
Finance and Economics Discussion Series 
Divisions of Research & Statistics and Monetary Affairs 

Federal Reserve Board, Washington, D.C. 
 
 
 
 
 
 
 
 
 
 
 

Solving Stochastic Money-in-the-Utility-Function Models 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Travis D. Nesmith 
2005-52 

 
NOTE:  Staff working papers in the Finance and Economics Discussion Series (FEDS) 
are preliminary materials circulated to stimulate discussion and critical comment.  The 
analysis and conclusions set forth are those of the authors and do not indicate 
concurrence by other members of the research staff or the Board of Governors.  
References in publications to the Finance and Economics Discussion Series (other than 
acknowledgement) should be cleared with the author(s) to protect the tentative character 
of these papers. 



Solving Stochastic
Money-in-the-Utility-Function Models

Travis D. Nesmith

Board of Governors of the Federal Reserve System
20th and C Sts. NW, Mail Stop 188

Washington, DC 20551

Abstract

This paper analyzes the necessary and su¢ cient conditions for solving money-in-
the-utility-function models when contemporaneous asset returns are uncertain. A
unique solution to such models is shown to exist under certain measurability con-
ditions. Stochastic Euler equations, whose existence is normally assumed in these
models, are then formally derived. The regularity conditions are weak, and econom-
ically innocuous. The results apply to the broad range of discrete-time monetary
and �nancial models that are special cases of the model used in this paper. The
method is also applicable to other dynamic models that incorporate contemporane-
ous uncertainty.
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1 Introduction

Many monetary and �nancial models� ranging from cash-in-advance to capi-
tal asset pricing models� are special cases of stochastic money-in-the-utility-
function (MIUF) models. 1 Stochastic decision problems that include mone-
tary or �nancial assets have been used to address a variety of topics including
asset pricing [2, 15, 29, 30, 41, 51], price dynamics [23, 32, 40, 42, 43], in-
tertemporal substitution [26], money demand [21, 33], currency substitution
and exchange rates [6, 34], optimal monetary policy [16, 17, 18, 19, 20, 25], and
monetary aggregation [3, 4, 5, 46]. In each case, the usefulness of the model de-
pends on the derivation of the stochastic Euler equations that characterize the
model�s solution. Deriving stochastic Euler equations is not straightforward in
stochastic settings. The di¢ culty of the derivation depends crucially on the
speci�cation of uncertainty. However, uncertainty is rarely explicitly modeled
in this literature. Instead, stochastic Euler equations are just assumed to exist.
Consequently, the validity and applicability of these models�results is di¢ cult
to ascertain.

The speci�c model used in this paper is based on Barnett, Liu, and Jensen�s [3]
discrete-time model. 2 The stochastic Euler equations derived from this model
depend on a trade-o¤ between an asset�s rate of return, risk, and liquidity,
instead of depending on just the trade-o¤ between return and liquidity as
is the norm in most of the monetary literature. The model also generalizes
much of the voluminous asset-pricing literature in �nance, where only the two-
dimensional trade-o¤ between risk and return is considered. 3 In particular,
the consumption capital asset pricing model (CAPM), which ignores liquidity,
is a special case of the model [3]. 4 Stochastic MIUFmodels, therefore, have the
capacity to integrate the monetary and �nancial approaches to asset pricing.

As the model is recursive, dynamic programming (DP) would seem to be
the natural candidate for a solution method. 5 DP is especially appealing for
stochastic problems where states of the dynamic system are uncertain, because
the DP solution determines optimal control functions de�ned for all admissible
states. But, for a stochastic model, care must be taken to ensure that DP
is feasible. Bertsekas and Shreve [10, Chapter 1] and Stokey and Lucas [49,
Chapter 9] discuss the requirements for implementing stochastic DP in more

1 Deterministic MIUF models, cash-in-advance models, and other transaction cost
models of money are functionally equivalent [28].
2 Earlier versions of this model, both deterministic and stochastic, are in the papers
collected in [4].
3 An exception is [2], who use liquidity to explain [45]�s equity premium puzzle.
4 See [37] for a textbook treatment of CAPM and a roadmap for the asset-pricing
literature.
5 The seminal paper is [7]. Reference texts for DP include [9, 39, 47, 49].
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detail.

Probably, the simplest method to ensure that a solution to a stochastic prob-
lem can be found using DP is to specify the timing of the uncertainty. If all
current state variables are known with perfect certainty, then further model-
ing of uncertainty is unnecessary. Although the timing restriction makes DP
feasible, contemporaneous certainty is not always a reasonable assumption.
Contemporaneous certainty is a particularly restrictive assumption for models
containing assets; it implies that all asset returns are risk-free.

Other simple assumptions that support stochastic DP similarly impose strong
restrictions on the applicability of the results. For example, the objective func-
tion or the stochastic processes can be restricted so that certainty equivalence
holds. This requires either the strong assumption that the objective function
is quadratic, or the strong assumption that all stochastic processes are i.i.d.
or (conditionally) Gaussian. 6 DP is also feasible if the underlying probability
space is �nite or countable. Assuming countability is stronger than the norm
in economics and �nance, however, and does not meet Aliprantis and Bor-
der�s [1] dictum that �[t]he study of �nancial markets requires models that
are both stochastic and dynamic, so there is a double imperative for in�nite
dimensional models.�

This paper takes a di¤erent tack. Following Bertsekas and Shreve [10], a rich
in�nite-dimensional model of uncertainty is developed that is similar to the
measure-theoretic approach in [49]. Within this framework, the DP algorithm
can be implemented for the stochastic problem and results can be obtained
that are nearly as strong as those available for deterministic problems. In
particular, the existence of a unique optimum that satis�es the principal of
optimality can be shown. I further prove that the solution inherits di¤erentia-
bility. These results imply that the optimum can be characterized by stochastic
Euler equations.

The main bene�t of this approach is that applicability of the results is not
restricted by strong assumptions on uncertainty. The regularity conditions�
certain measurability requirements� are the least restrictive available, and
are economically innocuous. As a result, the validity of many previous results,
which depended on the existence of stochastic Euler equations, is broadly es-
tablished. Although the method is speci�cally developed for stochastic MIUF
models due to the central importance of risk in �nancial models, it should
be clear that the method applies to other dynamic economic models that in-
corporate contemporaneous uncertainty, such as models with search costs or
information restrictions.

The organization of this paper is as follows. Section 2 presents the dynamic

6 This approach is commonly used in the �nance literature [e.g. 16, 21]
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decision problem. Section 3 lays out the measure-theoretic apparatus used to
model expectations. Section 4 discusses measurable selection, which is nec-
essary for the DP results. Section 5 reviews the stochastic DP approach to
solving the decision problem. Conditions guaranteeing the existence of an op-
timal plan that satis�es the principal of optimality are developed. The optimal
plan is shown to be stationary, non-random, and (semi-) Markov. Section 6
proves that di¤erentiability of the solution follows from di¤erentiability of the
utility function. This result combined with the results in the previous section
formally supports the derivation of the stochastic Euler equations. The last
section provides a short conclusion.

2 Household Decision Problem

The model is based on the in�nite-horizon stochastic household decision prob-
lem in [3]. The model is very general in that preferences are de�ned over an
arbitrary (�nite) number of assets and goods, but the form of the utility func-
tion is not speci�ed. Results proven for this model, will hold for more restrictive
stochastic MIUF models. Similar results also apply to �nite horizon versions,
except that the optimal policy would be time-varying.

The (representative) consumer attempts to maximize utility over an in�nite
horizon in discrete time. De�ne C to be the household�s survival set: a subset
of the n-dimensional nonnegative Euclidean orthant. Let Y = Rk+1�C where
R represents the real numbers. The complete consumption space is the product
space Y � Y � : : :

Let the consumption possibility set for any period s 2 ft; t+ 1; : : : ;1g, S (s),
be de�ned as follows:

S (s) =

8>><>>:(as; As; cs) 2 Y
������

nP
j=1

pjscjs �
kP
i=1

h
(1 + �i;s�1)p

�
s�1ai;s�1 � p�sais

i
+(1 +Rs�1) p

�
s�1As�1 � p�sAs + Is

9>>=>>;
(1)

where, for each period s, as = (a1s; : : : ; aks) is a k-dimensional vector of
planned real asset balances where each element ais has a nominal holding-
period yield of �is, As is planned holdings of the benchmark asset which has
an expected nominal holding period yield of Rs, cs = (c1s; : : : ; cns) is a n-
dimensional vector of planned real consumption of non-durable goods and
services where each element cis has a price of pis, Is is the nominal value of
income from all other sources, which is nonnegative, and p�s is a true cost-of-
living index de�ned as a function over some non-empty subset of the pis. 7

7 The assumption that a true cost-of-living index exists is trivial, because, the
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Prices, including the aggregate price, p�s, and rates of return are stochastic
processes. Note that the construction of Y allows for short-selling.

For the stochastic processes, the information set must be speci�ed. It is as-
sumed that current prices and the benchmark rate of return are known at the
beginning of each period and current interest on all other assets is realized at
the end of each period. More speci�cally, for all i and s, pis, p�s, Rs (and Rs�1)
and �i;s�1 are known at the beginning of period s, while �is is not know until
the end of period s. Since their returns are unknown in the current period,
the assets, as, are risky. Despite the uncertainty, the constraint contains only
known variables in the current period, so the consumer can satisfy (1) with
certainty.

The consumer is assumed to maximize a utility function over the complete
consumption space, including all assets except for the benchmark asset. Con-
sequently, the setup resembles a standard money-in-the-utility-function model.
In the stochastic decision problem, however, the assets can be either monetary
or �nancial assets.

Utility is assumed to be intertemporally additive; a standard assumption in
expected utility models. In addition, although it is not necessary, preferences
are assumed to be independent of time and depend on the distance from t
only through a constant, subjective, rate of time preference, so that

U (at; ct; at+1; ct+1; : : :) =
1X
s=t

 
1

1 + �

!s�t
u (as; cs) (2)

where 0 < � <1 is the subjective rate of time preference. The period utility
function u ( ) inherits regularity conditions from the total utility function
U ( ) :

The consumer, therefore, solves, at time t,

sup

8<:u (at; ct) + Et

24 1X
s=t+1

 
1

1 + �

!s�t
u (as; cs)

359=; (3)

subject to (as; cs; As) 2 S (s) for all s 2 ft; t+ 1; : : : ;1g and the transversal-
ity condition

lim
s!1

Et

" 
1

1 + �

!s�t
As

#
= 0 (4)

where the operator Et[ ] denote expectations formed on the basis of the infor-
mation available at time t. The transversality condition, which is standard in

limiting case is a singleton so that p�s = pj�s, where pj�s denotes the price of a
numéraire good or service. Note that the previous literature denoted the vector of
goods and services by xt.
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in�nite horizon decisions, rules out unbounded borrowing at the benchmark
rate of return. The necessity of transversality conditions in stochastic prob-
lems is shown in [35, 36]. This condition implies that the constraint set is
bounded.

It might appear that the problem given by (3) is deterministic in the cur-
rent period. If this was actually the case, the model can already be solved
by DP. But, allowing asset returns to be risky introduces contemporaneous
uncertainty. As an alternative, contemporaneous uncertainty for goods could
be speci�ed, for example by assuming search costs. However, assuming that
assets are exposed to risk is a more natural method of introducing such uncer-
tainty. Explicitly de�ning how expectations are formed, is the subject of the
next section.

3 Expectations

The decision problem de�ned in equation (3) is not fully speci�ed, as the ex-
pectations operator Et[ ] is not formally de�ned. Without some further struc-
ture, neither stochastic DP nor other solution techniques can be applied to
the problem. Since the underlying probability space is assumed to be uncount-
able, the expectation operator becomes an integral against some probability
measure.

A di¢ culty with the measure theory approach is that integration against a
measure is not well-de�ned for all functions. 8 Therefore, the measurability of
functions will be central to the ability to derive a stochastic DP solution. Fur-
thermore, the measurable space cannot be arbitrary. The following standard
de�nition will, therefore, be used repeatedly:

De�nition 3.1 (Measurable function) Let X and Y be topological spaces
and let FX be any �-algebra on X and let BY be the Borel �-algebra on Y . A
function f : X ! Y is F-measurable if f�1(B) 2 FX 8B 2 BY :

Following [49], the disturbance spaces are assumed to be Borel spaces. This
implies that the decision and constraint spaces for the in�nite-horizon prob-
lem are also Borel spaces, because Euclidean spaces, Borel subsets of Borel
spaces, and countable Cartesian products of Borel spaces are all Borel spaces.

8 The outer integral, which is well-de�ned for any function, could be used. Not
only is there no unique de�nition for the outer integral, but it is not a linear op-
erator. Consequently, expectations would not be additive. Recursive methods, such
as DP, require additivity so that the overall problem can be broken into smaller
subproblems.
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The formulation of the constraint set in [3] assumed compactness. Compact-
ness along with the additional assumptions, not made by [3], that are needed
for semicontinuous problems [10, pg. 208-210], or upper hemi-continuity [49,
pg. 56], would allow the problem to be solved using only Borel measurabil-
ity. As in [10], instead of assuming compactness and the necessary ancillary
assumptions, a solution is sought within a richer set of functions: universally-
measurable functions. Relaxing the measurability restrictions, which expands
the class of possible solutions, is more appealing than imposing strong com-
pactness restrictions. Section 5.3 discusses these trade-o¤s further.

Transition functions are commonly used to incorporate stochastic shocks into
a functional equation [see 49, pg. 212]. The current treatment is similar, except
instead of beginning with transition functions, stochastic kernels are employed.

De�nition 3.2 (Stochastic Kernel) Let X and Y be Borel spaces with BY

denoting the Borel �-algebra. Let P (Y ) denote the space of probability mea-
sures on (Y;BY ). A stochastic kernel, q(dy j x), on Y given X is a collection
of probability measures in P (Y ) parameterized by x 2 X. If F is a �-algebra on
X, and 
�1(BP (Y )) � F where 
 : X ! P (Y ) is de�ned by 
(x) = q(dy j x),
then q(dy j x) is F-measurable. If 
 is continuous, q(dy j x) is said to be
continuous.

A stochastic kernel is a special case of a regular conditional probability for
a Markov process, de�ned in [48, De�nition 6, pg. 226]. In abstract terms,
if x is taken to represent the state of the system at time t and the sys-
tem is Markovian, then, from [48, Theorem 3, pg. 226] and the properties of
Markov processes, the conditional expectation operator applied to an element
of Y can, formally be viewed as an integral against the stochastic kernel, i.e.
Et [f (x; y)] =

R
f(x; y) q(dy j x). As this de�nition requires measurability of

the function, a measurability assumption is necessary to de�ne expectations,
even before a solution is sought. If a function, de�ned on the Cartesian product
ofX and Y , is Borel-measurable and the stochastic kernel is Borel-measurable,
then

R
f(x; y) q(dy j x) is Borel-measurable [10, Proposition 7.29, pg. 144], i.e.

the conditional expectation is Borel-measurable. Integration de�ned this way
operates linearly and obeys classical convergence theorems. Also, the integral
is equal to the appropriate iterated integral on product spaces. These state-
ments will be clari�ed in the next section.

As the state space for the problem has not been de�ned, it may appear that the
stochastic kernel is limited in that it only represents conditional expectations
for Markovian systems. In fact, non-Markovian processes can always be refor-
mulated as Markovian by expanding the state space. In the sequel, the state
space for the problem will be formulated so that the process is Markovian.
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4 Measurable Selection

Borel measurability, by itself, is not adequate to prove the existence of the solu-
tion. Bertsekas and Shreve [10] address this problem through a richer concept
of measurability. Their apparatus includes upper semianalytic functions and
measurability with regard to the universal �-algebra. De�nitions and relevant
results are presented below; proofs can be found in [1, 10]. 9 The key relation
is that the universal �-algebra includes the analytic �-algebra, which in turn
includes the Borel �-algebra. This implies that all Borel-measurable functions
are analytically measurable, and that all analytically measurable functions are
universally measurable. Thus the move to universal measurability is, relative
to the Borel model, relaxing a constraint, instead of imposing a restriction.
By moving to universal-measurability, the information set is enriched and the
measurability assumptions are technically relaxed. Such a relaxation does no
damage to the economics behind the model. The results are standard and the
proofs are omitted.

Borel measurability is not adequate for DP, because the orthogonal projection
of a Borel set is not necessarily Borel measurable Speci�cally, if f : X � Y !
R�, where R� is the extended real numbers, is given and f � : X ! R� is de�ned
by f �(x) = supy2Y f(x; y) then for each c 2 R, de�ne the set

fx 2 X j f �(x) > cg = projX (f(x; y) 2 X � Y j f(x; y) > cg) (5)

where projX( ) is the projection mapping from X � Y onto X. If f( ) is
Borel-measurable then

f(x; y) 2 X � Y j f(x; y) > cg (6)

is Borel-measurable, but fx 2 X j f �(x) > cg may not be Borel-measurable
([11], [22, pg. 328-329], and [49, pg. 253]).

The DP algorithm repeatedly implements such projections, so the conditional
expectation of functions like f �( ) will need to be evaluated, requiring that
the function is measurable. This leads to the de�nition of analytic sets, the
analytic �-algebra, and analytic measurability:

De�nition 4.1 (Analytic sets) A subset A of a Borel space X is analytic
if there exists a Borel space Y and Borel subset B of X � Y such that A =
projX(B). The �-algebra generated by the analytic sets of X is referred to as
the analytic �-algebra, denoted by AX , and functions that are measurable with
respect to it are called analytically measurable.

9 Further references include [22, 24, 38, 48, 49].
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Davidson [22, pg. 329] refers to analytic sets as �nearly�measurable because,
for any measurable space and any measure, �, on that space,the analytic sets
are measurable under the completion of the measure. The completion of a
space with respect to a measure involves setting �(E) = �(A) for any set
E such that A � E � B whenever �(A) = �(B). E¤ectively, this assigns
measure zero to all subsets of measure zero sets [22, pg. 39].

Analytic sets address the problem of measurable selection within a dynamic
program, because, if X and Y are Borel spaces, and, if A � X is analytic
and f : X ! Y is Borel-measurable, then f(A) is analytic. This implies that
if B � X � Y is analytic then projX(B) is also analytic. Analytic sets are the
smallest groups of sets such that the projection of a Borel set is a member of
the group [1]. Analytic sets are used to de�ne upper semianalytic functions as
follows:

De�nition 4.2 Let X be a Borel space and let f : X ! R� be a function.
Then f( ) is upper semianalytic if fx 2 X j f(x) > cg is analytic 8c 2 R.

The following result is key for the application of the DP algorithm:

Lemma 4.3 Let X and Y be Borel spaces, and let f : X � Y ! R� be upper
semianalytic, then f � : X ! R� de�ned by f �(x) = sup

y2Y f(x; y) is upper
semianalytic.

Two important properties of upper semianalytic functions are that the sum
of such functions remains upper semianalytic, and if f : X ! R� is upper
semianalytic and g : Y ! X is Borel measurable, then the composition f � g
is upper semianalytic. Most importantly, the integral of a bounded upper
semianalytic function against a stochastic integral is upper semianalytic. This
is stated as a lemma:

Lemma 4.4 Let X and Y be Borel spaces and let f : X�Y ! R� be a upper
semianalytic function either bounded above or bounded below. Let q(dy j x) be
a Borel- measurable stochastic kernel on Y given X. Then g : X ! R� de�ned
by g(x) =

R
Y
f(x; y) q(dy j x) is upper semianalytic.

Semianalytic functions have one relevant limitation. If two functions are ana-
lytically measurable, their composition is not necessarily analytically measur-
able. This di¢ culty can be overcome moving to the richer universally measur-
able �-algebra: 10

De�nition 4.5 (Universal �-algebra) Let X be a Borel space, P (X) be the
set of probability measures on X, and let BX(�) denote the completion of BX

10 The slightly tighter, but less intutive, �-algebra of limit measureable sets would
be su¢ cient. Again, moving to the larger class does not impose any restrictions.
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with respect to the probability measure � 2 P (X). The universal �-algebra UX
is de�ned by

UX =
\
�2P (X)BX(�): (7)

If A 2 UX , A is called universally measurable, and functions that are measur-
able with respect to UX are called universally measurable.

The universally-measurable �-algebra is the completion of the Borel �-algebra
with respect to every Borel measure. Consequently, it does not depend on any
speci�c Borel measure. Note that every Borel subset of a Borel space X is
also an analytic subset of X, which implies that the �-algebra generated by
the analytic sets is larger than the Borel �-algebra. The fact that analytic sets
are measurable under the completion of any measure implies that they are
universally-measurable, so Bx � AX � Ux:

Universal measurability is the last type of measurability that will be needed to
implement stochastic DP as universally measurable stochastic kernels will be
used in the DP recursion. Of course, if a stochastic kernel is Borel-measurable,
it is universally measurable. Integration against a universally measurable sto-
chastic kernel operates linearly, obeys classical convergence theorems, and it-
erates on product spaces, as shown by the following theorem:

Theorem 4.6 Let X1; X2; : : : be a sequence of Borel spaces, Yn = X1 � � � � �
Xn, and Y = X1 � X2 � � � � . Let � 2 P (X1) be given and, for n = 1; 2; : : :,
let qn(dxn+1 j yn) be a universally measurable stochastic kernel on Xn+1 given
Yn. Then for n = 2; 3; : : :, there exist unique probability measures rn 2 P (Yn)
such that 8X1 2 BX1 ; : : : ; Xn 2 BXn

rn(X1 \X2 \ � � � \Xn) =
Z
X1

Z
X2

� � �
Z
Xn

qn�1(Xn j x1; : : : ; xn�1)

� qn�2(dxn�1 j x1; : : : ; xn�2) : : :� q1(dx2 j x1)�(dx1) (8)

If f : Yn ! R� is universally measurable, and the integral is well-de�ned, 11
thenZ
Yn

fdrn =
Z
X1

Z
X2

� � �
Z
Xn

f(x1; : : : ; xn) qn�1(Xn j x1; : : : ; xn�1)

� qn�2(dxn�1 j x1; : : : ; xn�2)� � � � � q1(dx2jx1)�(dx1): (9)

There further exists a unique probability measure r 2 P (Y ) such that for each
n the marginal of r on Yn is rn.

The formal de�nition of the conditional expectations operator is, therefore,

11 The integral is well-de�ned if either the positive or negative parts of the function
are �nite. Such a function will be called integrable.
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the integral of the function versus rn or r. This de�nition allows universally
measurable selection:

Theorem 4.7 (Measurable Selection) Let X and Y be Borel spaces, D 2
X � Y be an analytic set such that Dx = fy j (x; y) 2 Dg, and f : D ! R� be
an upper semianalytic function. De�ne f � : projX(D)! R� by

f �(x) = sup
y2Dx

f(x; y): (10)

Then the set I = fx 2 projX(D) j for some yx 2 Dx, f(x; yx) = f �(x)g is uni-
versally measurable, and for every � > 0, there exists a universally measurable
function � : projX(D) ! Y such that Gr(�) � D and for all x 2 projX(D)
either

f [x; �(x)] = f �(x) if x 2 I (11)

or

f [x; �(x)] �
8<:f �(x)� � if x =2 I and f �(x) <1
1=� if x =2 I and f �(x) =1

(12)

The selector obtained in Theorem 4.7, f [x; �(x)] is universally measurable.
If the function � ( ) is restricted to be analytically measurable, then I is
empty and (12) holds. In this case, the selector is not necessarily universally
measurable. For Borel-measurable functions �( ), the analytic result does not
hold uniformly in x. The strong result given by (11) is only available for
universally measurable functions. Similarly, strong results are available for
Borel-measurable functions if signi�cantly stronger regularity assumptions are
maintained. 12 The weaker regularity conditions are appealing, as they allow
a solution without imposing restrictions on the economics of the problem.

5 Stochastic Dynamic Programming

There are several issues with simply applying DP to the stochastic MIUF
problem. First, the functional form of the utility function is not speci�ed, as
doing so would restrict the applicability of the results. Second, as previously
discussed, there are a number of technical di¢ culties in applying DP methods
in a general stochastic setting. Section 3�s measure theory was developed to
overcome these di¢ culties. 13

12 In particular, D must be assumed to be compact, and f must be upper semicon-
tinuous. This is the approach taken in [49].
13 For further references to DP in measure spaces, see [11, 12, 13, 27, 31, 50].
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Three tasks are repeatedly performed in the DP recursion. First, a conditional
expectation is evaluated. Second, the supremum of an extended real-valued
function in two (vector-valued) variables, the state and the control, is found
over the set of admissible control values. Finally, a selector which maps each
state to a control that (nearly) achieves the supremum in the second step is
chosen. Each of these steps involves mathematical challenges in the stochastic
context. An especially important concern is making sure that the measurability
assumptions are not destroyed by any of the three steps.

The �rst and second steps require that the expectation operator can be iter-
ated and interchanged with the supremum operator. As shown in Section 4,
these requirements are met by the integral de�nition of the expectations op-
erator, for either the Borel- or universally-measurable speci�cations. Step two
encounters a problem with measurability, because of the issue with projections
of Borel sets also discussed in the previous section. Analytic-measurability is
su¢ cient to address this particular problem, but such measurability is not
necessarily preserved by the composition of two functions. By using semiana-
lytic functions and assuming universal-measurability, not only is this problem
solved, but measurable selection is also possible under mild regularity condi-
tions. Consequently, all three steps of the DP algorithm can be implemented
for the stochastic problem. Consequently, the existence of an optimal or nearly
optimal program can be shown and the principal of optimality holds for the
(near) optimal value function.

To show that these results are applicable to stochastic MIUF models, the prob-
lem laid out in (3) is mapped into Bertsekas and Shreve�s general stochastic
DP model. One adjustment is necessary as Bertsekas and Shreve de�ne lower
semianalytic functions rather than upper semianalytic functions, because their
exposition addresses the �nding the in�mum of a function. This di¤erence re-
quires careful adjustment of their regularity conditions.

5.1 General Framework

Following Bertsekas and Shreve [10, pg. 188-189], the general in�nite horizon
model is de�ned as follows:

De�nition 5.1 (Stochastic Optimal Control Model) A in�nite horizon
stochastic optimal control model is an eight-tuple (X; Y; S; Z; q; f; �; g) where:

X State space: a non-empty Borel space;
Y Control space: a non-empty Borel space;
S Control constraint: a function from X to the set of non-empty subsets of Y .
The set � = f(x; y) j x 2 X; y 2 S(x)g is assumed to be analytic in X � Y ;

Z Disturbance space: a non-empty Borel space;

12



q(dzjx; y) Disturbance kernel: a Borel-measurable stochastic kernel on Z given
X � Y ;

f System function: a Borel-measurable function from X � Y � Z to X;
� Discount factor: a positive real number; and
g One-stage value function: a upper semianalytic function from � to R�.

The �ltered probability space used in the stochastic optimal control model
consists four elements: 1) the (Cartesian) product of the disturbance space
with the in�nite product of the state and control spaces, Z� (�1i=t (X � Y )i);
2) a �-algebra (generally universally measurable) on that product space; 3) the
probability measure de�ned in Theorem 4.6; and, 4) the �ltration de�ned by
the restriction to the product of the state and control spaces that have already
occurred,

�
�s�1i=t (Xi � Yi)

�
�Xs where it is understood that each subscripted

space is a copy of the respective space.

Establishing the existence of a solution to a stochastic optimal control model
means establishing the existence of an optimal policy for the problem. Specif-
ically, the following de�nitions from [10] are used:

De�nition 5.2 (Policy) A policy is a sequence � = (�t; �t+1; : : :) such that,
for each s 2 ft; t+ 1; : : :g,

�s(dys j xt; yt; : : : ; ys�1; xs) (13)

is a universally measurable stochastic kernel on Y , given X�Y �� � ��Y �X
satisfying

�s(S(xs) j xt; yt; : : : ; ys�1; xs) = 1; (14)

for every (xt; yt; : : : ; ys�1; xs). If for every s, �s is parameterized by only xs,
then �s is a Markov policy. Alternatively, if for every s, �s is parameterized
by only (xt; xs), then �s is a semi-Markov policy. The set of all Markov poli-
cies, �, is contained in the set of all semi-Markov policies, �0. If for each
s and (xt; yt; : : : ; ys�1; xs), �s(dys j xt; yt; : : : ; ys�1; xs) assigns mass one to
some element of Y , � is non-randomized. If � is a Markov policy of the form
� = (�t; �t; �t; : : :), it is called stationary.

De�nition 5.3 (Value Function) Suppose � is a policy for the in�nite hori-
zon model. The (in�nite horizon) value function corresponding to � at x 2 X
is

V� (x) =
Z " 1X

k=0

�kg (xk; yk)

#
dr (�; �x)

=
1X
k=0

�
�k
Z
g (xk; yk) drk+t (�; �x)

� (15)

where, for each � 2 �0 and � 2 P (X), r(�; �x) is the unique probability
measure de�ned in equation (4.6) and, for every k, the rk+t(�; �x) is the ap-
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propriate marginal measure. 14 The (in�nite horizon) optimal value function
at x 2 X is V �(x) = sup�2�0 V� (x).

Note that the optimal value function is de�ned over semi-Markov policies; this
is without loss of generality. Furthermore, Bertsekas and Shreve [10, pg. 216]
show that the optimal value can be reached by only considering Markov poli-
cies. The advantage of including semi-Markov policies is that the optimum
may require a randomized Markov policy, but only need a non-randomized
semi-Markov policy. Finally, the Jankov-von Neumann theorem guarantees
the existence of at least one non-randomized Markov policy so � and �0 are
non-empty.

The following de�nes optimality for policies:

De�nition 5.4 (Optimal policies) If � > 0, the policy � is �-optimal if

V� (x) �
8<:V �(x)� � if V �(x) <1
1=� if V �(x) =1

(16)

for every x 2 X. The policy � is optimal if V� (x) = V � (x).

In the next subsection, equation (3) is restated in this optimal control frame-
work. The last subsection addresses what conditions are need to guarantee the
existence of a (nearly) optimal policy.

5.2 Restating the Household Problem

Embedding the household decision problem into this framework requires spec-
ifying the state and control spaces. Since the spaces in this problem are all
�nite Euclidean spaces, the state and control spaces will be Borel no matter
how de�ned. For a utility problem, it is natural to generally de�ne �prices�
as states and �quantities�as controls, but there is no unique speci�cation re-
quired for the DP algorithm. Also, if the utility function demonstrated habit
persistence, as in Barnett and Wu [5], lagged consumption variables would
naturally be state variables in the current stage.

De�ne the period s states by xs = (�s; s), where �s = (as�1; As�1) and  s
denotes the vector of prices, interest rates and other income that were realized

14 The interchange of the integral and the summation is justi�ed by either the
monotone or bounded convergence theorems.
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at the beginning of period s, normalized by p�s,

 s =

 �
1 + �1;s�1

� p�s�1
p�s

; : : : ;
�
1 + �k;s�1

� p�s�1
p�s

;

(1 +Rs�1)
p�s�1
p�s

;
p1;s
p�s
; : : : ;

pn;s
p�s

;
Is
p�s

!
: (17)

The period s controls are de�ned to be ys = (�s; cs) where �s = (as; As). The
state space X is (2k + n+ 2)�dimensional Euclidean space, and the control
space Y is a subset of (k + n+ 1)�dimensional Euclidean space. This notation
is useful in what follows. Again note that, for s < 1, elements of as and As
may be negative, so that short-selling is allowed.

The budget constraint can be used to eliminate one of the controls, because
the constraint will hold exactly at every time-period for any optimal solution.
Therefore, a redundant control has been speci�ed and the set of admissible
controls actually lie in a (k + n)-dimensional linear subspace of Y . Besides
satisfying the budget constraint, the control variables need to be inside the
survival set. By leaving in the redundant control, it is easier to explicitly
specify this constraint. The controls set can be written as a function of only
period s states and controls as

S (x) =

8<:y 2 Y
�����
k+1X
i=1

(yi �  ixi) +
k+1+nX
j=k+2

 jyj �  k+n+2 � 0
9=; (18)

where the period subscript s has been suppressed. The �rst key assumption is

Criterion 5.5 Assume that � = f(x; y) j x 2 X; y 2 S(x)g is analytic in
X � Y .

The system function has a relatively simple form. It is de�ned by

xs+1 =
�
�s+1; s+1

�
= f (xs;ys; zs) = (�s; s + zs) (19)

In words, the �rst partition of the states evolves according to the simple rule
�s+1 = �s, and the second evolves as a state-dependent stochastic process,
according to  s+1 =  s+ zs.

15 If zswas a pure white noise process,  s would
be a random walk.

The discount factor is de�ned by � = 1=(1 + �) and satis�es 0 < � < 1.
The one-stage value function g (xs; ys) is simply the period utility function
(g (xs;ys) = g (ys) = u (as; cs)), so it is a function of only the controls. 16 The

15 This would have to slightly modi�ed to account for the model in [5] that includes
habit persistence.
16 Recall that there is a redundant control.
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framework would allow g ( ) to be time-varying or to depend on the states,
however, this would complicate the derivation of stochastic Euler equations
in Section 6. The remaining assumption, which completes the mapping of the
stochastic utility problem into the DP model, is:

Criterion 5.6 Assume that g(y) is an upper semianalytic function from � to
R+.

5.3 Existence of a Solution and the Principal of Optimality

The existence of a solution to the household decision problem or equivalently
the existence of a (nearly) optimal policy can now be proved. First, as it is
easier, the optimal value function is shown to satisfy a stochastic version of
Bellman�s equation and the Principal of Optimality. The result is most cleanly
stated using the following de�nition:

De�nition 5.7 (State transition kernel) The state transition kernel onX
given X � Y is de�ned by

t(B j x; y) = q(fz j f(x; y; z) 2 Bg j x; y) = q(f�1(B)(x;y) j x; y): (20)

Thus, t(B j x; y) is the probability that the state at time (s+ 1) is in B given
that the state at time s is x and the sth control is y. Note that t(dx0 j x; y)
inherits the measurability properties of the stochastic kernel.

Then the following mapping helps to state results concisely:

De�nition 5.8 Let V : X ! R� be universally measurable. De�ne the opera-
tor T by

T (V ) = sup
y2S(x)

8<:g(y) + �
Z
X

V (x0) t (dx0 j x; y)
9=; : (21)

Several lemma�s characterize the optimal policies. The following lemma shows
that the optimal value function for the problem satis�es a functional recursion
that is a stochastic version of Bellman�s equation.

Lemma 5.9 The optimal value function V � (x) satis�es V � = T (V �) for
every x 2 X.

16



PROOF. Note that g (y) is upper semianalytic and non-negative. This im-
plies that �g (y) is lower semianalytic and non-positive. Also

eV� (x) = Z " 1X
k=0

�k (�g (xk+t; yk+t))
#
dr (�; �x) = �V� (x) (22)

and eV � (x) = inf�2� eV (x) = �V � (x). Then from Proposition 9.8 in [10,
pg. 225], eV �(x) = inf

y2Y

�
�g(y) + �

Z
X

eV � (x0) t (dx0 j x; y)
�

(23)

since �g(y) satis�es their assumption labeled (N) on page 214. Taking the
negative of each side implies the result as the negation can be taken inside the
integral. 2

This necessity result implies that the optimal policy would be a �xed point of
the mapping which is implicitly de�ned in the lemma. The following su¢ ciency
result implies that a stochastic version of Bellman�s principal of optimality
holds for stationary policies.

Lemma 5.10 (Principal of Optimality) Let � = (�; �; : : :) be a stationary
policy. Then the policy is optimal iff V� = T

�
V�

�
for every x 2 X.

PROOF. Following the same argumentation as in the previous lemma, given
the properties of g (y) the result holds for eV� (x) by Proposition 9.13 in [10,
pg. 228], which implies the result. 2

Before examining existence of optimal policies, note that the measurability
assumptions already imply the existence of an �-optimal policy. From Propo-
sition 9.20 in [10, pg. 239], the non-negativity of the utility function is enough
to assert the existence of an �-optimal policy using similar arguments as in
the previous lemmas.

Lemma 5.11 For each � > 0, there exists an �-optimal non-randomized semi-
Markov policy for the in�nite horizon problem. If for each x 2 X there exists a
policy for the in�nite horizon problem, which is optimal at x, then there exists
a semi-Markov (randomized) optimal policy.

The fact that existence of any optimal policy is su¢ cient for the existence of a
semi-Markov randomized optimal policy is important. The primary concern is
with the �rst period return or utility function. For the initial period, the semi-
Markov �-optimal policy is Markov as clearly �t(dys j xt; xt) = �t(dys j xt). If
�-optimality is judged to be su¢ cient, then simply use g

�
�
�
t

�
where �

�
t is the

�rst element of the optimal policy. The principal of optimality would only hold
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approximately, however. Similarly, if an optimal policy does actually exist, the
randomness is not an issue as the optimal policy is non-random in the �rst
element. In that case, the principal of optimality may not hold as equation
(3) is only guaranteed to hold for stationary policies. Consequently, minimal
additional assumptions are useful.

Before making these additional assumptions, de�ne the DP algorithm as fol-
lows:

De�nition 5.12 (Dynamic Programming Algorithm) The algorithm is
de�ned recursively by

V0 (x) = 0 8x 2 X (24)
Vk+1 (x) = T (Vk (x)) 8x 2 X; k = 0; 1; : : : (25)

Proposition 9.14 of [10] implies that the algorithm converges for the problem
as stated in the following lemma.

Lemma 5.13 V1 = V �

Unfortunately, the convergence is not necessarily uniform in x. Additionally,
it is not possible to synthesize the optimal policy from the algorithm, as is the
case for deterministic problems, because Vk, while universally measurable, is
not necessarily semianalytic for all k.

The regularity assumptions are strengthened by imposing a mild boundedness
assumption.

Criterion 5.14 (Boundedness) Assume that 8i and 8s 2 ft; t + 1; : : :g,
 i;s> 0. Further assume that the single stage utility function contains no
points of global satiation.

Assuming Criterion 5.14 leads to stronger results. First, under this bound-
edness condition, the DP algorithm converges uniformly for any initial upper
semianalytic function not just zero. Furthermore, necessary and su¢ cient con-
ditions for the existence of an optimal policy are available.

Lemma 5.15 Assume Criterion 5.14 holds. Then for each � > 0, there exists
an �-optimal non-randomized stationary Markov policy. If for each x 2 X there
exists a policy for the in�nite horizon problem, which is optimal at x, then there
exists an unique optimal non-randomized stationary policy. Furthermore, there
is an optimal policy if and only if for each x 2 X the supremum in

sup
y2S(x)

8<:g (y)+�
Z
X

V � (x0) t (dx0 j x; y)
9=; (26)
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is achieved.

PROOF. Criterion 5.14 and the Transversality condition given in (4) imply
that g (y) is bounded over � so that 9b such that 8 (x; y) 2 �, g (y) < b.
Since g (y) � 0, obviously g (y) > �b. Also recall that � = 1=(1 + �) so that
0 < � < 1. This implies that the problem satis�es the assumption labeled (D)
in [10, pg. 214]. The lemma follows from Proposition 9.19, Proposition 9.12
and Corollary 9.12.1 in [10, pg. 228]. 2

Combining this lemma with lemma 5.10 implies that there exists an optimal
policy if and only if there exists a stationary policy such that V� = T

�
V�

�
for every x 2 X. It is clear that the �-optimal non-randomized stationary
Markov policy is the universally measurable selector from Theorem 4.7. If
universally measurable selection is assumed to be possible (i.e. the set I de�ned
in Theorem 4.7 is the entire set D), then the supremum will be achieved.
This assumption is weaker than requiring that Borel-measurable selection is
possible, as in Stokey and Lucas [49]. The assumption is also weaker than
the regularity conditions needed to solve semicontinuous models in [10], which
have Borel-measurable optimal plans. The following lemma, which follows from
Proposition 9.17 of [10] supplies a su¢ cient condition for the supremum to be
achieved.

Lemma 5.16 Under Criterion 5.14, if there exists a nonnegative integer k
such that for each x 2 X, � 2 R, and k > k, the set

Sk (x; �) =
�
y 2 S(x) j g (y)+�

Z
Vk (x

0) t(dx0 j x; y) > �
�

(27)

is compact in Y then there exists a non-randomized optimal stationary policy
for the in�nite horizon problem.

This is a weaker condition than assuming that the constraint sets are compact
or that � is upper hemi-continuous. If the supremum in (26) is achieved for
the initial state xt 2 X, the boundedness assumption implies that a unique
stationary non-random Markov optimal plan exists.

6 Stochastic Euler Equations

In this section, Euler equations for the stochastic decision are derived. The
usefulness of stochastic Euler equations is discussed in [49, pg. 280-283]. Al-
though necessary and su¢ cient conditions for the optimum to exist have been
established, the stronger characterization given by Euler equations is often
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needed and is always useful. Since the principal of optimality has been shown
to hold, Bellman�s equation can be used to derive stochastic Euler equations.
Of course, the optimal value function needs to satisfy additional regularity
conditions. In particular, it needs to be di¤erentiable. In addition, it must be
possible to interchange the order of integration. The interchange is possible,
for example, if each partial derivative of V is absolutely integrable ([38] and
[14, 49, Theorem 9.10, pg. 266-257]). In the present case, it is su¢ cient to show
that the value function is di¤erentiable on an open subset of xt, because of
Criterion 5.14. Then the value function meets the conditions in Mattner [44],
particularly the locally bounded assumption, and the interchange is valid. 17

The following two results are immediate implications of the envelope theorem.
The �rst proves that the optimal solution inherits di¤erentiability. The sec-
ond formally derives the stochastic Euler equations proposed in Barnett et al.
[3] and, more generally, demonstrates that stochastic Euler equations can be
validly derived for the class of models.

Theorem 6.1 If U ( ) is concave and di¤erentiable, then the value function
is di¤erentiable.

PROOF. Let � denote the optimal stationary non-random Markov policy.
Note that at time s, � is a function of xs. To simplify notation, let V (x) =
V� (x). Bellman�s equation implies

V (x) = g
�
� (x)

�
+ �

Z
Z

V
h
f
�
� (x) ; z

�i
p(dz j x; y) (28)

holds for any xt. Note xt+1 = f(yt; zt), so the value function within the integral
is being evaluated one period into the future. Let x0 denote the actual initial
state. For x 2 N (x0), where N (x0) is a neighborhood of x0, de�ne

J (x) = g
�
x; �

�
x0
��
+ �

Z
Z

V
h
f
�
�
�
x0
�
; z
�i
p(dz j x; y): (29)

In words, J (x) is the value function with the policy constrained to be the
optimal policy for x0. Clearly, J (x0) = V� (x

0) and, 8x 2 N (x0), J (x) �
V� (x) because � (x

0) is not the optimal policy for x 6= x0. If the original utility
function U ( ) is concave and di¤erentiable then so is u ( ) and therefore g ( ).
This assumption implies that J (x) is also concave and di¤erentiable. The
envelope theorem from [8] combined with the fact that the policy � is optimal
uniformly in x then implies that V� (x) is di¤erentiable for all x 2 int (X),
As prices and rates of return are assumed to be larger than zero, the only

17 The theorem actually applies to holomorphic functions, but the proof can be
readily adapted for �rst-order (real) di¤erentiable function.
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initial conditions for which V� (x) is not di¤erentiable are in�nite (positive or
negative) initial asset endowments, which can be excluded. 2

Theorem 6.2 (Stochastic Euler Equations) If U ( ) is concave and dif-
ferentiable. Then the stochastic Euler equations for (3) are,

@u (a�t ; c
�
t )

@ai
=
@u (a�t ; c

�
t )

@c0
� 1

1 + �
Et

24�1 + �i;t� p�t
p�t+1

@u
�
a�t+1; c

�
t+1

�
@c0

35 (30)

and

@u (a�t ; c
�
t )

@c0
=

1

1 + �
Et

24(1 +Rt) p�t
p�t+1

@u
�
a�t+1; c

�
t+1

�
@c0

35 (31)

where a�t and c
�
t are the controls speci�ed by the non-randomized optimal sta-

tionary policy and c0 is an arbitrary numéraire.

PROOF. Using the notation from the previous proof, the envelope theorem
implies that

V x

�
x0
�
= Jx

�
x0
�
=
@g(x; � (x))

@x

�����
x=x0

=
@g(� (x))

@x

�����
x=x0

(32)

where V x (x) is a vector-valued function whose ith element is given by

@g(x; � (x))=@xi: (33)

The di¤erentiability of the value function combined with the ability to inter-
change di¤erentiation with integration for the stochastic integral, imply that
the necessary conditions for � (x0) to be optimal are

@V y(x)

@y

�����
y=�(x0)

= 0 (34)

where @V =@y is a vector-valued function whose ith element is given by @V =@yi.
It follows that the stochastic Euler equation is

@g (y)

@y
+ �

Z
Z

V
0
y [f (y; z)]

@f (y; z)

@y
p (dz j x; y)

������
y=�(x)

= 0 (35)

where @g=@y is a k + n + 1 vector-valued function whose ith element @g=@yi,
@f=@y is a k+ n+1 by 2k+ n+2 matrix with i,j element @fj=@yi. Equation
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(32) can be used to replace the unknown value function, so that (35) becomes

@g (y)

@y
+ �

Z
Z

@g(y)

@x

@f (y; z)

@y
p (dz j x; y)

������
y=�(x)

= 0: (36)

The simple form of the system equation implies that

@f=@y =
h
I(k+n+1)�(k+n+1) 0(k+n+1)�(k+1)

i
; (37)

so that (36) becomes,

@g (y)

@y
+ �

Z
Z

@g(y)

@x
p (dz j x; y)

������
y=�(x)

= 0: (38)

Using the fact that there is a redundant control at the optimum, an element
can be eliminated from � (x). In particular, choose an arbitrary element of c.
Denote this numéraire element by c0, and the remaining n � 1 elements of c
by c�. Assume without loss of generality that p0 = p� so that  0 = 1 where
 0 is the element of  that coincides with c0. To further simplify notation,
let y�s denote y evaluated at the optimum at time s. Then using the obvious
notation, g (y�s) = g

�
��s; c

�
�; c

0�
�
and (38) implies that, for i 2 f1; : : : ; kg,

@g
�
��t ; c

�
�t; c

0�
t

�
@�i

�
@g
�
��t ; c

�
�t; c

0�
t

�
@c0

+�
Z
Z

�
 i;t+1

� @g(��t+1; c��t+1; c0�t+1)
@c0

p (dz j x; y�) = 0:

Also, taking the derivative with regards to yk+1 (the benchmark asset) implies

�
@g
�
��t ; c

�
�t; c

0�
t

�
@c0

+ �
Z
Z

�
 k+1;t+1

� @g(��t+1; c��t+1; c0�t+1)
@c0

p (dz j x; y�) = 0:

(39)
Substituting the original notation proves the result. 2

The stochastic Euler equations de�ne an asset pricing rule that is a strict
generalization of the consumption CAPM asset pricing rule. 18 Substituting
from (31) into (30) and using the linearity of the conditional expectations
operator implied by the linearity of the integral, produces

@u (a�t ; c
�
t ) =@ai=

1

1 + �
Et

"�
Rt � �i;t

� p�t
p�t+1

uc0
�
a�t+1; c

�
t+1

�#
(40)

18 There are, of course, n other equations for di¤erentiation with respect to elements
of c. These equations are simpler in that they are non-stochastic.
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where uc0
�
a�t+1; c

�
t+1

�
= @u

�
a�t+1; c

�
t+1

�
=@c0. The �rst order condition for a

simple utility maximization problem for consumption goods is @u(c)=@ci
@u(c)=@cj

= pi
pj
:

Similarly, the right-hand side of (40) de�nes the relevant information for assets�
relative prices.

7 Conclusion

Ljungqvist and Sargent [39, pg. xxi] state that there is an �art�to choosing the
right state variables so that a problem can be solved through recursive tech-
niques. They further argue that increasing the range of problems amenable
to recursive techniques has been one of the key advances in macroeconomic
theory. This paper has applied a di¤erent art: carefully de�ning the character-
istics of the state and control spaces. But the motivation is similar. The choice
of space and the subsequent measurability assumptions allow stochastic MIUF
models to be solved through the DP recursion. The results mirror those that
are available for deterministic dynamic problems: an unique solution exists
that can be di¤erentiated to derive (stochastic) Euler equations.

The method used in this paper requires regularity conditions that are less
restrictive than other approaches. Even more importantly, the regularity con-
ditions do not restrict the economics of the problem. Consequently, the re-
sults are broadly applicable to monetary and �nancial models, particularly
the many models where the existence of a solution was just assumed. The ap-
proach to modeling uncertainty can be applied to other stochastic economic
models, but introducing risk, as is done in this paper, is probably the clearest
motivation for introducing contemporaneous uncertainty.

The stochastic MIUF problem integrates monetary and �nance models, con-
taining important examples from each as special cases. Further work on in-
tegrating aspects of �nance into models of money could address both the
fact that technological and theoretical advances have been steadily increas-
ing the liquidity of risky assets and the fact there is little consensus on how
to model risk. The expected utility framework, whose underpinnings are for-
mally established in this paper, is the most commonly used approach, but
it is not universally accepted. It is not yet clear whether stochastic MIUF
models can incorporate alternative models of risk. Furthermore, the current
model addresses the decision of an individual consumer. Embedding the de-
cision problem in a market context would strengthen the connection between
the two literatures.
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