in

both memory and CPU cost, where N is the number of particles simulated. They also parallelize

efficiently, at least for large problems, with typical parallel efficiencies of 80–90% on thousands of

processors for simulations with millions of atoms (Fig. E.7).

Computational Science Requirements Appendix E

 87

Fig. E.7. LAMMPS parallelize efficiently for large problems.

If Chosen for Acceptance

LAMMPS is compatible with the popular biomolecular force-fields including CHARMM and

AMBER. It can perform energy minimization and time integration (molecular dynamics) simulations.

Other functionalities include periodic boundary conditions, SHAKE bond and angle constraints, parallel

tempering (replica exchange), and targeted molecular dynamics constraints. For all-atom models of

proteins or polymers, this requires a time step of about a femtosecond (for coarse-grain models, it can be a

few orders of magnitude larger). The current state-of-the-art for supercomputer-scale simulations is that

tens of nanoseconds (tens of millions of time steps) can be simulated for models with tens to hundreds of

thousands of atoms. This requires many hours or days of CPU time on hundreds of processors of a

parallel machine. Similarly, for solid state systems, tens of millions of atoms can be simulated for shorter

timescales. Note that this still implies a significant length-scale limitation because there are a few billion

atoms in a cubic micron of solid material. Because of their computational intensity, such problems are

good stress tests of the performance and scalability of large parallel machines.

If Chosen for Science Day One

LAMMPs runs will allow investigation of complex biomolecular systems with up to 1 million atoms

at close to the native time-scales. At the petascale, the scalability of LAMMPS will allow microsecond-

millisecond simulations of multimillion atom systems. Data from multiple trajectories (200 to 2000) at

microseconds-scale simulations will be collected using the long- and short-range force calculation

methods in LAMMPS and by exploiting the replica exchange techniques that could scale to hundreds of

thousands of processor cores. These replica exchange simulations improve convergence rates and

sampling efficiencies in explicit solvent methods.

 National Center for Computational Sciences

 88

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

C++ MPI None None

Math Libraries

Library Function Functionality

FFTW
fftw_create_plan
fftw
fftw_destroy_plan

Creates/destroys an object with
information required to compute
FFT in the FFTW library

Code Reference

Steve Plimpton (sjplimp@sandia.gov)

http://lammps.sandia.gov/

NCCS Point of Contact

Sadaf Alam

alamsr@ornl.gov

LSMS (+WL)

Physics Models

This code implements a first principles electronic structure calculation based on density functional

theory. LSMS stands for locally self-consistent multiple scattering, an order-N method that is well suited

to solve all-electron electronic structure problems as they appear in nanostructures—particularly magnetic

nanostructures. The method is formulated within the local spin density approximation to density

functional theory and solves the single-particle Dirac equation as well as the nonrelativistic Schrödinger

equations. The LSMS code was the first to ever run at a sustained teraflop and was the subject of the 1998

Gordon Bell Prize.

Algorithms

LSMS solves the Kohn-Sham equations of density functional theory using Multiple Scattering theory

to calculate its Green function and consequently the resulting densities by calculating the trace of the

product of the observables and Green’s function. The main computational effort involves inverting a

matrix of dimension that scales linearly with the size of the system. To achieve linear overall scaling with

system size, LSMS takes advantage of the fact that most observables only depend on their local

mailto:sjplimp@sandia.gov

Computational Science Requirements Appendix E

 89

environment, so by taking only a fixed size neighborhood of atoms into account, LSMS keeps the size of

the matrices independent of the system size after the range of this local interaction zone has been

determined.

Scaling

LSMS has run on 10,000 processors with excellent scaling. Parallelization is achieved by assigning

system atoms to different processors. Larger system calculations are enabled by time on LC systems.

LSMS has been run on the BG system with either one task per core or one task on two cores. To be

efficient for one task on two cores, an implementation of ZGEMM that takes advantage of the multiple

cores is needed. LSMS presently does not provide for structural relaxation (this is currently under

development), therefore a second code is needed, probably VASP. Integration of these ab initio methods

with a classical statistical physics method (generalized Wang-Landau in particular) as the energy function

will allow another level of parallelism in the random walkers used. This combined code will naturally

scale to >100,000 cores when investigating the thermodynamic behavior of 1000–10,000 atom

nanoparticles.

If Chosen for Acceptance

LSMS can be run for a system of any size up to the number of cores available (because of the one-to-

one mapping of atoms and processors). A simple well-known bulk system (e.g., bcc Fe) can be used to

test the stability and scaling of message-passing performance up to the full machine size.

If Chosen for Science Day One

The combined LSMS+Wang-Landau code will allow the computation of the temperature dependent

magnetic free energy for nanoparticles of interest (FePt in particular). The use of a first principles-based

method will take into account effects due to chemical order and will study the full range of magnetic

complexity in these nanoscale systems. Not much is known about the sub-nanoscale magnetic structure of

these particles, and this information is central to understanding and exploiting the magnetic properties of

FePt nanoparticles. The achievability of these results will depend on the number of WL samples needed

to compute free energies to sufficient accuracy.

 National Center for Computational Sciences

 90

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Gnu make, Fortran
77/90, C, C++ MPI2 Serial HDF5,

XML ctime (or equivalent)

Math Libraries

Library Function Functionality

BLAS ZGEMM Dense double complex matrix-
matrix multiply

BLAS ZGEMV Dense double complex matrix-
vector multiply

LAPACK ZGETRF Double complex factorization
of a dense matrix

LAPACK ZGETRS Double complex triangular
matrix solve

LAPACK ZGETRI Double complex matrix inverse
formation

Code Reference

Thomas Schulthess (schulthesstc@ornl.gov)

C. G. Zhou, T. C. Schulthess, and D. P. Landau, “Wang-Landau Algorithm for Continuous Models and

Joint Density of States,” Physical Review Letters. 96, 120201 (2006).

NCCS Point of Contact

Markus Eisenbach

eisenbachm@ornl.gov

MADNESS

Physics Models

Numerical-based simulations will be used to predict the physical and chemical properties of

molecules.

Algorithms

The mathematical, algorithmic and computational techniques used in MADNESS are based upon

these elements:

mailto:schulthesstc@ornl.gov

Computational Science Requirements Appendix E

 91

• Multi-resolution analysis in multi-wavelet bases

• Separated representations of functions and operators

• Partitioned singular value representations

• Bandwidth-limited bases for efficient sampling in space and evolution in time

Scaling

Although MADNESS is under continuous development, the current scaling on the Cray XT series

system at ORNL shows good overall scaling and scalability of the component algorithms (Fig. E.8).

Fig. E.8. MADNESS shows good overall scaling
and scalability of the component algorithms.

If Chosen for Science Day One

We propose to develop and apply a petascale simulation capability for essentially exact simulation of

the dynamics of a fully interacting few-electron system (He, H2, H3+, Li, LiH) in a general external field

(i.e., propagation in 6-D over physical time scales of the wave function of few-electron atoms or

molecules in the presence of a perturbing particle such as photon, electron, proton or antiproton). These

are the fundamental and defining challenges in physics and chemistry of the 21st century, for which

scientists have been seeking solution for more than 50 years. Passing this frontier will open completely

new areas to quantitative scientific inquiry and pave a path to similar capabilities for many-electron

systems because the many-electron wave function is very well approximated by (non-)linear

combinations of pair functions. With current computing resources and numerical techniques, this is

presently impossible, and when the equivalent task was recently first accomplished for one+one-electron

systems in 3-D or more, the result was reported by several cover-page articles in Science and numerous

other publications, including Nature. We believe this to be feasible due to our current work in 3-D,

prototyping in 6-D for stationary bound states, and the use of petascale computers with vast memory and

computational power. The numerical tools and software will be based upon MADNESS. We will

generalize this capability to time-dependent, nonstationary states, and develop multiscale schemes to

solve and propagate the few-electron Schrödinger equation with high accuracy.

 National Center for Computational Sciences

 92

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran MPI

Math Libraries

Library Function Functionality
BLAS

Other Requirements

The overall communication patterns and algorithms desired for the full development of dynamic

algorithms for the MADNESS suite include the ability to utilize at least four complex programming

models: active messages, unified parallel C, global arrays, and message passing (MPI). These models not

only need to be available but must co-exist and allow for functional interoperability.

Code Reference

Robert J. Harrison (harrisonrj@ornl.gov)

http://code.google.com/p/m-a-d-n-e-s-s/

NCCS Point of Contact

Rebecca J. Hartman-Baker

hartmanbakrj@ornl.gov

Milc/Chroma

We propose a set of closely related projects in the numerical study of quantum chromodynamics

(QCD) to be part of the early research program on the ORNL 250-TF Cray XT series. QCD calculations

address problems that are at the core of DOE’s large experimental programs in high energy and nuclear

physics, problems on which the Cray XT series can have a major impact.

Lattice QCD calculations are performed in two steps. In the first, one performs Monte Carlo

calculations to generate gauge configurations, which are representative samples of the QCD ground state.

These configurations are stored, and, in the second step, they are used to calculate a wide variety of

physical quantities. Configuration generation is computationally intensive, but the memory, I/O, and

storage requirements are modest. The code is compact and relatively straightforward to optimize. Jobs are

run in a small number of streams and can be handled by a few people. By contrast, the calculations of

mailto:harrisonrj@ornl.gov

Computational Science Requirements Appendix E

 93

physical quantities from the configurations typically require many fewer floating-point operations, but

have significantly greater I/O and storage needs than configuration generation.

The physics analysis codes are more complex and, in some cases, more difficult to optimize. More

researchers are usually involved in the physics analysis work. For these reasons, the projects we propose

for early use of the 250-TF Cray XT series are the generation of gauge configurations, the part of our

calculations in which this system can quickly produce unique results that will have major impacts on high

energy and nuclear physics. Determination of physical quantities from these configurations will initially

be done on clusters, the QCDOC, and at national supercomputer centers, but later in the project, we

propose to move some of this work to the Cray XT series.

All configurations generated on the Cray XT series will be made available immediately to all

members of the US lattice QCD community for use in a wide range of physics applications.

One major scientific goal of the physics community is to determine the effects of the strong

interactions (QCD) on weak interaction processes to an accuracy needed to make precise tests of the

Standard Model, our current set of theories describing fundamental interactions. These calculations are

critical for a number of major ongoing experiments in high energy physics, including BaBar at the

Stanford Linear Accelerator Center (SLAC), CDF and D0 at the Fermi National Accelerator Laboratory

(FNAL) and CLEO-c (Cornell University). A second major goal is to calculate the masses of the strongly

interacting particles and obtain a quantitative understanding of their internal structure and interactions.

This work is very important for major nuclear physics experiments including RHIC at Brookhaven

National Laboratory (BNL) and CEBAF at Jefferson Lab (JLab). To obtain accurate numerical results,

one must generate gauge configurations with a range of lattice spacings in order to extrapolate to the

continuum (zero lattice spacing) limit, and for a range of light quark masses to extrapolate to their

physical value. Configurations with the smallest lattice spacings and lightest quark masses anchor these

extrapolations, and ultimately determine their accuracy. To obtain the level of accuracy needed to fully

support the experimental programs in high energy and nuclear physics, it is necessary to generate gauge

configurations with smaller lattice spacings and lighter up-and-down quark masses than has been possible

up to now.

The Cray XT series planned for ORNL will enable us to generate such configurations. We expect

these configurations to resolve long-standing problems, and substantially improve calculations of the

mass spectrum of strongly interacting particles, our understanding of the structure and interactions of

nucleons, and the extraction of fundamental parameters of the Standard Model from experimentally

measured weak matrix elements.

 National Center for Computational Sciences

 94

Physics Models

In order to carry out numerical studies of QCD, it is necessary to formulate the theory on 4-D space-

time lattices. During the past few years, a great deal of progress has been made through the use of

improved formulations of lattice QCD (improved actions). The USQCD Collaboration, which consists of

nearly all the lattice gauge theorists in the United States, is making use of the three formulations we

consider to be the most promising: the improved staggered (Asqtad) action, the domain wall fermion

(DWF) action, and the Wilson-Clover action. Each of these actions has important strengths for addressing

different physics questions: The Asqtad action is computationally efficient, and is enabling precise tests

of the Standard Model; the DWF action possesses nearly exact chiral symmetry for finite lattice spacing,

eliminating many problems associated with operator mixing; and the anisotropic Wilson-Clover action

enables correlation functions to be examined at short distances to extract excited states. Furthermore, it is

essential that we validate our results by calculating some quantities with more than one of these actions.

For these reasons, we propose to generate gauge configurations on the ORNL Cray XT series with all

three actions. We describe each of these actions below, and, in Table E.3, we set out projects that we

believe are appropriate to the ORNL 250- and 1000-TF machines.

Table E.3. Proposed gauge configurations

Lattice
spacing
(Fermi)

ml/ms
Lattice

dimensions

Monte
Carlo
steps

Cray
(peak TF)

TF
years

Asqtad gauge configurations
0.045 0.40 563 × 192 4000 250 0.6
0.045 0.20 563 × 192 5000 250 1.9
0.045 0.10 803 × 192 6000 250/1000 13.7
0.060 0.05 843 × 144 5000 1000 18.4

DWF gauge configurations

0.094 0.27 323 × 64 4500 250 1.2
0.094 0.19 483 × 64 5000 250/1000 7.8
0.094 0.11 483 × 64 9000 1000 22.6

Wilson-Clover gauge configurations

0.10 0.22 323 × 128 50000 250 0.8
0.10 0.15 403 × 128 60000 1000 4.1
0.08 0.18 403 × 128 40000 250/1000 4.5
0.08 0.15 483 × 128 50000 1000 22.0

Computational Science Requirements Appendix E

 95

Asqtad gauge configurations: The Asqtad action has the advantage that it requires an order of

magnitude fewer floating point operations to generate gauge configurations with a particular lattice

spacing and light quark mass than other improved actions. For this reason, a large set of gauge

configurations ensembles already exists. These configurations have been made publicly available and are

being used by many lattice gauge theorists in the United States to study a wide variety of problems in

high energy and nuclear physics. Accuracy in the order of 3% has been obtained for a select set of

physical observables, and, in some cases, predictions have been made that were later confirmed by

experiment. However, to reach the level of accuracy for precise tests of the Standard Model requires

gauge configurations with lighter quark masses and smaller lattices spacings than have been possible to

generate to date. The Cray XT series will enable us to generate such configurations, which will have a

dramatic impact on a wide range of calculations. The MILC Collaboration, which has generated the

Asqtad gauge configurations mentioned above, will have responsibility for this project.

DWF gauge configurations: A critical advantage of the DWF action is that it satisfies nearly exact

chiral symmetry for finite lattice spacings. The spontaneous breaking of chiral in the QCD vacuum is the

origin of most of the normal matter in the universe, and an accurate representation of this symmetry is

ultimately essential for lattice QCD calculations of the weak matrix elements, the spectrum of strongly

interacting particles, and the structure and interactions of nucleons, which are central goals of research for

the USQCD Collaboration.

At present, the DWF action is an important part of the efforts of the USQCD Collaboration both for

calculations on existing gauge ensembles and for the generation of new ensembles. Unfortunately, current

efforts to generate Monte Carlo ensembles using these new methods have been statistics starved and

constrained to work with a relative coarse lattice spacing of 0.125 fm. Dramatic improvements can be

achieved using the Cray XT series, staged according to the expected availability of equipment. By

exploring the light quark region with reasonably small lattice spacing, the full promise of the DWF

formulation should be realized. The RIKEN/BNL/Columbia University (RBC) and Large Hadron Physics

Collider (LHPC) Collaborations, which have led the development and use of the DWF action will have

responsibility for this project

Wilson-Clover gauge configurations: A complete understanding of QCD demands that we know the

spectrum of mesons and baryons that it implies, and test these spectra against high quality data.

The combined analysis of experimental data on the photo production of nucleon resonances is the

nuclear physics 2009 milestone in hadronic physics, and the GlueX Collaboration’s proposal to explore

the spectrum of exotic mesons is a flagship component of the proposed 12-GeV upgrade at Jefferson

Laboratory. Beyond the spectrum of isolated hadrons, lattice QCD can teach us about the mechanism of

hadronic interactions, a hadron physics milestone for 2014.

 National Center for Computational Sciences

 96

Thus the need for a comprehensive, first-principles study of the spectrum of QCD, and of the nature

of hadronic interactions using lattice calculations is clear. These studies require precise computations of

several low-lying energy eigenvalues, necessitating good resolution of the temporal decay of correlation

functions. These requirements lead us to adopt anisotropic lattices, in which the temporal lattice spacing

is finer than the spatial by around a factor of three. The LHPC Collaboration will take responsibility for

this project.

Table E.3 shows the gauge configurations we propose to generate on the ORNL 250- and 1000-TF

computers. The first column gives the lattice spacing in fermi, the second the ratio of light-to-strange

quark mass, the third the lattice dimensions, the fourth the number of Monte Carlo steps in the simulation,

the fifth the peak speed of the ORNL computer on which we propose to generate the configurations, and

the sixth column the estimated number of floating-point operations required in teraflop years. In the case

of the Wilson-Clover gauge generation, we list the minimum value of the light-to-strange quark mass

used in each stage of the calculation.

Algorithms

The generation of gauge configurations will be carried out with the recently developed Rational

Hybrid Monte Carlo (RHMC) algorithm. This algorithm provides a major improvement over older ones.

Indeed, our proposed work could not be accomplished without it. The single most computationally

intensive step in our calculations is the inversion of large sparse matrices, which is performed using the

conjugate gradient algorithm.

Scaling

Both the Chroma and MILC codes, which will be used in the proposed work, achieve excellent

scaling on the Cray XT series. This is demonstrated in Fig. E.9, where we plot the total throughput for the

conjugate gradient routine for both codes as a function of the number of cores on the recently upgraded

ORNL Cray XT series. This performance, approximately 18% of peak, was obtained with vanilla versions

of the two codes. We indicate our plans to optimize the codes for the Cray XT series below.

If Chosen for Acceptance

We nominate the MILC code to be one of the codes used in acceptance tests. It is publicly available at

the URL http://www.physics.utah.edu/˜detar/milc, and has been used in recent procurements by National

Energy Research Scientific Computing Center (NERSC) and the National Science Foundation (NSF). The

Asqtad action has the highest ratio of data movement to floating point operations of the QCD actions in

Computational Science Requirements Appendix E

 97

Fig. E.9. The codes for the Cray XTE will be optimized. Performance of the Chroma (left panel) and
MILC (right panel) codes for the conjugate gradient routine as a function of the number of cores. The number
of lattice points assigned to each core is held fixed as the number of cores is increased. The black curves are
straight lines passing through the data from 1024 and 2048 cores.

current use for large-scale simulations. It therefore provides a particularly good test of each of these

functions and the balance between them.

The vanilla MILC Code with SciDAC enhancements achieved 18% of peak for the conjugate gradient

routine on the current version of Jaguar without special optimization. We suggest that a reasonable

acceptance metric would by 15% of peak, again without special optimization.

If Chosen for Science Day One

We would begin by generating the Asqtad configurations with lattice spacing a = 0.045 fm and light-

to-strange quark mass ratios of ml/ms = 0.40 and 0.20, the DWF configurations with a = 0.094 fm and

ml/ms = 0.27, and the Wilson-Clover configurations with a = 0.10 fm and ml/ms down to 0.22. These

projects could be completed quickly on the 250-TF machine, and would have an immediate impact on our

field. We would then begin the Asqtad configurations with a = 0.045 fm and ml/ms = 0.10, the DWF

configurations with a = 0.094 fm and ml/ms = 0.19, and the Wilson-Clover configurations with

a = 0.08 fm and ml/ms = 0.18. Completion of these projects may turn out to be good initial tests for the

1000-TF machine. The Asqtad configurations with a = 0.045 fm would reduce errors in physical

quantities due to lattice artifacts by a factor of two over those arising from configurations expected to be

available in FY 07. The completion of the DWF configurations with a = 0.094 fm will allow the

exploration of the chiral regime with chiral fermions, and enable calculation of fundamental matrix

elements that would suffer from operator mixing in the absence of chiral symmetry. The completion of

 National Center for Computational Sciences

 98

the Wilson-Clover configurations at a = 0.10 fm will enable the computation of the exotic meson

spectrum and of the low-lying excited baryon resonances down to pion masses as low as 180 MeV, and

the first measurement of the exotic meson photo couplings. The completion of the lattices at a = 0.08 fm

will enable the continuum limit of these quantities to be determined.

The objective of all of these projects is to generate gauge configurations that are representative

samples of the QCD ground state. More specifically, importance sampling techniques are used to generate

configurations with a probability that is proportional to their weight in the Feynman path integrals that

define the theory. These configurations will be saved, and will be used to calculate a wide variety of

physical quantities. As indicated above, the RHMC algorithm will be used in all of the proposed work.

The bulk of the floating point operations are consumed in inversions of large sparse matrices, which are

performed by the conjugate gradient algorithm.

As can be seen from Fig. E.9, both the Chroma and MILC codes currently obtain approximately 18%

of peak on Jaguar. They will therefore be ready to run effectively on the 250-TF machine without any

further development effort. However, we are confident that the performance of our codes on the Cray XT

series can be improved significantly, and we are working to do so. There are two areas that will be given

special attention. First, the basic building blocks in QCD calculations are linear algebra operations among

3 × 3 complex matrices and three-component complex vectors. The most frequently used of these have

been optimized for Intel processors with SSE instructions. However, this code does not produce the boost

in performance on Opteron processors that it does on Intel ones, so we plan to optimize key linear algebra

operations for Opterons either using SSE instructions or assembly coding. Second, our codes make use of

multi-core processors by treating each core as an independent processor, and running a single MPI

process on it. However, we believe that threaded code will provide better performance, and plan to

develop it. Both of these optimization efforts are planned for the first year of the lattice gauge theory

community’s SciDAC-2 grant, and should be completed by the time the 250-TF Cray XT series comes on

line. The Lattice QCD Software Committee has responsibility for this work.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

C, C++ MPI
POSIX compliant I/O
system calls and large
file (>2 GB) support

Standard UNIX like system
calls (current QK kernel
functions appear sufficient)

Computational Science Requirements Appendix E

 99

Other Requirements

Also required are C/C++ compilers that allow programmer control of SSE and Opteron-optimized

instructions, and memory prefetching through compiler intrinsics or inline assembler (e.g., GNU

Compiler Collection (gcc/g++) v 3.4 or higher), PGI compilers are insufficient because auto vectorization

is not sought. The PathScale compilers have also proved usable. Cray SHMEM is desirable for optimizing

our communications libraries, but not essential.

Code Reference

Robert Sugar (sugar@physics.ucsb.edu)

MILC: http://physics.indiana.edu/~sg/milc.html

CHROMA: http://usqcd.jlab.org/usqcd-docs/chroma/

NCCS Point of Contact

Ricky Kendall

kendallra@ornl.gov

NEWTRNX

Physics Models

Neutronics models include a 6-D neutral-particle Boltzmann transport equation for neutron

distribution coupled, for time-dependence, with the Bateman equations for isotopic and delayed neutron

generation/destruction. The requirements for the Boltzmann solution span six to nine orders of magnitude

in space, three to four in neutron direction, and two to four in neutron energy. The Bateman equations for

isotopic generation/destruction are solved for every spatial element or region with over 2000 coupled

isotopes and spanning 11 orders of magnitude in time (milliseconds to decades). Other phenomena to be

considered are coupling with multiphase fluid flow, structural mechanics, fuel behavior, and nuclear

chemistry. (Note: this is the neutronics solver and computational backplane of Collaboration for

Advanced Nuclear Simulation [CANS]: a multi-institution collaboration with Idaho National Laboratory

(INL), Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), and several

universities to develop high-fidelity coupled-physics simulations for nuclear reactors.)

Current simulations of nuclear reactors are a four-step process to solve the equation and approximate

their coupling with fluid-flow and heat transfer:

• Fine-energy (based on first-principles nuclear scattering) and spatial resolution on a very small

spatial subset (single fuel particle) to estimate local effects of the global solution and weight the

continuous energy cross sections to provide an accurate “smeared continuous-energy section set”

for this spatial subset for a given state point (temperature, density, time).

mailto:sugar@physics.ucsb.edu
http://physics.indiana.edu/%7Esg/milc.html

 National Center for Computational Sciences

 100

• Fine-energy (based on first-principles nuclear scattering) and spatial resolution on a larger subset

of the problem (a single fuel type) to estimate the local effects of the global solution and the

weight of the spatially-smeared continuous-energy cross sections to provide an accurate

“effective spatially smeared multigroup cross section set” for this fuel type for a given state point.

• Multigroup in energy, with a coarser spatial resolution, on a larger piece of the problem to the

weight of the multigroup cross sections to provide an accurate “effective two-group homogenized

cross section set” for many perturbations in state-points (i.e., looping through steps one-three) to

approximate the effect of various state points and coupling with the Bateman equations.

• Two-group in energy, large homogenized (smeared) material regions for the full spatial domain,

with approximate coupling to 1-D thermal-hydraulics solvers.

Each step requires several million degrees of freedom and the major approximations reflect

boundaries at each level, the coarse-level temperature feedback approximation, and the fine-mesh

reconstruction from the coarse-solution. Many safety issues need to know peak fuel temperature (or

similar data) so it must be “reconstructed” from a combination of the local assembly calculation and the

global diffusion calculation.

The NEWTRNX code incorporates the world’s leading tools in ORNL’s SCALE code package for

steps one and two while solving the multigroup solution for the entire spatial domain (1015 degrees of

freedom). The coupling with the Bateman equations and computational fluid-dynamics will be

incorporated in FY 09. Also, the fine-energy treatment, which is based on first-principles nuclear

scattering, will be available in future releases of NEWTRNX to remove the step two entirely. However,

this will not be practical for a full commercial nuclear reactor until computing resources expand by

several orders of magnitude (tens of petabytes and hundreds of petaflops).

Algorithms

The Boltzmann PDE is solved with the method of characteristics (slice-balance approach) in space,

multigroup in energy, and discrete ordinates in neutron direction. Multigrid algorithms in 6-D phase space

will be used for acceleration of the solution along with Krylov solvers. The sweeping algorithm allows for

a matrix-free formulation which reduces the dimensionality of the solution vector, allowing reduced

storage requirements and efficient solutions for 1013 unknowns on thousands of processors in less than an

hour.

Scaling

In Fig. E.10, the strong scaling performance of NEWTRNX from 32 to 512 processors of Jaguar is

shown for a problem with a single representative neutron energy-group, 80 discrete-ordinate directions,

Computational Science Requirements Appendix E

 101

Fig. E.10. Single fuel assembly of a sodium-cooled, fast-spectrum nuclear reactor.

and 524,742 tetrahedral elements (167 million DOF). As with UNIC, the problem selected for this

demonstration was chosen to study the performance on Jaguar, but the practical problems studied will

require orders of magnitude higher resolution in phase-space, which will increase the local work load and

improve parallel performance. Even though the spatial domain goes down by a factor of 16 (from 16k to

1k elements per core), we still see reasonable parallel performance.

This demonstrates that the Parallel-Block Jacobi algorithm, accelerated with a non-linear multi-grid

solver, scales well for large problems with distributed sources and weak coupling between dispersed

spatial blocks. As shown, the algorithm scales at 85% on 512 processors (with respect to 32 cores) on

Jaguar for a problem with spectral radius of 0.65, which is also representative of the performance of this

algorithm for reactor configurations.

If Chosen for Acceptance

The demonstration of a high-fidelity (in all phase-space) simulation of the neutron distribution within

a nuclear reactor would revolutionize the nuclear industry, providing a functionality that could not be

realized for generations with the present single-processor tools of today’s nuclear industry.

 National Center for Computational Sciences

 102

The ability, never before available, to model an entire nuclear reactor to such fidelity and comparison

with empirical data from present international test reactors would prove the significance of high-

performance computing to the nuclear community.

If Chosen for Science Day One

Six dimensional (3-D space, 2-D direction, 1-D energy) neutron transport for an entire nuclear reactor

core consisting of 250 fuel assemblies, with each assembly holding 250 fuel pins (150 fuel pellets per

pin). A total of ~10M fuel pins will be simulated, with the solution being the energy distribution/output

throughout the entire reactor core for a given fuel type and age.

The idealized solver would provide fine resolution in every dimension without the current smearing

steps, or without the use of fine-energy and spatial resolution on the entire problem with complete

temperature feedback. This includes 3-D Sn, near-continuous energy transport on the entire reactor; S16

(or higher) quadrature set, 1012 spatial elements, and 30,000 discrete energy points; one calculation per

temperature feedback iteration (<10) per quasi-static time step (~100) for a basic calculation; or a total of

1021 unknowns performed 1000 times. Some reactor types will have a very strong thermal feedback

coupling, most will be relatively weak.

Advanced phase-space domain decomposition must be incorporated for efficient scaling to

100,000 processors.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

F90, C, C++, python MPI, cca-tools HDF5 GNU make

Math Libraries

Library Function Functionality
LAPACK DGEEV Compute eigen decomposition

PARPACK PDNEIGH Compute eigenvalues and Ritz
estimates

Code Reference

Kevin Clarno (clarnokt@ornl.gov)

K. T. Clarno, “Implementation of Generalized Coarse-Mesh Rebalance in NEWTRNX for Acceleration

of Parallel Block-Jacobi Transport,” Transactions of the American Nuclear Society 97: 498–500 (2007).

mailto:clarnokt@ornl.gov

Computational Science Requirements Appendix E

 103

NCCS Point of Contact

Doug Kothe

kothe@ornl.gov

NUCCOR

Physics Models

The nuclear coupled cluster — Oak Ridge (NUCCOR) code was built from scratch. Chemistry codes

cannot be adapted to the nuclear problem since the nuclear forces are spin and isospin dependent. Thus,

standard algorithmic savings in chemistry brought about by the symmetries of the Hamiltonian (e.g., use

of a spin-orbital basis) cannot be employed for nuclei. Coupled-cluster techniques solve for ground- and

excited-states of a quantum many-body system at a given level of many-body sophistication. The ground

state energy and the cluster amplitudes result from an iterative solution of a large set of nonlinear, coupled

algebraic equations. A compact mathematical statement of the problem is given by the expression fi(t1,t2)

= 0, where the set of unknown amplitudes (one-particle-one-hole and two-particle-two-hole excitation

amplitudes t1 and t2) must be found. The equations are closed if one assumes that any higher-order

amplitudes (three-particle-three-hole amplitudes in this case) are zero. Energies of excited states are

computed via diagonalization of a large-dimensional, sparse-eigenvalue problem.

Algorithms

Solution of a nonlinear set of coupled algebraic equations. A complete calculation for a give nucleus

proceeds in the following manner. First, one must generate the effective two-body interaction for the

problem. This is done by renormalization of bare nucleon-nucleon potentials via sums of ladder diagrams

(the G-matrix approach), a Hamiltonian similarity transformation and projection to the model-space, and

a renormalization group (RG) method that obtains the low-momentum part of the interaction. This step is

not numerically intensive and can be performed on a small cluster or workstation. The RG approach, also

known as Vlowk, will be utilized to investigate three-body effects. Second, the two-body interactions

obtained from the first step are calculated in a “spin-coupled” representation and must be decoupled. This

procedure is performed by first reading in the coupled matrix, and using a master-worker algorithm to

spread the work of decoupling. Once matrix elements have been decoupled and MPI-I/O written to a file,

the resulting 4-index array of matrix elements is block-distributed among the processors with a MPI-I/O

read. This is an extremely efficient (and crucial) part of the overall algorithm. The final step involves

calculation of the NUCCOR amplitudes. The present code uniformly distributes the interaction matrix

elements across processors on two of the four indices. Each processor maintains a complete copy of the

amplitudes. Thus each processor performs a partial sum of the equations to obtain new amplitudes. An

 National Center for Computational Sciences

 104

allreduce (addition) is used to obtain the new copies of the amplitudes for the next iteration step. While

keeping one copy of the amplitudes for each processor means that as we go to larger model spaces,

memory use becomes an issue, the overall flops performance of the code has benefited from this strategy.

For non-iterative triples corrections, we transport the resulting NUCCOR amplitudes and decoupled

Hamiltonian to collaborators at Michigan State for analysis

The code currently relies upon a significant use of regression tests. If we change codes, we check

previous results. We also have pilot codes running serially for small problems which can then be tested in

parallel applications. We also have “standard results” produced by other methods to which we can

compare. We have diagonalization results to compare to for special cases. Comparison to experimental

data for nuclear properties is our validation strategy. In nuclear physics, where the Hamiltonian is less

well known, this can be a particularly challenging issue; however, given the same Hamiltonian,

completely different methods (GFMC vs coupled-clusters, for example) should obtain the same results.

Direct comparison to experiments is becoming more and more common. Data flows from HRIBF at

ORNL, Atlas at Argonne National Laboratory (ANL), the National Superconducting Cyclotron

Laboratory (NSCL) at Michigan State University (MSU) as well as from international facilities.

Scaling

The computational requirements scale as No
2Nu

4, where No and Nu are the number of occupied and

unoccupied single-particle orbitals, respectively. We have checked that this scaling holds as one performs

calculations in larger nuclei or as one increases the model space. Average computational efficiency per

processor increases from 10% for O-16 to 25% for 40-Ca at fixed processor number, indicating that the

current algorithm better utilizes processor power and memory bandwidth during the tensor-multiplies for

heavier nuclei. We believe an algorithmic jump will be required to get to 10K processors. This is

currently under active investigation. Large runs today use up the maximum memory per processor

available. The code scales to about 1000 processors at present. This is both a flops and memory problem.

The secondary aspect, treating scattering problems within CC theory will also require some innovation

although we are well on the way there. We recently transformed the CC code so that it can include

complex basis states (required for the scattering problem). Order of magnitude scaling notes (N = number

of basis states, n = number of particles): for NUCCOR code flop scaling is O{(n2(N-n)4}; for NUCCOR,

code memory needs are O(N4) (interaction) + O{(n2(N-n)2} (amplitudes). Current status: N = 480, n = 16–

40. (O-16 and 40-Ca), and n = 4–8 (He chain). Desired status: N = 1000, n = 40–100 (NSLER

deliverable); scale-up from present: memory (today: N = 480, n = 16): 425 Gbytes (interaction) and 2

Gbytes × 5 arrays; memory (3 years: N = 1000, n = 100): 8 Tbytes (interaction) and 64 Gbytes × 5 arrays;

Computational Science Requirements Appendix E

 105

Ops: today (N = 480 and n = 16): 9 × 1012 for 1 iteration (takes 20 for single solution); Ops: (3 years, N =

1000, n = 100): 6 × 1015 for 1 iteration (takes 20 for single solution).

If Chosen for Science Day One

The long-term goal of the project is to compute from first principles the properties of medium mass

nuclei (mass 40–100) with two- and three-body nuclear forces included using the coupled-cluster method.

This will enable an ab initio understanding of both nuclear properties and nuclear reaction mechanisms.

We will achieve a quantitative understanding of nuclei and nuclear forces and will obtain theories (and

hence simulations) of the nuclear quantum many-body problem that will enable systematic improvements

to the desired degrees of accuracy and predictive capability for both nuclear properties and scattering

cross sections relevant to several applications in SC/NP, NNSA, and the future GNEP programs. Some

exciting quantum many-body science could come out. The ability to treat medium-mass nuclei from an ab

initio point of view has never been a possibility until now and this means that the new systems will

produce new and exciting science.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

F90 MPI MPI-IO (essential) None

Libraries and Tools

Library Function Functionality
BLAS Matrix-matrix; matrix-vector

BLAS tensor-tensor multiplies of size 1002 × 1002 and
10004 (100 particles and 1000 basis states)

Code Reference

David Dean (deandj@ornl.gov)

D. J. Dean and M. Hjorth-Jensen, “Coupled-Cluster Approach to Nuclear Physics,” Physical Review C

69, 054320 (2004).

NCCS Point of Contact

Edoardo Apra

aprae@ornl.gov

mailto:deandj@ornl.gov

 National Center for Computational Sciences

 106

NWChem

Physics Models

NWChem provides many methods to compute the properties of molecular and periodic systems using

standard quantum mechanical descriptions of the electronic wave function or density. In addition,

NWChem has the capability to perform classical molecular dynamics and free energy simulations. These

approaches may be combined to perform mixed quantum mechanics and molecular mechanics

simulations.

Algorithms

NWChem uses both local basis function (atomic orbitals) and plane waves to compute the solution of

the Schrödinger equations.

Scaling

Since NWChem is made of different modules, each module has its own different scalability features.

Various modules have showed scalability up to 300–500 processors (see density functional theory

[DFT] scalability plot in Fig. E.11). A recent NUCCOR(T) calculations was run on 1400 processors

EMSL-MSCF showing 60% of the aggregate peak floating-point performance.

Fig. E.11. Benchmarks of the DFT code on various architectures.

Computational Science Requirements Appendix E

 107

If Chosen for Acceptance

NWChem uses the Global Arrays library for the bulk of its communications. The global arrays use

the aggregate remote memory copy interface (ARMCI) library as a run-time system; therefore, an

efficient port of ARMCI on the XT series is required to get good parallel scaling of NWChem.

NWChem relies on the ChemIO library both for parallel and serial I/O, and this requires an efficient

ChemIO port on the XT series file system. Some software development effort is most likely needed to get

the code to scale at O(10K) processors.

Runtime (in wall clock time) for various fixed-size problems at various node counts are acceptance

metrics. The correctness of results must be checked against reference results (possibly from alternative

hardware architectures).

If Chosen for Science Day One

Electronic structures calculations on large carbon nanotubes and metallic nanoparticles at various

levels (DFT, mathematics-physics platform [MP2] and coupled cluster [CC]) will be performed. The

larger the molecular aggregate, the more likely the simulation would be to represent data to be compared

with experiment. These calculations will allow studying phenomena pertinent to catalysis and

nanotechnology.

Since the DFT, MP2 and CC have a different kind of scaling with respect of system size—with DFT

being the most affordable method, CC the most expensive, and MP2 of intermediate cost—simulations on

the largest molecular aggregates will be feasible only with DFT; CC would be restricted to use for smaller

molecular sizes. Quantities calculated will include energetics, structural, and vibrational properties.

As described here, a certain amount of software development effort is needed before the code

performs at an efficient scale on O(103) processors.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

GNU make,
FORTRAN77/C

Global Arrays,
ARMCI ChemIO

 National Center for Computational Sciences

 108

Math Libraries

Library Function Functionality

PEIGS Symmetric eigensolvers,
Cholesky decomposition

SCALAPACK
Symmetric eigensolvers,
Cholesky decomposition,
Linear solvers

LAPACK Various dense linear algebra
operations.

BLAS Various dense linear algebra
operations

FFTPACK Discrete FFT

Code Reference

Edoardo Apra (aprae@ornl.gov)

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html

NCCS Point of Contact

Edoardo Apra

aprae@ornl.gov

PFLOTRAN

Physics Models

PFLOTRAN (Parallel FLOw and TRANsport) solves multiphase, multicomponent reactive flow and

transport equations in nonisothermal, variably saturated media. The code consists of two modules, which

can be run separately or in coupled mode. The module PFLOW simulates Darcy flow, solving mass

conservation equations for water and other fluids and an energy balance equation. The module PTRAN

solves mass conservation equations for a multicomponent geochemical system. The reactions included in

PTRAN involve aqueous species and minerals and can be written in the general form and

, respectively, where the set

ij
j

ji AA ⇔∑ν

mj
j

jm MA ⇔∑ν { }jA refers to a set of primary or basis species in terms of

which all other species are written, Ai denotes an aqueous complex referred to as a secondary species,

Mm refers to a mineral, and ν ji and ν jm are reaction stoichiometric coefficients derived from an

extensive database.

Computational Science Requirements Appendix E

 109

Algorithms

PFLOTRAN uses a first-order finite-volume discretization on a Cartesian grid (extension to

unstructured grids is being developed). Within both the PFLOW and PTRAN modules, time-stepping is

fully implicit (backward Euler). In coupled mode, flow velocities, saturation, pressure, and temperature

computed from PFLOW are fed into PTRAN. For transient problems, sequential coupling of PFLOW and

PTRAN enables changes in porosity and permeability due to chemical reactions to alter the flow field.

A PETSc-based Newton-Krylov solver framework is used to solve the system of nonlinear equations

arising at each time step. Because we employ PETSc, a wide variety of nonlinear and linear solver

options can be easily employed by making the appropriate selection for the given problem at runtime. We

usually employ an outer, quasi-Newton solver with line search and an inner, BiCGSTAB Krylov solver

preconditioned with an additive-Schwarz method with an overlap of 1, with ILU(0) applied on each

subdomain. The Jacobian matrix can be explicitly calculated (analytically for some cases, via finite-

difference for others) or its action can be applied on the fly (though this somewhat restricts choice of

preconditioners).

Adaptive mesh refinement (AMR) is currently not supported; we plan to use the Chombo framework

to introduce support for hierarchical block-structured AMR.

Scaling

The current version of PFLOTRAN has exhibited linear (strong) scaling on up to 2048 processors on

Jaguar and good (though nonlinear) scaling to 4096 processors (Fig. E.12). This is for a relatively modest

one-phase thermo-hydrologic benchmark problem on a 25 × 64 × 256 grid with three degrees of freedom

per node (approximately 12.6 million degrees of freedom total). Simulations incorporating multiple

phases or chemical reactions would probably exhibit excellent scaling to larger numbers of processors.

If Chosen for Acceptance

A functionality test would be quite useful, because PFLOTRAN exercises a large portion of the

PETSc code base, which is employed by several codes. Code needs to be able to run at scale on a suite of

benchmark problems and produce correct results.

If Chosen for Science Day One

PFLOTRAN has already been used to study uranium transport problems at the Hanford 300 site,

radionuclide migration at the Nevada Test Site, and subsurface CO2 sequestration. Problems from any of

these sites could benefit from a great increase in CPU power, allowing better resolution of transient flow

features, chemical reactions, and more detailed chemistry (with more chemical species). Further

consultation with subsurface scientists is required to determine specific problems to propose. Working

 National Center for Computational Sciences

 110

Fig. E.12. PFLOTRAN has exhibited linear (strong) scaling on up to
2048 processors on Jaguar and good (though nonlinear) scaling to
4096 processors. (Richard Mills, ORNL and Peter Lichtner, LANL)

with LANL DOE Regional Partnerships on CO2 sequestration, we will identify a field site and apply

PFLOTRAN to perform multiscale, multiphase, multicomponent modeling of a 3-D field CO2 injection

scenario. We will include the presence of an oil phase and four-phase liquid-gas-aqueous-oil system to

describe dissipation of the supercritical CO2 phase and escape of CO2 to the surface. We are particularly

interested in resolving viscous fingering effects that result from buoyancy effects caused by an increase in

density as supercritical CO2 dissolves into the formation brine. Finger widths may be on the order of

meters or smaller depending on the reservoir properties. Better understanding of these fingering

phenomena can result in more effective and economical sequestration as well as enhanced oil recovery.

PFLOTRAN is already usable for solving real science problems on thousands of processors.

Development is actively ongoing, and the types of problems that could be attempted for “Science Day

One” depend very much on when “Day One” happens.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran 90 MPI None None

Computational Science Requirements Appendix E

 111

Math Libraries

Library Function Functionality

PETSc
SNESSolve, KSPSolve,
DAGlobalToLocal,
MatFDColoring

Newton solves, Krylov solves,
halo exchanges, multi-color
finite difference Jacobian

BLAS BLAS Level 1 and 2 Dot product, etc.

Code Reference

Peter Lichtner (lichtner@lanl.gov)

R. T. Mills et al., “Simulating Subsurface Flow and Transport on Ultrascale Computers Using

PFLOTRAN,” Journal of Physics Conference Series 78, 012051 (2007).

NCCS Point of Contact

Richard Mills

rmills@ornl.gov

POP/CICE

Physics Models

POP is an ocean circulation model derived from earlier models in which depth is used as the vertical

coordinate. The model solves the three-dimensional primitive equations for fluid motions on the sphere

under hydrostatic and Boussinesq approximations. A wide variety of physical parameterizations and other

features are available in the model and are described in detail in a reference manual distributed with the

code. Because POP is a public code, many improvements to its physical parameterizations have resulted

from external collaborations with other ocean-modeling groups, and such development is very much a

community effort.

The Los Alamos Sea Ice Model (CICE) features the energy conserving thermodynamics model with

four layers of ice and one layer of snow in each of five ice-thickness categories, the energy-based ridging

scheme, an ice strength parameterization, elastic-viscous-plastic ice dynamics, and horizontal advection

via a new incremental remapping scheme. Prognostic variables for each thickness category include ice

area fraction, ice volume, ice energy in each vertical layer, snow energy, and surface temperature. A

nonlinear, vertical salinity profile remains constant. The temperature dependence of the longwave

radiation and sensible and latent heat fluxes is included in the nonlinear flux balance that (iteratively)

determines the ice or snow surface temperature. The albedo parameterization depends on surface type

(snow or bare ice), surface temperature (not just whether it is melting or frozen), and both ice and snow

thickness. Ice and snow albedo values are merged based on a snow “patchiness” fraction. The ice model

can accommodate four wavelengths of radiation and thus have four associated albedos; with just one

mailto:lichtner@lanl.gov

 National Center for Computational Sciences

 112

wavelength available for forcing, the four albedos are weighted and merged into a single value. For more

details, including a full set of references, see the model documentation.

Algorithms

Spatial derivatives in both POP and CICE are computed using finite-difference discretizations which

are formulated to handle any generalized orthogonal grid on a sphere, including dipole and tripole grids

which shift the North Pole singularity into land masses to avoid time-step constraints due to grid

convergence.

Time integration of the POP model is split into two parts. The 3-D vertically varying (baroclinic)

tendencies are integrated explicitly using a leapfrog scheme. The very fast vertically-uniform (barotropic)

modes are integrated using an implicit free surface formulation in which a preconditioned conjugate

gradient solver is used to solve for the 2-D surface pressure. CICE is integrated in time using fully

explicit methods.

Scaling

Although POP was originally developed for the Connection Machine, it was designed from the start

for portability by isolating all routines involving communication into a small set (5) of modules which

can be modified for specific architectures. Currently, versions of these routines exist for MPI and

SHMEM communication libraries and also for serial execution. The appropriate directory is chosen at the

time it is compiled, and no pre-processor directives are used to support different machines. Support for

hybrid programming using threads and message passing has recently been added and is described in the

user’s guide.

POP tends to be compute-bound as long as the number of cells per processor is high enough to

swamp a latency-bound, 2-D elliptic solve.

The 0.1° problem scales to the full size of single-core Jaguar, but latency in the barotropic will soon

dominate. Early tests on the dual-core Jaguar show that POP is having a problem with MPI wait times

(see Figs. E.13 and E.14). Tuning of MPI and virtual-node Catamount will probably be necessary.

If Chosen for Acceptance

A standard benchmark configuration of stand-alone POP is available and could be used for a

performance-based acceptance test. The problem size should be 0.1°. We have some historic data for the

displaced-pole grid, but current production runs use the tripole grid. Acceptance metrics are (1) runtime

(in simulated years per CPU day) for a fixed-size problem at various node counts and (2) lower bounds on

per-socket performance.

Computational Science Requirements Appendix E

 113

Fig. E.13. Parallel Ocean Program (POP) 1.4.3: 0.1-degree benchmark,
logarithmic axes.

Fig. E.14. Parallel Ocean Program (POP) 1.4.3: 0.1-degree benchmark, linear
axes.

 National Center for Computational Sciences

 114

If Chosen for Science Day One

Eddy-resolving ocean simulations have been shown to be necessary for the accurate representation of

the ocean circulation. To date, such simulations have been done with the ocean model only with a focus

on the surface wind-driven circulation and at time scales of decades. Current coupled model simulations

use coarser resolution ocean configurations because of the computational expense of an eddy-resolving

ocean in century-scale ensemble simulations. A fully-coupled experiment with an eddy-resolving ocean

and sea ice is necessary to reduce some of the coupled model biases, particularly in the North Atlantic,

where the ice extent and deep water formation are governed by the accurate representation of the North

Atlantic current systems.

After a short spinup of the ocean-ice system at 0.1° resolution, a fully-coupled CCSM configuration

with T85 CAM and 0.1 degree POP and CICE will be integrated for a few decades under a rapid CO2

doubling scenario to evaluate the model in both current and future climate change regimes.

For a fixed-size problem, POP scaling is limited by the latency-dominated conjugate gradient (CG)

solves in the barotropic computation. Improvements to the solver could reduce the number of iterations

and allow higher scalability. Use of OpenMP to reduce the number of MPI tasks could also help

scalability, but tuning of the OpenMP in POP may be necessary.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran 90, C,
GNU Make, CAF
(optional)

MPI, OpenMP
(optional) NetCDF None

Math Libraries

Library Function Functionality

None Inline sparse linear solve (CG)
could be a library call

Code Reference

Phil Jones (pwjones@lanl.gov)

http://climate.lanl.gov/Models/POP/

mailto:pwjones@lanl.gov

Computational Science Requirements Appendix E

 115

NCCS Point of Contact

James B. White III

trey@ornl.gov

Qbox

Physics Models

This model describes first-principles molecular dynamics within density functional theory.

Algorithms

The algorithm used is the plane-wave, pseudopotential method.

Scaling

The scaling efficiency of Qbox was demonstrated on various parallel systems including MCR,

Thunder and BlueGene/L at LLNL, using up to 131,072 CPUs. Examples of scaling are summarized in

Tables E.4 and E.5 and Fig. E.15.

Table E.4 shows the performance of the Qbox code for a calculation of the electronic structure of a

Cd33Se33 nanoparticle. The parallel efficiency is 97% between 128 and 210 CPUs and 82% between

128 and 420 CPUs. Results were obtained on MCR, a 1152-node dual Xeon/Quadrics cluster installed at

the LLNL.

Table E.4. Performance of the Qbox code for a calculation of the electronic
structure of a Cd33Se33 nanoparticle

Nodes CPUs Time/step Speedup Efficiency

64 128 43 1.00 1.00
105 210 27 1.59 0.97
210 420 16 2.69 0.82

Table E.5. Performance of the Qbox code for a calculation of the electronic
structure of 512 H2O molecules

Nodes CPUs Time/step Speedup Efficiency

280 1120 46 1.00 1.00
560 2240 25 1.84 0.92
908 3920 16 3.07 0.88

 National Center for Computational Sciences

 116

Fig. E.15. Strong scaling Qbox results on
BlueGene/L for 1000 molybdenum atoms with 1
(non-zero) k-point. Also shown is the sustained
performance on the full machine (64K nodes) with multiple
k-points. Dashed lines indicate perfect scaling between the
measured full machine result and the equivalent individual
k-point calculations.

Table E.5 shows the performance of the Qbox code for a calculation of the electronic structure of

512 H2O molecules. The parallel efficiency is 92% between 1120 and 2240 CPUs and 88% between

1120 and 3920 CPUs. Results were obtained on Thunder, a 1024-node quad Itanium2/Quadrics cluster

installed at LLNL.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

C++ MPI

Math Libraries

Library Function Functionality
BLAS, LAPACK All Linear algebra
BLACS,
ScaLAPACK All Parallel linear

algebra

FFTW All 1-D Fourier
transforms

Apache Xerces-C All XML parsing

Computational Science Requirements Appendix E

 117

Code Reference

Francois Gygi (fgygi@ucdavis.edu)

http://eslab.ucdavis.edu/software/qbox/index.htm

NCCS Point of Contact

Doug Kothe

kothe@ornl.gov

QMC/DCA

Physics Models

The two-dimensional Hubbard model is a simplified description of the electronic degrees of freedom

of the superconducting copper-oxide planes in high-temperature superconductors (HYSC). Despite its

simplicity, it is believed to hold the key ingredients necessary to explain the phenomenon of high-

temperature superconductivity. The QMC/DCA code is based on a dynamic cluster quantum Monte Carlo

algorithm to solve lattice models of strongly correlated electron systems such as the 2-D Hubbard model

in a controlled way. The dynamic cluster method approximates the effects of correlations in the bulk

lattice with those of a finite-size quantum cluster. This enables a mapping of the bulk lattice problem to

an effective cluster embedded in a self-consistent bath designed to represent the remaining degrees of

freedom. Recently, this technique has been applied successfully to show that the 2-D Hubbard model of

high-temperature superconductors does have a superconducting transition in the range of parameters and

temperatures characteristic of the cuprates. The new computational capabilities even established the fact

that pairing in the Hubbard model is mediated by spin fluctuations. While the success in describing the

physics of the cuprates with high-end simulation results of the Hubbard model is remarkable, it is

important to link a generalized Hubbard-like model to actual cuprate HTSC to understand material-

specific properties such as the huge differences in superconducting transition temperatures between

different HTSC materials. This project will require the solution of a multiband Hubbard model with

possibly more than one correlated band.

Algorithm

The computational workhorse to solve the effective quantum cluster problem is a generalized version

of the Hirsch-Fye QMC algorithm. This algorithm performs a stochastic Markov-chain walk, along which

measurements are made periodically. The central quantity that has to be measured and updated along this

walk is the single-particle Green’s function G of the effective cluster problem. G is a matrix of size N*t,

where N is the total number of sites and orbitals treated with correlations in the quantum cluster

calculation and t is the number of time-slices used in the integration path integral. A majority of the CPU

mailto:fgygi@ucdavis.edu

 National Center for Computational Sciences

 118

time is spent updating G that is calculated by a vector outer product followed by a matrix update, which

may be completed by the BLAS call DGER. Since DGER has a relatively low computational intensity

(only two floating point operations per memory access), a reformulation of the underlying Hirsch-Fye

algorithm is used, in which the frequent calls to DGER are delayed and hence replaced by fewer and

much more cache-efficient matrix multiplies (BLAS call DGEMM). This allows the QMC/DCA code to

be run for large problems with high efficiency on superscalar processors. The measurements of additional

four-point correlation functions are represented as complex matrix-matrix products and completed with

the BLAS call CGEMM.

Scaling

The QMC algorithm is inherently parallel because the measurements made along the Markov-chain

walk need to be independent. The code therefore performs several independent, shorter Markov-chain

walks on different processors and averages the results of the individual walks to obtain the final result

using MPI. Apart from the fraction of the walk required to achieve equilibrium, the result is an almost

perfect parallel speedup with increasing number of processors because no communication between

processors is required during the Markov process. As a result, the code scales perfectly to ~1000

processors or multicore sockets. Further scaling by a factor of 10 or more should be achievable by

distributing one Markov chain over multiple sockets. Such hybrid parallelism will be called for because

the size (Nt)2 of the matrices in the matrix multiplies for the multiband problems will be large, and

therefore the runtime may be reduced by distributing the matrix multiplies over many sockets.

If Chosen for Acceptance

The QMC/DCA code runs on a wide variety of architectures. For the acceptance test, it is possible to

generate test runs of virtually any size with a known or cross-checkable answer that stress MPI, BLAS,

LAPACK, and the F90 compiler.

If Chosen for Science Day One

We will perform material-specific simulations of high-temperature superconductors, using

QMC/DCA simulations of multiband Hubbard models with realistic parameters determined with

bandstructure methods.

Compared to the simulation of the single-band model that used, 25% of the LCF Cray X1E, a

simulation of a three-band model will be a factor of 27 more expensive. This factor can possibly be as

much as 200 if the number of time slices t has to be doubled because of an increase in the strength of the

onsite Coulomb interaction parameters. Therefore, since the simulation of the single-band model is a

Computational Science Requirements Appendix E

 119

teraflop problem, the simulations of a materials-specific multiband model are a petascale computing

problem.

To scale the QMC/DCA code efficiently to more than 1000 sockets, the code will be further

parallelized by distributing the individual Markov-chain walks across multiple sockets. The effort

associated with this modification is moderate.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran 90 MPI None None

Code Reference

Thomas Schulthess (schulthesstc@ornl.gov)

A. Maier et al., “Quantum Cluster Theories,” Review of Modern Physics 77, 1027 (2005).

NCCS Point of Contact

Markus Eisenbach

eisenbachm@ornl.gov

S3D

Physics Models

S3D solves a fully coupled system of time-varying partial differential equations (PDEs) governing the

full compressible reacting Navier-Stokes, total energy, species continuity and continuity equations

coupled with detailed chemistry. The PDEs are supplemented with additional constitutive relationships

for the ideal gas equation of state, and detailed high-fidelity models for reaction rate, molecular transport,

and thermodynamic properties. A summary of this formulation follows:

After the initialization of the primitive variables for each time step the convective, diffusive and

chemical terms in the conservation equations are updated, once for each of the six stages of the fourth-

order accurate explicit Runge-Kutta time advancement solver. The main kernels in this solver where over

95% of the computation occurs are given below:

• Chemistry: Computes chemical reaction rate source terms for species equations. The chemical

kinetics data are preprocessed and the code to compute the reaction rates, named as “getrates,” is

generated by the Chemkin compatible preprocessing utility Autogetrates package. The routines

are packaged in a separate module that acts as an interface to the code and abstracts the actual

mailto:schulthesstc@ornl.gov

 National Center for Computational Sciences

 120

implementation of the reaction rates computation. This will allow the use of different versions of

the getrates subroutine targeted at different systems.

• Transport: Computes molecular transport properties for the species. The properties computed

include the viscosity, thermal diffusivity, and species mass diffusivities. The code is linked with

the transport library that is part of the standard Chemkin suite.

• Thermodynamics: Computes the thermodynamic properties, such as enthalpy and specific heats

of the mixture. The thermodynamic data are given in the Chemkin compatible format and are

preprocessed through the Chemkin interpreter (http://reactiondesign.com). Rather than directly

evaluate the properties using the Chemkin routines, the code employs a tabulation and lookup

strategy.

• Derivatives: Computes the spatial derivatives of the primitive and conserved variables using

higher-order finite difference operators. The code uses nonblocking sends and receives to

exchange the data at the processor boundaries among different processors.

• Other RHS: The right-hand side of the time advance equation involves all of the above-

mentioned operations and the convection terms. These terms are summed up according to the

governing equations. All operations involved in this procedure are lumped into the other RHS

module for accounting purposes.

• Time Integration: Advances the solution in time using a fourth-order accurate Runge-Kutta

scheme. This module also includes an error controller that routinely checks for the time accuracy

of the solution and adjusts the time step to achieve the desired error tolerances.

Algorithms

S3D is based on a high-order accurate, non-dissipative numerical scheme. It has been used

extensively to investigate first-of-a-kind fundamental turbulence-chemistry interactions in combustion

topics, including premixed nonpremixed flames and autoignition. Time advancement is achieved through

a fourth-order explicit Runge-Kutta method, spatial differencing is achieved through high-order (eighth-

order with tenth-order filters) finite differences on a Cartesian structured grid, and Navier-Stokes

Characteristic Boundary Conditions (NSCBC) are used to prescribe the boundary conditions. The

equations are solved on a conventional structured mesh.

This computational approach is very appropriate for the problems selected. The coupling of high-

order finite difference methods with explicit R-K time integration make very effective use of the available

resources, obtaining spectral-like spatial resolution without excessive communication overheads and

allowing scalable parallelism.

Computational Science Requirements Appendix E

 121

Scaling

The parallelism in S3D can be basically described as explicit nearest-neighbor local communication

(Fig. E.16). With this design, the code is compute-bound, which has been empirically observed. The

scaling of the code is demonstrated with a weak-scaling test; that is, as the processor count increases so

does the total amount of work (i.e., the work per process stays constant.) The scaling efficiency on the

Cray XT series has been observed to be over 90% for up to 5120 processors.

Fig. E.16. S3D scaling demonstrated with a weak-scaling test.

If Chosen for Acceptance

Acceptance test criteria for S3D are

• Simulation with realistic I/O works/produces correct answers,

• Capable of running correctly at a variety of processor counts from 1 up to maximum size of

machine, and

• (For upgrades only) the flame benchmark time/step/gridpoint rate remains the same (within 5%)

or gets shorter.

If Chosen for Science Day One

Flame stabilization in low temperature mixing-controlled diesel combustion: a Petascale

simulation. Diesel combustion has the potential to be a “game changer” for energy surety because diesels

are 30–40% more efficient than comparable gasoline engines. But to gain acceptance, diesels must be

cleaner. Successfully meeting upcoming ultra-low emission standards could mean widespread adoption of

diesels and major reductions in foreign oil dependency. Low temperature mixing-controlled diesel

 National Center for Computational Sciences

 122

combustion has shown promise in meeting NOx and soot emission standards and is easier to control than

HCCI. However, optimization requires accurate understanding and modeling. Alongside experiments in

an optically accessible combustion vessel at Sandia National Laboratories’ Combustion Research Facility,

we propose to perform high fidelity DNS of high-pressure, n-heptane jets. With access to the full

unsteady thermo-chemical fields from the DNS, augmented by chemiluminescence diagnostics, we will

study mechanisms for lift-off stabilization and formation of key soot precursors. An important

outstanding question is whether or not the lift-off stabilization is supported by premixed flame

propagation into autoigniting cool flame mixture or by transition to second-stage chemistry through self-

ignition. Cool flame autoignition is expected to have a strong effect on flame speed and may support

flame propagation even at very low flame temperature. Alternatively, cool flame (low-temperature

ignition) activity may also lead directly to second-stage reaction in the absence of flame propagation.

More detail is needed to understand the importance of flame propagation versus autoignition in the high-

temperature reaction zone at the lift-off length. This information can uniquely be obtained from DNS with

detailed n-heptane chemical kinetics.

This set of simulations would require the use of a stiff explicit-implicit time integrator which we have

developed known as the additive fourth-order Runge-Kutta method. Alternatively, the chemical kinetic

mechanism for n-heptane spanning low, intermediate and high-temperature kinetics would need to have

the stiffness removed. Our preliminary estimates suggest that the grid resolution required to resolve the

ignition fronts at high pressure is small (in the order of microns). Therefore, compared to our atmospheric

flames, the number of grids will be expensive. Also, the runs need to be simulated to ignition delay times

of several milliseconds. This run will require petascale computing to be feasible in three-dimensions.

Stabilization mechanisms in lifted, vitiated flames: a 250-TF simulation. In many modern

combustion systems, fuel is injected into an environment of hot gases, and a flame may be stabilized

through the recirculation of hot air and combustion products. Under many conditions, this leads to a lifted

flame, and the hot environment admits the possibility of autoignition as a mechanism of stabilization of

the flame base. Clear understanding of turbulent flame stabilization in an environment of hot combustion

products will aid the advancement of combustion technology, including modern recirculation burners, and

understanding of possible auto-igniting stabilization modes may be also relevant to diesel engines.

Computational Science Requirements Appendix E

 123

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran 90 MPI None Tar, Cp, Mkdir, Rm
(optional)

Code Reference

Jacquelin Chen (jhchen@sandia.gov)

E. R. Hawkes et al., “Direct Numerical Simulation of Turbulent Combustion: Fundamental Insights

Towards Predictive Models,” Journal of Physics: Conference Series 16, 65–79 (2005).

NCCS Point of Contact

Ramanan Sankaran

sankaranr@ornl.gov

T3P

Physics Models

T3P is one of a suite of codes used in the design of a low-loss accelerating cavity for the International

Linear Accelerator (ILC). T3P solves Maxwell’s equations, defined on a 3-D unstructured grid, via a

finite element discretization using basis functions of up to the sixth order. This is used to describe the

transit of a particle beam through an accelerating cavity and under the proper boundary conditions to

calculate the longitudinal and transverse wakefields.

Algorithms

T3P is based on a finite element method using basis functions of up to the sixth order, using the

implicit Newark-Beta method for time stepping. The resulting sparse matrices are real, symmetric

positive definite. With a good mesh, convergence typically requires about 200 iterations using CG with

incomplete Cholesky preconditioning. However, this can significantly increase if the mesh get badly

distorted, which results in poorly conditioned systems.

Sparsity is a function of the order of the basis functions: first-order results in about 15 nonzero

elements per row; second-order, about 50 nonzero elements per row; third-order are a little denser. In

terms of the pattern of the nonzero elements, using second-order basis functions will have two-by-two

dense blocks; using third-order basis functions will have 3 × 3 blocks and 6 × 6 blocks. The choice of

method, direct or iterative, involves a trade-off between speed (direct solver) and memory requirements

(sparse solver).

mailto:jhchen@sandia.gov

 National Center for Computational Sciences

 124

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

C++ MPI netcdf –

Math Libraries

Library Function Functionality
Pnetcdf nc_<open,put_xy,inq_xy,close> I/O

ParMetis PARKMETIS, PARRMETIS,
PARUAMETIS, PARKMETIS,

Discretized domain
partitioning (preferred)

Zoltan

Zoltan_Create,
Zoltan_Set_Param,
Zoltan_Set_Fn,
Zoltan_Destroy,
Zoltan_LB_Balance,
Zoltan_LB_Eval

Discretized domain
partitioning

MUMPS dmumps_c,cmumps_c,
zmumps_c,smumps_c

Direct solver of sparse
linear systems.

ScaLAPACK MUMPS dependency Linear system solver;
called by MUMPS.

SLAC code proper

Conjugate gradient method, with
various preconditioners:
incomplete Cholsky, hierarchical
methods, etc.

Sparse linear system
solver option.

Code Reference

Rich Lee (liequn@slac.stanford.edu)

K. Ko et al., “Advances in Electromagnetic Modeling Through High Performance Computing,”

Physica C 441 258–262 (2006).

NCCS Point of Contact

Richard Barrett

rbarrett@ornl.gov

VASP (+WL)

Physics Models

Plane wave-based density functional calculations, together with all-electron-derived pseudo

potentials, are a powerful and flexible method. Their well-controlled accuracy vs. computational cost

makes them ideal for the study of novel systems in which the electronic structure is not well understood,

mailto:liequn@slac.stanford.edu

Computational Science Requirements Appendix E

 125

or in which tiny differences determine the outcome of the simulations. Such accuracy is critical when

performing quantum molecular dynamics (QMD) simulations, which enable studies of the evolution of

nanoscale systems and their environment at finite temperature, as well as investigations of biomolecular

reaction mechanisms, structural changes and temperature-dependent phase transitions. Although the

method is in-principle cubic scaling, in practice it scales quadratically up to 1000 atoms using recent

numerical advances.

Algorithms

Planewave codes density functional codes solve the density functional equations in a plane wave

basis defined by a sphere of vectors in Fourier space. All atoms are represented by ab initio

pseudopotentials, of either a norm-conserving, ultrasoft, or projector-augmented wave type. The latter two

offer much improved accuracy and reduced computational costs (flops and memory) over the simpler

norm-conserving potentials, particularly for systems containing transition metal atoms. VASP implements

all of these options at the expense of complexity, whereas, for example, the Qbox code only implements

norm-conserving potentials. For calculations of up to 1000 atoms, the main computational effort involves

(1) evaluation of the pseudopotential contributions to the energy and forces, and (2) parallel Fourier

transforms between real and reciprocal (Fourier) space. The former involve linear algebra operations

using standard BLAS, while the latter utilize vendor 1-D FFT transforms and custom routines for highly

efficient parallel 3-D transforms. Appropriately configured, VASP currently delivers a large fraction of

peak performance, typically 30–50%, up to 1000 processors.

Scaling

VASP presently scales to about 1000 processors for a system of hundreds of atoms. An optimized

version on the Cray X1/X1E, achieves over 1 TF for a prototypical 807 atom FePt atom nanoparticle on

128–512 multi-streaming vector processors MSPs. Experience with other codes suggests that hard scaling

can be improved by at least one order of magnitude if the parallel FFTs and some global MPI operations

are carefully optimized. Soft scaling should allow systems of several thousand atoms to be studied.

 National Center for Computational Sciences

 126

If Chosen for Acceptance

VASP is a very robust code that runs on a wide variety of architectures. It has not exotic library

dependencies and could readily form part of an acceptance or performance test. It is possible to generate

test runs of virtually any size with a known or cross-checkable answer that stress MPI, BLAS,

SCALAPACK, and F90 compiler.

If Chosen for Science Day One

A combined VASP+gWL code will allow the study of the chemical phase diagram of FePt

nanoparticles as a function of size. Not much is presently known about the chemical order in these

nanoparticles, information that seems crucial for the understanding of magnetic properties. Knowing the

temperature- and size-dependent free energy and phase diagram of these particles could give important

experimental guidance for synthesis. Such detailed sub-nanoscale information is almost impossible to

extract from experiment alone and computational results will play a key role. The achievability of these

results will depend on the number of WL samples needed to compute free energies to sufficient accuracy.

Functional Software Requirements

System Software

Programming
languages

Communication
libraries

I/O libraries
and functions

Operating system
functions

Fortran90 C
(minor utility only) MPI None Getrusage

(easily changed)

Math Libraries

Library Function Functionality

BLAS ZGEMM,
DGEMM

Double complex/real general matrix-matrix
multiply

BLAS ZTRMM,
DTRMM

Double complex/real triangular matrix-
matrix multiply

SCALAPACK

PDTRTRI
PZTRTRI

PDPOTRF
PZPOTRF

PZHEEVX
PDSYEVX

Matrix inverse, Cholesky decomposition,
Eigenvector computation

Computational Science Requirements Appendix E

 127

Code Reference

Paul Kent (kentpr@ornl.gov)

http://cms.mpi.univie.ac.at/vasp/

NCCS Point of Contact

Markus Eisenbach

eisenbachm@ornl.gov

mailto:kentpr@ornl.gov
http://cms.mpi.univie/

