Data Set ID: 
SPL2SMP_E

SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture, Version 2

This enhanced Level-2 (L2) product contains calibrated, geolocated, brightness temperatures acquired by the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. This product is derived from SMAP Level-1B (L1B) interpolated antenna temperatures. Backus-Gilbert optimal interpolation techniques are used to extract maximum information from SMAP antenna temperatures and convert them to brightness temperatures, which are posted to the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection.

There is a more recent version of these data.

Version Summary: 

Changes to this version include:

  • Level-1B water-corrected brightness temperatures are used in passive soil moisture retrieval. This procedure corrects for anomalous soil moisture values seen near coastlines in the previous version and should result in less rejected data due to waterbody contamination. Five new data fields accommodate this correction: grid_surface_status, surface_water_fraction_mb_h, surface_water_fraction_mb_v, tb_h_uncorrected, and tb_v_uncorrected.
  • Improved depth correction for effective soil temperature used in passive soil moisture retrieval; new results are captured in the surface_temperature data field. This correction reduces the dry bias seen when comparing SMAP data to in situ data from the core validation sites.
  • Frozen ground flag updated to reflect improved freeze/thaw detection algorithm, providing better accuracy; new results are captured in bit 7 of surface_flag.
Parameter(s):
  • Microwave > Brightness Temperature > BRIGHTNESS TEMPERATURE
  • Soils > Soil Moisture/Water Content > SOIL MOISTURE
Data Format(s):
  • HDF5
Spatial Coverage:
N: 85.044, 
S: -85.044, 
E: 180, 
W: -180
Platform(s):SMAP Observatory
Spatial Resolution:
  • 9 km x 9 km
Sensor(s):SMAP L-BAND RADIOMETER
Temporal Coverage:
  • 31 March 2015 to 13 August 2019
Version(s):V2
Temporal Resolution49 minuteMetadata XML:View Metadata Record
Data Contributor(s):O'Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, and R. Bindlish.

Geographic Coverage

No access options.

As a condition of using these data, you must cite the use of this data set using the following citation. For more information, see our Use and Copyright Web page.

O'Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, and R. Bindlish. 2018. SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture, Version 2. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/K4A1SNL5DLON. [Date Accessed].

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat or click here to download the PDF file.

How To

Programmatic Data Access Guide
Data from the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) can be accessed directly from our HTTPS file system or through our Application Programming Interface (API). Our API offers you the ability to order data using specific temporal and spatial filters... read more
How to import and geolocate SMAP Level-1C and Level-2 data in ENVI
The following are instructions on how to import and geolocate SMAP Level-1C HDF5 data in ENVI. Testing notes Software: ENVI Software version: 5.3 and above. If using version 5.3, service pack 5.3.1 is needed.  Platform: Windows 7 Data set: SMAP L1C... read more
How do I interpret the surface and quality flag information in the Level-2 and -3 passive soil moisture products?
SMAP data files contain rich quality information that can be useful for many data users. The retrieval quality flag and surface flag bit values and interpretations are documented in the respective product Data Fields pages: Level-2 soil moisture product (SPL2SMP)... read more
Visualize NSIDC data as WMS layers with ArcGIS and Google Earth
NASA's Global Imagery Browse Services (GIBS) provides up to date, full resolution imagery for selected NSIDC DAAC data sets. ... read more
Search, order, and customize NSIDC DAAC data with NASA Earthdata Search
NASA Earthdata Search is a map-based interface where a user can search for Earth science data, filter results based on spatial and temporal constraints, and order data with customizations including re-formatting, re-projecting, and spatial and parameter subsetting. Thousands of Earth science data... read more
Filter and order from a data set web page
Many NSIDC data set web pages provide the ability to search and filter data with spatial and temporal contstraints using a map-based interface. This article outlines how to order NSIDC DAAC data using advanced searching and filtering.  Step 1: Go to a data set web page This article will use the... read more

FAQ

What are the latencies for SMAP radiometer data sets?
The following table describes both the required and actual latencies for the different SMAP radiometer data sets. Latency is defined as the time (# days, hh:mm:ss) from data acquisition to product generation. Short name Title Latency Required Actual (mean1) SPL1AP SMAP L1A... read more
What data subsetting, reformatting, and reprojection services are available for SMAP data?
The following table describes the data subsetting, reformatting, and reprojection services that are currently available for SMAP data via the NASA Earthdata Search tool and a Data Subscription... read more
Why don't the SMAP enhanced soil moisture products include landcover class?
While the standard SMAP Level-2 and -3 radiometer soil moisture products* contain landcover_class and landcover_class_fraction in the data files, the enhanced soil moisture products** do not. This is because the landcover class ancillary data are not available at the 9 km grid posting that the... read more
How are the enhanced SMAP radiometer products generated and what are the benefits of using these products?
There is considerable overlap of the SMAP radiometer footprints, or Instantaneous Fields of View (IFOVs), which are defined by the contours where the sensitivity of the antenna has fallen by 3db from its maximum. The IFOVs are spaced about 11 km apart in the along scan direction with scan lines... read more
How do I convert an HDF5/HDF-EOS5 file into binary format?
To convert HDF5 files into binary format you will need to use the h5dump utility, which is part of the HDF5 distribution available from the HDF Group. How you install HDF5 depends on your operating system. Full instructions for installing and using h5dump on Mac/Unix and... read more