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Abstract
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using a martingale representation theorem. The result shows that stationary linear
cointegrations can exhibit nonlinear dynamics, in contrast with the normal assump-
tion of linearity. We propose a sequential nonparametric method to test �rst for
cointegration and second for nonlinear dynamics in the cointegrated system. We
apply this method to weekly US interest rates constructed using a multirate �lter
rather than averaging. The Treasury Bill, Commercial Paper and Federal Funds
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1 Introduction

Cointegration is the primary econometric model of system dynamics for nonstationary
time series. Cointegration is normally de�ned as the existence of a stationary linear
combination of nonstationary time series. The fact that the combination is linear does
not necessarily imply linear dynamics for the resulting stationary stochastic process.
Cointegration is nevertheless strongly associated with linear dynamics, because cointe-
gration was initially developed within the linear Box-Jenkins framework. In particular,
the standard model of cointegration�the vector error correction model (VECM)�
does assume linear dynamics. Linearity makes econometric models tractable, but lin-
ear models can only reproduce a restricted class of dynamic behavior. Most economic
models are nonlinear: producing richer dynamics.
A broader de�nition of cointegration is necessary in order to incorporate nonlinear

dynamics. Our motivation for broadening the class of dynamics is based on the simple
observation that nonlinearity is a dominant property in the sense that a linear combi-
nation of nonlinear processes is itself generally nonlinear. Nonstationarity is similarly
dominant. Cointegration is a special case where adding two or more nonstationary pro-
cesses together results in a stationary process. But if any of the cointegrated series are
nonlinear, the linear combination generally produces a nonlinear stationary process.
For example, let xt D xt�1 C "t so that xt is a random walk and let yt D xt C zt where
zt is a stationary and nonlinear stochastic process. Then [1 � 1]T is a linear cointe-
grating vector for [yt xt ]T as yt � xt D zt and zt is stationary. Since zt , is nonlinear,
the cointegrating relation yt � xt is a nonlinear stochastic process.
We developed this motivation in Barnett, Jones, and Nesmith (2000), mainly as

a critique of Johansen's maximum likelihood cointegration estimator which assumes
linearity.1 Although we start from the same observation�that linear combinations of
nonlinear series are generally nonlinear�this paper is more constructive. We derive a
de�nition of linear cointegration from Hall and Heyde's (1980) martingale representa-
tion theorem for stationary stochastic processes. This extended de�nition, suggested
by Bierens (1997), does not a priori restrict the dynamic behavior to be linear as did
previous de�nitions of cointegration. As a result, the stationary dynamics of the coin-
tegrated system may exhibit nonlinear dynamics. We also develop an asymptotically
valid procedure to test linear cointegrations for the nonlinear stationary dynamics.
Our de�nition of cointegration, and the associated concept of nonlinear dynamics,

differs from nonlinear cointegration introduced by Granger (1991). Intuitively, non-
1Johansen's estimator assumes linearity because it is based on a VECM model driven by Gaussian inno-

vations. Calza and Sousa (2006) cite our critique in their rejection of Johansen's estimator.
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linear cointegration occurs when a nontrivial nonlinear combination of nonstationary
time series is stationary. In contrast, our extended de�nition still uses linear combi-
nations to produce stationarity. The de�nition of nonlinear cointegration actually says
nothing about the dynamics of the resulting stationary process, which is our focus. In
practice, nonlinear cointegration has been de�ned by a VECM model with a nonlin-
ear error correction term. Consequently, nonlinear cointegration has been predicated
on the assumption that the stationary dynamics are linear. The martingale based def-
inition could be further extended to allow for nonlinear cointegration with potentially
nonlinear stationary dynamics, but testing for such complicated dynamics would be
challenging.
To test for the presence of nonlinear dynamics in a linearly cointegrated system,

we implement a sequential procedure. In the �rst stage, cointegrating vectors are es-
timated using Bierens's (1997, 2005) nonparametric test for cointegration. Although
Bierens (1997) assumed linearity for clearer exposition, the test is still valid when ap-
plied to nonlinear processes. If a cointegration is found, it de�nes a new stationary
process representing the long-run economic equilibrium. In the second stage, the sta-
tionary cointegration is tested for nonlinearity. At this stage we are testing a system of
economic variables, or an equilibrium economic relation, for nonlinear dynamics even
though existing tests for nonlinearity are univariate.
The nonlinearity test used in the second stage should be conservative. A conserva-

tive test reduces the chances of �nding nonlinearity due to inappropriately accepting the
hypothesis of stationarity in the �rst stage. The possibility that a nonstationary linear
time series could be identi�ed as nonlinear is not a new problem. Tests for nonlinearity
require stationarity as a maintained assumption. Given the strong evidence that many
economic series are nonstationary, this requirement implies that tests for nonlinearity
are almost always conditional on the correct removal of nonstationarity, for example
through correct detrending or differencing. Failure to remove any nonstationarity can
lead to spurious acceptance of nonlinearity (Lee, Kim, and Newbold, 2005/6).
Based onMonte Carlo comparisons of various tests for nonlinearity, we use Hinich's

(1982) nonparametric bispectral test, which was found to be conservative.2 We do not,
however, implement the surrogate data and bootstrap methods introduced by Hinich,
Mendes, and Stone (2005) to improve the power of Hinich's test, as the theoretical
validity of the sequential testing rests on an asymptotic argument. Furthermore, boot-
strapping only the second-stage estimator would be inappropriate.3

2See Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1995), Barnett, Gallant, Hinich, Jensen,
and Jungeilges (1996) and Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1997),
3There are also potential problems with applying surrogate methods to testing for nonlinearity. The
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To demonstrate the two-stage nonparametric testing method, we test a system of
short-term U.S. interest rates: speci�cally the rates for short-term Commercial Paper,
short-term Treasury Bills, and Federal Funds. Short-term interest rates on Federal
Funds and on unsecured corporate and government debts are frequently included in
studies of the business cycle, money demand, and the monetary transmission mecha-
nism. Since short-term interest rates are likely to respond more quickly to monetary
policy than other economic variables, the dynamic interaction between Federal Funds
and other short-term rates is critical to understanding how changes in monetary policy
are transmitted through the economy.
Besides their economic relevance, interest rates are available on a daily basis for a

long period of time and the nonparametric tests perform better with more data. Using
the business day data does, however cause dif�culties with missing values due to holi-
days. To avoid this problem, we sample the daily data at a weekly frequency, but only
after appropriately �ltering the data to prevent aliasing. This multirate �lter, produced
by applying the anti-aliasing �lter and resampling, appears to be a new approach in
econometrics and improves the performance of both Bierens' and Hinich's tests.
Correcting for aliasing may also be the reason we unequivocally �nd that U.S. in-

terest rates contain a unit root. Whether or not interest rates contain unit roots has
been heavily debated. Although many authors have found that U.S. interest rates are
integrated (Nelson and Plosser, 1982, Psaradakis, Sola, and Spagnolo, 2006, Rapach
and Weber, 2004, Rose, 1988), other research has suggested that interest rates are bet-
ter described as long-memory or fractionally integrated series (Backus and Zin, 1993,
Gil-Alana, 2004, Tsay, 2000). The empirical case for long-memory is usually based
on con�icting results from various tests of the unit root and stationarity hypotheses. In
contrast, we �nd uniform agreement among a variety of univariate tests that the levels
of the interest rates are nonstationary and the differences are stationary. Other authors,
such as Pfann, Schotman, and Tschernig (1996) and Maki (2003), have suggested that
interest rates exhibit nonlinear dynamics which affect the power of stationarity tests.
Our results do not seem to suffer from low power, despite �nding evidence of nonlin-
earity.
Since the interest rates are both integrated and nonlinear, we apply our two-stage

method. Bierens' nonparametric test shows that the weekly interest rates are linearly
cointegrated. For comparison, we also perform Johansen (1988)'s standard parametric
tests. The nonparametric and parametric results are very similar: identifying the same
two cointegrating vectors. In addition, the cointegration estimates are robust to remov-

method developed by Hinich et al. (2005) solves these problems for a large subset of univariate linear pro-
cesses. But their method needs to be extended before it can be applied to systems of cointegrated variables.
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ing the period starting near the third quarter of 1979 through the �rst quarter of 1984
when the Federal Reserve shifted its monetary policy instrument away from interest
rates (Rudebusch, 1995). Estimates for the prior and subsequent sub-sample �nd the
same cointegrating vectors as the estimates for the full sample.
After identifying two cointegrations in the �rst stage, we subsequently test each

cointegration for nonlinearity. Linearity is rejected for both using the full data set. This
result is not completely robust as linearity can be accepted for the �rst sub-sample.
This result may stem from the reduction in the power of Hinich's test that stems from
the relatively short span of data. However linearity can be rejected for the second
sub-sample, which suggests that the nonlinearity is not produced only by switching
regimes.4

We conclude that stationary interest rate dynamics are nonlinear. A simple ex-
planation is that the adjustment mechanism that corrects deviations from the long-run
interest rate equilibrium is nonlinear. Since we �nd two cointegrations, it is possible
that nonlinearity also describes movements within the cointegration space. Regardless
of whether nonlinearity can be isolated as a disequilibrium phenomena or not, the equi-
librium dynamics are not simply characterized by the individual dynamics as would be
expected from a linear system. This complexity points to the need for further work
modeling the interest rate dynamics.
The paper is organized as follows. Section 2 clari�es the difference between linear-

ity and nonlinearity for stationary processes. We also discuss the bispectrum to provide
intuition for Hinich's test. Section 3 contains the theoretical contribution. Using a mar-
tingale representation for integrated processes, we derive a de�nition of cointegration
that is applicable to nonlinear stochastic processes. This extended de�nition of linear
cointegration is compared to the standard VECM model of both linear and nonlinear
cointegration. Section 4 contains the empirical results and Section 5 concludes. The
appendix reviews the aliasing problem and our multirate anti-aliasing �lter design.

2 Nonlinear Processes

Whether a process is linear or nonlinear is determined by its serial dependence struc-
ture. For stationary processes, the difference between linear and nonlinear dynamics
can be clari�ed by looking at the restrictions implied by linearity for both the Wold
decomposition and the Volterra representation. The discussion in this section assumes
4Several authors have suggested regime shifts as a source on nonlinearity in interest rates. See Pfann

et al. (1996) for a discussion.
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stationarity. We defer formally de�ning stationarity until the discussion of integration
and cointegration in the next section.
Under mild regularity conditions, a stationary stochastic process X t has a represen-

tation of the form:

X t D
1X

uD�1
gu�t�u; (2.1)

where gu is a sequence of coef�cients, and �t is a serially uncorrelated white noise
input sequence. This is a consequence of the Wold decomposition theorem. The Wold
decomposition therefore shows that a stationary process, such as that produced by coin-
tegration, can be represented as the output of a moving average �lter applied to uncor-
related white noise input.
At �rst glance, this representation seems to suggest that every stationary process

can be represented as an in�nite-order moving average process. This impression is
misleading. The process may be nonlinear because the input process is uncorrelated
but is not necessarily stochastically independent. X t can be represented as the output of
a time-invariant linear �lter applied to white noise input, but X t is a linear process only
if "t is stochastically independent.5 In general, whiteness is not suf�cient for stochastic
independence unless the white noise sequence is Gaussian.
For linear models, the coef�cients of the moving average representation completely

characterize the effect of a shock. The response of a linear sequence to a shock is
completely characterized by the transfer function of the �lter:

G. f / D
1X

uD�1
gue�i.2� f /u : (2.2)

If the input to a linear sequence is a sine wave of frequency f , the output will also
be a sine wave with frequency f . The amplitude will be scaled by jG. f /j, and the
phase will be shifted by tan�1.ImG. f /=ReG. f // where the operator j j denotes the
complex modulus.
A general model for a stationary stochastic process is

X t D h.: : : ; "t�2; "t�1; "t ; "tC1; "tC2; : : : / (2.3)

where, unlike the Wold representation "t is stochastically independent. If X t is causal,
it does not depend on the future values of "t (making this common assumption would
not substantively affect our discussion). If h is a well-behaved function it can be rep-
5See Hinich (1982), Hinich and Patterson (1989) and Priestley (1988, pp. 13-16).
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resented as a Volterra series:6

X t D
1X

uD�1
gu"t�u C

1X
uD�1

1X
vD�1

gu;v"t�u"t�v

C
1X

uD�1

1X
vD�1

1X
wD�1

gu;v;w"t�u"t�v"t�w C : : : (2.4a)

If X t is linear then only the �rst term in the Volterra representation exists; for linear
processes the Wold and Volterra representations are identical implying that the impulse
process in the Wold decomposition must be independent in this case.
The existence of higher-order terms in the Volterra expansion implies that X t is a

nonlinear process. Unlike a linear process, the response of the nonlinear sequence to a
shock will depend on generalized transfer functions of the form:

G. f / D
1X

uD�1
gue�i.2� f /u; G. f; g/ D

1X
uD�1

1X
vD�1

gu;ve�i2�. f uCgv/; : : : (2.5)

If the input to a nonlinear sequence contains components with frequencies f and g,
then the output will contain components with frequencies f , g, . f C g/, 2 f , 2g, 2. f C
g/, 3 f , 3g, 3. f C g/; : : : , and the amplitudes and phases of these components will
depend on the generalized transfer functions.
Tests for linearity and Gaussianity can be based on the properties of these general-

ized transfer functions as re�ected in a process' higher-order polyspectra. In general,
the kth-order polyspectrum is the Fourier transform of the kth-order cumulant function.
The �rst three cumulants are de�ned by cX .t/ D E[X t ], cXX .t1; t2/ D E[X t1X t2 ], and
cXXX .t1; t2; t3/ D E[X t1X t2X t3 ].7 Strict stationarity (or even third-order stationar-
ity) implies cX .t/ D 0 for all t , cXX .t1; t2/ is a function only of � D .t1 � t2/, and
cXXX .t1; t2; t3/ is a function only of � 1 D .t1� t2/ and � 2 D .t2� t3/. The second and
third-order cumulant functions for stationary processes can be denoted by cXX .� / and
cXXX .� 1; � 2/ respectively. These functions are assumed to be absolutely summable.
The power spectrum is then de�ned as the Fourier transform of cXX .� /:

PX . f / D
1X

�D�1

cXX .� /e�i2� f � ; j f j <
1
2
: (2.6)

where f denotes the frequency measured in units of inverse time.8 The bispectrum is
6For details on Volterra representations, see Schetzen (1980, 1981) and Rugh (1981).
7Cumulants and moments are equivalent up to the third-order. This is not true for higher orders.
8Multiplying these frequencies by 2� converts them to radians.
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de�ned as the second-order Fourier transform of cXXX .� 1; � 2/:

BX . f; g/ D
1X

� 1D�1

1X
� 2D�1

cXXX .� 1; � 2/e�i2�. f � 1Cg� 2/; (2.7)

. f; g/ 2 D D f. f; g/ j 0 < f < .1=2/; g < f; 2 f C g < 1g which is called the
principal domain (Hinich and Messer, 1995). If the second and third-order cumulant
functions are absolutely summable, then the power spectrum and the bispectrum exist
and are well de�ned. The integral of the power spectrum is equal to the variance of the
sequence, cXX .0/, and the power spectrum can be interpreted as a decomposition of
the variance by frequency. Similarly, the bispectrum decomposes the skewness of the
sequence, cXXX .0; 0/, by pairs of frequencies.
De�ne the skewness function, 0X . f; g/, as the normalized square modulus of the

bispectrum:

0X . f; g/ D
jBX . f; g/j2

PX . f /PX .g/PX . f C g/
: (2.8)

Let "t be a stochastically independent sequence, then P". f / D c"".0/ and B". f; g/ D
c""".0; 0/ for all . f; g/ 2 D. This implies that a linear process has a constant skewness
function equal to 0X . f; g/ D c""".0; 0/2c"".0/�3, because PX . f / D jG. f /j2P". f /
and BX . f; g/ D G. f /G.g/G�. f Cg/B". f; g/. If the stochastically independent input
sequence is also Gaussian then c""".0; 0/ D 0 and 0X . f; g/ will be identically zero.
These properties form the basis of Hinich's (1982) tests of Gaussianity and linear-

ity. The intuition is that the skewness function will be �at for linear processes and
identically zero for Gaussian processes. If the skewness function is signi�cantly rough
then linearity is rejected.
Hinich's test is conservative, not only in practice but also in theory. The test is

conservative in theory because the null hypothesis that 0X . f; g/ is constant for all
frequency pairs is a necessary, but not suf�cient condition for linearity. Nonlinear-
ity could be detected in higher order polyspectra, even if the normalized bispectrum is
�at.9 Nevertheless, Ashley, Patterson, and Hinich (1986) found that Hinich's bispectral
test had substantial power against many common nonlinear time series models includ-
ing bilinear models, nonlinear moving-average and autoregressive models, and linear
and nonlinear threshold autoregressive models.
A key aspect of Hinich's tests is that (at least third-order) stationarity is assumed.

However, economic time series often appear to be subject to permanent shocks, and it
9Tests of higher-order polyspectra are generally not applicable in econometrics, because most economic

time series are not long enough for consistent estimation of even the fourth-order polyspectrum.
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has become a standard practice to model these time series as non-stationary integrated
processes. As is the norm in testing for nonlinearity, if the process is nonstationary
Hinich's test can falsely reject linearity. Consequently, individual economic series are
usually differenced or detrended before being tested for nonlinearity. Cointegration can
provide a richer model of nonstationarity and an alternate method to recover stationary
dynamics for a system of economic variables.

3 Integration and Cointegration

Cointegration as it is normally de�ned is incompatible with nonlinear dynamics. Coin-
tegration was developed within the framework of vector error-correction models. Lin-
earity of the stationary dynamics was explicitly assumed, because the VECM model is
linear and the innovation process was assumed to be independent or Gaussian. How-
ever, there is no compelling reason for this restriction.
Using Hall and Heyde's martingale representation, we show that the innovation

process of a integrated series is not in general a linear stochastic process. It is then
straightforward to de�ne cointegration for a vector of integrated processes using the
martingale representation.
For clarity, our martingale-based de�nition is contrasted with the standard VECM

de�nition of cointegration including the extension to nonlinear cointegration. The rep-
resentation theorem shows that nonlinearity is more general than just nonlinear cointe-
gration, as nonlinear dynamics can be present even when the cointegrating relationship
is linear.
Initially, we establish some de�nitions and notational conventions. The de�nitions

are standard and can be found in a number of references. For all time periods, let St
denote a q-dimensional vector random sequence, St D .S1t ; :::; Sqt /T on a probability
space .�;F; �/.

Martingale De�nition. A vector martingale is an adapted sequence .St ;Ft / where Ft
is an increasing sequence of � -algebras contained in F such that St is integrable and
satis�es

E .St j Ft�1/ D St�1 a:s:

for every t: The �rst difference of a martingale,1St D St � St�1 D Yt is referred to as
a martingale difference sequence; it is integrable and satis�es E .Yt j Ft�1/ D 0 a:s:

Let T : �! � denote a one to one ergodic measure-preserving shift transforma-
tion. If X0.!/ is a random variable on the probability space, then X t .!/ D X0.T t!/
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de�nes a strictly stationary ergodic sequence. A stochastic sequence is said to be inte-
grated of order one, I .1/, if the �rst difference of the sequence is strictly stationary.10

A martingale difference sequence is strictly stationary by de�nition, so martingales are
I .1/: The concept of integration can be extended to higher orders.
Hall and Heyde (1980, pp. 136) prove the following representation theorem:

Hall and Heyde Representation Theorem. Any stationary ergodic sequence X t can
be represented in the form:

X t D Yt C Z t � Z tC1; (3.1)

where Yt .!/ D Y0.T t!/ is a stationary martingale difference sequence, and Z t .!/ D
Z0.T t!/ such that Z0.!/ is in L1.11 Explicit formulas for the representation are given
by:

Y0 D
1X

kD�1
.E[Xk j F0]� E[Xk j F�1]/I (3.2)

and,

Z0 D
1X
kD0

.E[Xk j F�1]/�
�1X

kD�1
.Xk � E[Xk j F�1]/; (3.3)

where fFsg is the �ltration generated by the shift transform.

From the Hall and Heyde representation, we derive a representation for an I .1/
sequence:

I .1/ Representation Corollary. If the stationary �rst-difference of an I .1/ sequence
is ergodic, then the nonstationary level of the integrated sequence is represented by

St D
tX
sD0
Ys � Z tC1 C Z1 C S0: (3.4)

Proof. If the stationary �rst-difference of an I .1/ sequence is ergodic, from the repre-
sentation theorem it has the following representation:

St D Yt C Z t � Z tC1;

where Yt is a stationary vector martingale difference sequence and Z t is a stationary
10Engle and Granger (1987) add the condition that the stationary moving average representation of the

�rst difference be invertible.
11Hall and Heyde also require E jX0j < 1. Alternatively, the theorem can be proved under mixingale

assumptions, see Davidson (1994, pp. 247-252).
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vector sequence. Equation (3.4) is derived by solving this representation of the �rst
difference for St�1, advancing the index one period and recursively substituting for
StC1.

Remark 1. The level of the I .1/ sequence is dominated by the accumulated martingale
difference sequence which gives rise to the permanent shocks.

Remark 2. The components of 1St , the �rst difference of St , have the form:

1S j t D Y j t C Z j t � Z j;tC1: (3.5)

From (3.2) and (3.3), both Y j t and Z j t exhibit dependence, although Y j t is a martingale
difference and is non-forecastable in the mean square metric, see Hinich and Patterson
(1987).

A system of integrated time series is cointegrated if some linear combinations of
the time series are stationary. Cointegration can be de�ned as a reduced rank condition
involving the covariance matrix of the vector martingale difference. We need the fol-
lowing lemma for the form of the covariance matrix for a vector martingale difference
sequence.

Lemma 1. The covariance matrix of a martingale difference sequence has the form:

E[YtY Ts ] D

8<:CCT if s D t

0 if s 6D t
(3.6)

Proof. Vector martingale differences are serially uncorrelated and have positive semi-
de�nite covariance matrices.

Cointegrating vectors for an I .1/ sequence that are based on the martingale repre-
sentation are de�ned by:

Theorem 1 (Martingale Cointegration). If C in (3.6) has reduced rank, .q � r/, then
there will exist r non-trivial vectors �1; :::; �r , called cointegration vectors where, the
linear combinations �Tj St , called cointegration relations, are stationary for all j D
1; : : : ; r .

Proof. Choose �; a q by r matrix
�
�1 �2 ::: �r

�
that spans the null space of C. Then by

de�nition �Tj C D 0
T , for all j D 1; : : : ; r: These vectors de�ne stationary processes
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because

E0
�� tX
sD0

�Tj Ys
�� tX
sD0

�Tj Ys
�T �

D �Tj E0
�� tX
sD0
Ys
�� tX
sD0
Ys
�T �

� j

D �Tj CC
T� j D 0T 0 D 0:

(3.7)

The proof also supports the following corollary:

Corollary 2. Denote the q by .q � r/ orthogonal compliment matrix of � by �?, so
that �? has the property �T�? D 0. The common stochastic trend �T?St , which has
dimension .q � r/, is integrated but not cointegrated. The q-dimensional sequences
1St and

h
�T �T?1

i
St are both stationary. In the absence of cointegration, the

two transformations are equivalent. If r D 0, then �? is full rank and can be taken as
the identity matrix.

In contrast to extant de�nitions, the martingale based de�nition of cointegration
does not require independence, Gaussianity, or linearity of the stationary components
of the process. Previous de�nitions of linear cointegration are a special case, much like
independence is a special case of the martingale property. The difference can be made
clearer by looking at the expectation of the cointegration relations,

E0
h
�Tj St

i
D E0

h
�Tj .Z1 � Z tC1/

i
C �Tj S0: (3.8)

These expectations have been purged of the effects of the permanent shocks gener-
ated by the martingale difference and are stationary. When viewed as a new stochastic
process, there are no restrictions on the dependence structure of �Tj St , aside from sta-
tionarity and ergodicity.
Our method contrasts with the standard approach to cointegration. Stationary linear

combinations of integrated variables are usually speci�ed to follow a linear ARMA
process or are included in linear structural models. The standard linear VECM has the
form:

1St D ��T St�1 C
p�1X
jD1
0 j1St� j C "t : (3.9)

If the model is cointegrated then the q by r parameter matrices, � and �, have rank r .
The cointegration relations enter the model linearly, through �. The error-correction
model is estimated under the assumption that "t is stochastically independent, which
implies that the cointegration relations are linear stochastic processes. Our discussion

12



shows that cointegration does not generally imply linearity, therefore, there is no reason
to expect "t to be either Gaussian or independent.
Granger (1991) proposes three nonlinear generalizations of cointegration. The �rst

generalization is that nonlinear functions of the time series may be cointegrated in the
sense that g1.x1t / and g2.x2t / have a dominant property that the linear combination of
nonlinearly transformed variables zt D g1.x1t /� Ag2.x2t / does not exhibit. A second
generalization is to allow time-varying cointegration vectors. A third generalization is
nonlinear error correction, in which the cointegration relations would enter the error-
correction model through a nonlinear function f , i.e.

1St D f .�T St�1/C
p�1X
jD1
0 j1St� j C "t : (3.10)

Granger (1991) gives conditions under which f .z/ is stationary.
A natural nonlinear error-correction speci�cation is to allow mean reversion only

for large deviations, so that f has the form:

f .z/ D

8<:�z if jzj> k

0 if jzj � k
: (3.11)

In this case, zt D �T St behaves like a unit root in a neighborhood of its mean, but
exhibits mean reversion when it is outside the neighborhood. This model is a straight-
forward generalization of the standard error-correction model that exhibits nonlinear
dynamics, but the linear combination �T St is not stationary.12

Although, the extended de�nition of cointegration could be further extended to
allow for nonlinear cointegration, we limit ourselves to the case where the linear com-
bination is stationary. Such stationary linear combinations can exhibit nonlinear dy-
namics. Differentiating between nonlinear error correction and stationary nonlinear
dynamics is likely dif�cult in practice.
Our proposed method for testing for whether a cointegration is nonlinear is sequen-

tial. This sequential method allows us to test the stationary components of the system
for nonlinear dynamics. We �rst estimate cointegrating vectors using Bierens' (1997)
non-parametric test. Bierens' test is asymptotically valid for a nonlinear data generat-
ing processes due to Hall and Heyde's representation theorem. We then test the esti-
mated cointegrating relations for Gaussianity and linearity using Hinich's (1982) tests.
12For example, the process de�ned by (3.11) is nonstationary and behaves like a unit root when near its

mean.
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Asymptotically, Hinich's test is also valid as the cointegrating vectors are stationary. In
practice, as is the norm, the results of Hinich's tests are conditional on whether the �rst
stage estimates do eliminate any nonstationarity.

4 Empirical Results

We apply our sequential procedure to a system of short-term U.S. interest rates. Short-
term interest rates are available at a high frequency over an extended time period: con-
stituting a larger sample size than many other business cycle variables, such as real
output and in�ation. In addition, interest rates directly capture the dynamics caused by
monetary policy changes.
We use business daily data for the interest rates on one-month Commercial Paper

(CP), the secondary market rate on one-month Treasury Bills (T B), and the Federal
Funds (FF) from 4=08=1971 to 8=29=1997. The commercial paper and Federal Funds
rates are available from the Federal Reserve Board's website. The commercial paper
rate series was discontinued in August 1997. The Federal Reserve Bank of St. Louis
provided us with the secondary market rate on one-month Treasury Bills. These inter-
est rates are converted to one-month holding period yields on a bond interest basis, and
are passed through an anti-aliasing �lter. The anti-aliasing �lter is designed to remove
the high-frequency power in the daily rate series to minimize the bias caused by con-
verting the daily time series to weekly time series either by direct sampling or weekly
averaging. The daily rates are converted to weekly rates by sampling the �ltered daily
rates once per week. Figure 1 on the following page displays the natural logarithms of
the �ltered interest rates.
Correcting for aliasing does not impact the asymptotics of the cointegration esti-

mator, because cointegration is related to the long-run dynamics while aliasing distorts
higher frequency dynamics. Nevertheless, correcting for aliasing might improve the
power of the cointegration estimators in a �nite sample. In addition, Hinich and Patter-
son (1985, 1989) showed that aliasing does bias tests for nonlinearity towards accepting
linearity. Aliasing is discussed in the appendix.
After applying the multirate �lter, we test this data with our two-stage method: �rst

testing for cointegration and then testing for nonlinearity. Two cointegrating vectors
are found for the system of three interest rates over the period 1971 � 1997. We then
run several tests on each cointegrating relation. We �rst test the cointegrations for
an alternative form of nonstationarity considered by Hinich and Wild (2001). This
alternative type of nonstationarity is rejected, so we test for Gaussianity. Gaussianity
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Figure 1: Logarithm of Interest Rates
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of both the real and imaginary parts of the bispectrum is strongly rejected. Finally, we
test for nonlinearity. We �nd strong evidence that the cointegrations exhibit nonlinear
dynamics.

4.1 Univariate Tests

Before estimating cointegration relations, we run a battery of univariate tests. We �rst
test the unit root and stationarity hypotheses on ln.CP/, ln.T B/, ln.FF/, and their
�rst differences .1/ using several tests with different nulls. These tests include: an
augmented Dickey-Fuller (ADF) test and a Phillips-Perron (PP) test of the unit root
hypotheses against the alternative of stationarity; the KPSS test of the null of stationar-
ity against the alternative of nonstationarity; and the Bierens (1997) non-parametric test
for the existence of cointegration run as a univariate test of the unit root with drift hy-
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Table 1: Univariate Stationarity Tests
Variable ADF PP KPSS1 Bierens
ln.CP/ �1:9132 �8:6587 0:9272 1:1441
ln.T B/ �1:8289 �9:4498 1:0186 0:7741
ln.FF/ �1:8174 �8:8747 1:0027 1:0203
1 ln.CP/ �7:4386 �740:9803 0:1120 0:0000
1 ln.T B/ �8:0123 �877:6077 0:1210 0:0000
1 ln.FF/ �7:3217 �2118:753 0:1249 0:0000
H0 : UR UR S URD
H1 : S S NS TS
5% c.v. < �3:86 < �14:0 > :436 < :025
10% c.v. < �2:57 < �11:2 > :347 < :006

pothesis against trend stationarity on each variable.13 For the ADF test, the lag length,
p, is chosen by the formula p D 5.n/:25. For the PP and KPSS tests, the truncation lag
for the Newey-West estimator is also set with this formula. The test results are shown
in Table 1 along with a mnemonic for the tests' hypotheses and the 5 and 10 percent
critical values.
The logged interest rates are clearly I .1/processes: every test rejects stationarity of

the levels at well above the 95% con�dence level and fails to reject stationarity of the
�rst differences even at the 80% con�dence level. The consistency of the test results
is important, because differences in these tests can be interpreted as evidence of long-
memory rather than integration. For example, Karanasos, Sekioua, and Zeng (2006)
interpret their simultaneous rejection of both the unit root hypothesis and stationarity
as evidence for fractional integration and long-memory in real U.S. interest rates. Our
results are not open to such interpretation.
Given the results of the stationarity tests, we test the stationary �rst difference of

each interest rate for nonlinearity. We pre-whiten each of the components using an
AR.6/ �lter to eliminate bias in the spectral estimation prior to testing and to decrease
the likelihood of falsely rejecting the null of linearity. The tests (available on request)
provide overwhelming evidence of nonlinear dynamics for the �rst differences of these
short-term interest rates over the full sample.
We also tested the �rst differences for nonlinearity over two sub-periods: Sept. 13,

1974 through Sept. 19, 1979 and March 1, 1984 through Dec. 31, 1996. These are
periods over which a target for the federal funds rate can be constructed, see Rudebusch
13Stationarity can be viewed as a special case of trend stationarity with the trend restricted to be zero.

Consequently, running versions of the ADF, PP, and KPSS tests that test for trend stationarity produces
results consistent with Bierens' test.
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(1995). Effectively, we are dropping the period when the Federal Reserve shifted its
intermediate target away from interest rates. This period is also when many interest
rates were deregulated.
For these sub-samples, we can accept the null of linearity in the �rst sub-sample,

but reject linearity in the second. The number of data points for the �rst sub-sample is
258 versus 669 for the second sub-sample and 1; 363 for the full sample. The evidence
reported in Ashley et al. (1986) would indicate that the power of these tests is substan-
tially higher over both the second sub-sample and over the full sample. This provides
one explanation for the inability to reject linearity in the �rst sub-sample. Another pos-
sible explanation for �nding nonlinearity only in the second sub-sample could be that
deregulation of interest rates transformed the dynamics going forward.
Regardless for the reasons for accepting linearity in the �rst sub-sample, �nding

evidence of nonlinearity in the second sub-sample is crucial. If linearity was rejected
for both sub-samples, it would appear that the nonlinearity found over the full sample
was driven solely by a regime shift. Rejecting linearity in the second sub-sample does
not rule out a break in the dynamics due to the policy, but it does rule out the shift being
the only source of nonlinearity. Consequently, we continue analyzing the full sample,
although we also check the results for the two sub-samples.

4.2 Cointegration

The cointegration analysis used the system

St D [ln.CP1M/; ln.T B1M/; ln.FF/]T :

The cointegration analysis is conducted in two steps: rank identi�cation and estima-
tion. The rank identi�cation, which determines the number of cointegration relations,
is based on the non-parametric test procedure developed by Bierens (1997, 2005). The
number of cointegration relations is determined by a set of hypothesis tests, called
�-min tests, that are essentially non-parametric versions of the well-known Johansen
(1988) parametric �-max tests. The �-min tests are non-parametric because the matri-
ces involved are constructed from the data independently of the data-generating pro-
cess. The number of cointegration relations can also be estimated using a function of
the eigenvalues Ogm.r/. The value of r that minimizes Ogm.r/ is a consistent estimate of
the true number of cointegration relations.
The number of cointegrations determined by both the �-min test and estimating

Ogm.r/ is 2. The �-min tests are reported in Table 2 on the following page. M is the
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Table 2: Nonparametric Cointegration Tests
Hypothesis Test Stat Critical Region M Conclusion
H0 : r D 0 0:00000 20% .0; :006/ 3 Reject
H1 : r D 1 10% .0; :017/ 4 Reject

5% .0; :008/ 4 Reject
H0 : r D 1 0:00054 20% .0; :077/ 3 Reject
H1 : r D 2 10% .0; :034/ 3 Reject

5% .0; :017/ 3 Reject
H0 : r D 2 0:76618 20% .0; :341/ 3 Accept
H1 : r D 3 10% .0; :187/ 3 Accept

5% .0; :111/ 3 Accept
M is the smoothing parameter for the nonparametric estimator

smoothing parameter; the value is set optimally for the different con�dence levels fol-
lowing Bierens (1997). The tests are run in sequence, starting with the null hypothesis
that the number of cointegrating vectors is zero, followed by a test of the null hypoth-
esis that there is one cointegrating vector, and so on until the null cannot be rejected.
We �nd that r D 0 (no cointegration) is decisively rejected, as is the hypothesis that
r D 1 (one cointegrating vector), but we cannot reject the hypothesis that r D 2 (two
cointegrating vectors).
For comparison, we also estimate the parametric maximum likelihood �-max and

trace tests of Johansen (1988) using the CATS package (Hansen and Juselius, 2006).
The I .1/ maximum likelihood method estimates a �nite-order VECM, as in (3.9),
where the coef�cient matrices 5;01; :::; 0p�1 are 3� 3. If the system is cointegrated
then the matrix 5 has reduced rank r < 3, and can be decomposed into 5 D ��T .
The matrices � and � are full rank 3 by r matrices, and the columns of � are the
cointegration vectors.
Pantula (1989) and Johansen (1992) suggested a procedure to jointly identify the

deterministic components and the rank of5. The idea is to test the models sequentially,
beginning with the most restrictive model considered. Each hypothesis can be tested
using either the trace or �-max test statistics. We conducted these tests for a set of lag
lengths p D 4; 5; :::; 20. These tests uniformly �nd that there are two cointegration
vectors and that the correct deterministic component is a constant that is restricted
to the cointegration space. This speci�cation is therefore extremely robust to the lag
length and agrees with the rank determination of the non-parametric test. Table 3 on
the next page reports these tests for a lag length of p D 6.14

14We computed various information criteria for the VECM. The Schwartz criteria indicated a lag length
of 4 and the Akaike criterion indicated a length of 20. We estimated the model over this range of lags. The
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Table 3: Parametric Cointegration Tests
Hypothesis ��max 90% c.v. Trace 90% c.v. 95% c.v.

H0 : r D 0 rest. const 103:48 14:09 158:63 31:88 34:78
H0 : r D 0 const. 103:47 13:39 158:60 26:70 29:38
H0 : r D 0 const., trend 114:26 16:13 172:02 39:08 42:20
H0 : r D 1 rest. const 50:59 10:29 55:15 17:79 19:99
H0 : r D 1 const. 50:59 10:60 55:13 13:31 15:34
H0 : r D 1 const., trend 51:41 12:39 57:77 22:95 25:47
H0 : r D 2 rest. const 4:55 7:50 4:55 7:50 9:13

The results from the nonparametric and parametric estimators are very similar.
The non-parametric estimate of the cointegration vectors is �N P D [�1;N P �2;N P ],
where �1;N P D .1; �1:075; 0/T and �2;N P D .0; 1; �0:863/T . The parametric esti-
mate of the cointegration vectors is �P D [�1P �2P ], where �1P D .1; �1:031; 0/T

and �2P D .0; 1; �0:913/T .15 The parametric estimate is statistically equivalent to
the nonparametric estimate. For both estimators, the �rst basis vector �1 re�ects the
near stationarity of the spread between the logarithms of the Commercial Paper and
Treasury Bill rates. Similarly, the second basis vector �2 re�ects the near stationarity
of the spread between the Treasury Bill rate and Federal Funds rates.16 The non-
parametric estimates of the two cointegration relations are shown in Figure 2 on the
following page. The differences between the nonparametric and parametric estimates,
also included in the �gure, are an order of magnitude smaller.
This consistency of the nonparametric and parametric contrasts with the results of

Coakley and Fuertes (2001) and Calza and Sousa (2006) where the parametric and non-
parametric results differ. In these papers, the authors argue for accepting the nonpara-
metric results because Bierens estimator is valid for a broader range of data generating
processes. In particular, Coakley and Fuertes (2001) argue that the maximum likeli-
hood estimates are distorted due to nonlinear mean reversion in exchange rates which
would imply nonlinear cointegration. The consistency between our nonparametric and
parametric estimates reveals no evidence of nonlinear cointegration between interest
rates.
Bierens (1997) argued that hypothesis tests in the parametric model have higher

results were not greatly affected by the choice of lag length within this range. The model with p D 6 is fairly
parsimonious and passed tests for absence of �rst and fourth order auto-correlation.
15The basis for the cointegration space has been transformed into a basis with one zero in each vector and

the estimated restricted constant is subtracted from the cointegration relations. This transformation does not
change any results.
16Chi-squared tests in the VECM.6/ accept the hypothesis that �1 D .1; �1; 0/T but reject the hypothesis

that �2 D .0; 1; �1/T . The values of the test statistics are 1:31 and 10:87 respectively. These tests are �2.1/.
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Figure 2: Nonparametric cointegrations and the difference from the parametric esti-
mates

CP-TBill Cointegration
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power than comparable tests in the non-parametric model. This argument does not nec-
essarily hold because the argument and the hypothesis tests are predicated on linearity.
Despite the parametric estimator's consistency with the nonparametric estimates, the
parametric estimator is likely misspeci�ed since the individual interest rates are nonlin-
ear. Since the nonparametric and parametric cointegrations are indistinguishable, we
can safely sidestep the issue of misspeci�cation by focusing solely on the nonparamet-
ric results.

4.2.1 Robustness

As already discussed, our results are robust to the type of estimator and lag length.
Before moving to the second stage of our approach and testing for nonlinearity, we also
tested the results for robustness to the Federal Reserve's choice of policy instrument,
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Table 4: Nonparametric Cointegration Tests for Sub-Samples
Hypothesis Test Stat: Test Stat: Critical Region M Conclusion

1974� 1979 1984� 1996
H0 : r D 0 0:00000 0:00000 20% .0; :006/ 3 Reject
H1 : r D 1 10% .0; :017/ 4 Reject

5% .0; :008/ 4 Reject
H0 : r D 1 0:00523 0:00008 20% .0; :077/ 3 Reject
H1 : r D 2 10% .0; :034/ 3 Reject

5% .0; :017/ 3 Reject
H0 : r D 2 1:33438 2:33982 20% .0; :341/ 3 Accept
H1 : r D 3 10% .0; :187/ 3 Accept

5% .0; :111/ 3 Accept
M is the smoothing parameter for the nonparametric estimator

by examining the integration and cointegration properties of the data over two sub-
periods: Sept. 13, 1974 through Sept. 19, 1979 and March 1, 1984 through Dec. 31,
1996.
The results of the non-parametric cointegration tests for the two sub-samples are

reported in Table 4. The results show that the rank identi�cations are consistent with
those from the full sample. The parametric estimators also identi�ed two cointegrating
vectors for each sub-period. Further, the estimated cointegration vectors are consistent
with the estimated vectors from the full sample; we cannot reject the joint hypothesis,
H0 : �1P D .1; �1:031; 0/T and �2P D .0; 1; �0:913/T , for either sub-sample.
These tests are �2 .1/. For the 1974-1979 sub-sample, the test statistic is 3:26 (p-value
of :2), and for the 1984-1996 sub-sample, the test statistic is :38 (p-value of :83).

4.3 Tests for Nonlinearity of the Cointegration Relations

The stationary components of the system consist of the two cointegration relations and
the �rst difference of the common stochastic trend. We test the estimated cointegration
relations for nonlinear serial dependence using the bispectrum tests. The cointegration
vectors, �1 and �2 are basis vectors for the cointegration space, so that any linear
combination of �1 and �2 are also stationary. Thus, evidence of nonlinearity in one
of the cointegration relations is actually evidence that the stationary components of
the system are nonlinear. Prior to testing for nonlinearity, each of the cointegration
relations is pre-whitened by an AR.6/ �lter to eliminate bias in the spectral estimation
prior and to decrease the likelihood of falsely rejecting the null of linearity.
For robustness, we test these relations for stationarity using the frequency domain
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Table 5: Stationarity, Gaussianity and Time Reversability Tests .1971� 1997/
Cointegration HW Gauss1 Gauss2
Nonparametric

�T1;N P St 25:2276 .0:8620/ 638:6265 .0:0000/ 707:1962 .0:0000/
�T2;N P St 34:2187 .0:4572/ 387:4622 .0:0000/ 465:5005 .0:0000/

HW test statistic is � .34/ under H0 : stationarity
Gauss1 test statistic is � .34/ under H0 : Re .B . f; g// D 0 8 . f; g/ 2 D
Gauss2 test statistic is � .34/ under H0 : Im .B . f; g// D 0 8 . f; g/ 2 D

test derived by Hinich and Wild (2001). The Hinich and Wild (HW) test checks for
residual non-stationarity due to the existence of a waveform with random phase and
amplitude. This test has a very different alternative hypothesis than the cointegration
test, and should detect nonstationarity at seasonal frequencies. The test is �2.34/ under
the null of stationarity. The HW-stationarity tests, reported in Table 5, con�rm that the
cointegration relations are stationary.
If the time series are Gaussian, then the real and imaginary components of the

bispectrum are zero. The test statistics for these two hypotheses, called Gauss1 and
Gauss2 respectively, are also reported in Table 5. If either the real or imaginary com-
ponents of the bispectrum are non-zero then Gaussianity is rejected. If the imaginary
component is non-zero then the sequence is not time-reversible. The results indicate
that the stationary components of the system are highly non-Gaussian and are not time-
reversible.
Rejecting Gaussianity is necessary but not suf�cient to reject linearity. Table 6

gives the results of Hinich's test for nonlinearity over the full sample. The Z� test
statistics are independent and normally distributed under the null of linearity, and we
treat these tests as two-tailed, as Ashley et al. (1986) found that one-tailed tests may fail
to detect certain types of nonlinearity The tests are computed for the non-parametric
estimates of the cointegrations �T1;N P St and �

T
2;N P St :

Table 6: Linearity Tests .1971� 1997/
Cointegration Z :1 Z :2 Z :4 Z :6 Z :8 Z :9
Nonparametric

�T1;N P St -2.81 -4.09 -5.39 -2.65 2.78 2.19
�T2;N P St -2.26 -2.66 -0.93 -0.38 1.29 1.94

Z� is N .0; 1/ under H0 : B. f; g/ is constant 8 . f; g/ 2 D:
Linearity is rejected if

��Z��� exceeds the critical value.
c.v. 1:65 .90%/ 1:96 .95%/ 2:58 .99%/
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Figure 3: Skewness function of CP-TBill cointegration

Figure 1 Skewness Function
TB-CP Cointegration with SR Dynamics

The strongest evidence of nonlinearity is found in the �rst cointegration relation.
Linearity is rejected for �T1;N P St by Z :1, Z :2, Z :4, Z :6, and Z :8 using the 99% critical
values and by Z :9 using the 95% critical values. Flatness of the skewness function is
a necessary condition for linearity. Figure 3 shows that the skewness function for the
�rst cointegration is clearly far from �at, which is what should be expected from the
statistical tests.
Evidence of nonlinearity is also found in the second cointegration, although this

evidence is somewhat weaker. Linearity is rejected for �T2;N P St by Z :1 and by Z :9
using the 95% critical values, and by Z :2 using the 99% critical values. Figure 4 on
the following page shows the skewness function for the second cointegration. Again,
the skewness function is not �at, but it is �atter than the skewness function of the �rst
cointegration, re�ecting weaker evidence of nonlinearity in the second cointegration.
However, nonlinearity in either cointegration implies that the cointegrated system ex-
hibits nonlinear dynamics.

4.3.1 Robustness

Structural shifts over the long period being analyzed could be mistaken for nonlin-
ear dynamics. As previously discussed, to address this issue we delete the period
1979 � 1983 and consider the two sub-samples. Table 7 on the next page presents
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Figure 4: Skewness function for TBill-Fed Funds cointegration

Figure 3 Skewness Function
TB-FF Cointegration with SR Dynamics

the test for nonlinearity over these two sub-samples. Similar to the univariate results,
linearity cannot be rejected for the �rst subsample but can for the second. As previously
mentioned, Hinich's test has relatively low power for the �rst sub-sample. Rejecting
linearity for the second sub-sample implies that the shift in policy regime does not
cause the nonlinearity per se. The results could alternatively be interpreted as the re-
sult of interest rate deregulation rather than low power. Post-deregulation, the interest
rate dynamics seem to become more complex, even though the long-run equilibrium

Table 7: Linearity Tests for Sub-Samples
Cointegration Z :1 Z :2 Z :4 Z :6 Z :8 Z :9

Sub-Sample #1: 1974� 1979
�T1;N P St -1.07 -1.39 -1.99 -0.36 0.98 1.12
�T2;N P St -1.15 -1.72 0.50 0.79 0.15 0.67

Sub-Sample #2: 1984� 1996
�T1;N P St -2.00 -2.95 -4.43 -3.88 1.95 1.96
�T2;N P St -1.99 -2.82 -2.14 0.05 2.40 1.91

Z� is N .0; 1/ under H0 : B. f; g/ is constant 8 . f; g/ 2 D:
Linearity is rejected if

��Z��� exceeds the critical value.
c.v. 1:65.90%/1:96.95%/2:58.99%/
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relations were unchanged.
There is strong evidence of nonlinearity in the stationary components of the sys-

tem. Although the evidence is not completely robust to the sample of data tested, the
nonlinearity does not stem solely from a structural break caused by the change in tar-
geting approach in the early 1980s or the deregulation of interest rates, as the second
sub-sample shows strong evidence of nonlinearity.

5 Conclusion

We have shown that cointegration relations in I .1/ systems generally produce nonlin-
ear dynamics. Our approach follows advancements in probability theory where many
results that required independence, and therefore implied linearity, have been extended
using martingales to allow for more general dependence or nonlinearity. Because the
cointegration relations derived from I .1/ systems are stationary, they can be tested for
nonlinear serial dependence using standard polyspectral techniques. A feature of our
two-stage method is that it tests a system of economic variables, or an equilibrium eco-
nomic relation, for nonlinearity even though existing tests for nonlinearity, including
the bispectrum test, are univariate.
Tests for the existence of nonlinear dynamics require large sample sizes and may

be adversely affected by aliasing and other problems associated with time aggregation.
Interest rates are measured with high frequency and aliasing can be controlled by ad-
equate attention to �lter design. For these reasons, the conditions are more favorable
to testing interest rate data for nonlinear dynamics than for most other variables that
are important to the business cycle, money demand, and the monetary transmission
mechanism. We found that short-term US interest rates are cointegrated and that the
stationary components of the system are nonlinear. The Hinich nonlinearity test is
conservative, which strengthens our �nding of nonlinear interest rate dynamics.
These results suggest that the untested assumption of linearity may be incorrect.

The failure to �nd robust evidence of nonlinearity in lower frequency macroeconomic
time series may be due to the small sample sizes that can be obtained for those time
series, in addition to problems associated with sampling and time aggregation. Our
particular example shows that the spreads between the Commercial Paper, Treasury
Bill, and Federal Funds rates exhibit nonlinear dynamics. Our results are consistent
with work that suggests there are asymmetric effects of monetary policy on interest
rates, such as Choi (1999). Our results suggest that better forecasts of these spreads
might be obtained with nonlinear models, such as bilinear models.
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Appendix: Aliasing and Constructing Anti-Aliasing Fil-
ters

Let X t be a stationary continuous-time series that is sampled at regular intervals of
time, 0; �T; 2�T; : : : ; .N � 1/�T . �T is called the sampling interval, and 1=�T is the
sampling rate. The sampled sequence is denoted Xk�T , k D 0; : : : ; N � 1.
The power spectrum of the continuous-time series is

g. f / D
Z 1

�1
cXX .� /e�i.2� f /� :

The power spectrum of the discrete-time sampled sequence, g�T . f /, is given by the
following:

g�T . f / D
1X

jD�1
g. f C

j
�T
/ (5.1)

for j f j � .1=2�T / (see Koopmans, 1975, pp. 66-73). The frequency fN D .1=2�T / is
called the Nyquist folding frequency. If g. f / D 0 for all f � j fN j then the power spec-
trum of the continuous-time series and the discrete-time sampled sequence are equal.
If the continuous-time series does not have this property then the power spectrum at
frequency, f , of the sampled sequence is equal to the sum of the values of the power
spectrum of the continuous-time series at all frequencies of the form f C . j=�T / for
j D 0;�1;�2; : : : . Thus, the low frequency harmonics are made indistinguishable
from the combined power of higher frequency harmonics because of sampling. This
phenomenon is called aliasing.
It is very important to eliminate any power in a time series at frequencies that ex-

ceed the Nyquist folding frequency prior to sampling, because failure to do so will lead
to biased estimation due to aliasing. Aliasing has traditionally been described in the
frequency domain, but Hinich and Rothman (1998) showed that aliasing corrupts the
impulse response functions in the time domain and therefore leads to serious identi�-
cation problems.
The same problem results if a discrete-time sequence is sampled at a lower fre-

quency, such as sampling a daily interest rate at weekly intervals. In this case, the
sampling interval is �T D 7 and the Nyquist folding frequency is .1=2�T / D .1=14/.
If the daily interest rates have power at frequencies exceeding .1=14/ then aliasing will
occur. The solution to this problem is to �lter the daily interest rates in such a way
that the power spectrum of the �ltered rates will be zero at frequencies exceeding the
Nyquist. If

�
g j
	
are the �lter weights then the power spectrum of the �ltered sequence
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equals the power spectrum of the underlying sequence multiplied by the gain of the

�lter jG. f /j2 where G. f / D
1P

jD�1
g je�i.2� f / j . The solution to the aliasing problem

would be to design a �lter with gain:

jG. f /j2 D

8<:1 if j f j � fN
0 if j f j > fN

: (5.2)

This gain function corresponds to the ideal symmetric low-pass �lter with weights

g j D

8<:sin.2� fN=�k k D �1;�2; : : :

2 fN D 1=�T k D 0
(5.3)

which cannot be realized with a �nite data sample. In fact, the rate of decrease of the
�lter weights is too slow to simply truncate the �lter at some �nite number of leads and
lags. The usual solution is to taper the weights of the ideal �lter. We taper the ideal
weights using a Hanning cosine taper. This �lter is referred to as an anti-aliasing �lter
in the text.
Applying the anti-aliasing �lter produces a business day series that should not con-

tain power at frequencies higher than every two weeks. This series still suffers from
problems created by missing values caused by holidays. We subsequently resample
our series on every Wednesday to avoid the missing value problem. Since the Nyquist
frequency is then every two weeks, the resulting weekly series should avoid aliasing.
The combination of applying the anti-aliasing �lter and then decimating to the weekly
sample produces a multi-rate �lter.
The common approach in economics is to report unweighted weekly averages of

daily interest rates. Weekly averages are also effectively produced by a multi-rate �lter:
combining a �lter with decimation. The �lter is an unweighted averaging �lter that has
a wider main lob and much larger side lobes than the anti-aliasing �lter we use. Weekly
averages therefore potentially are strongly aliased. Monthly and quarterly averages that
are often used in studies of the real interest rate are similarly aliased.
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