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Macroeconomists often employ time-invariant linear dynamic structural models to estimate the
responses of economic variables to stochastically independent structural shocks. Econometric models of
this form implicitly assume that the economic variables in the system are linear stochastic processes.'
The response of a linear stochastic process to a shock is completely characterized by the coefficients in its
moving average representation, called the impulse response function. Analysis of the impulse response
functions has been widely used to study linear macroeconomic models of the business cycle, money
demand, and the monetary transmission mechanism.’

If the economy is non-linear, its response to a shock is much more complex, and an econometric
model that erroneously assumes linearity will not capture important characteristics of the response to a
shock. In particular linear systems exhibit the principle of superposition, which means that, if the input
to a linear system is a summation of sine waves of given frequencies, the output will be a summation of
sine waves with the same frequencies. The principle of superposition does not hold for non-linear systems.
Therefore, non-linear economic systems have highly complex responses to structural shocks, which makes
it very difficult to isolate the sources of business cycle variation. For example, in a linear economic
model, a policy shock can induce variation in real output only at the same frequency as the shock. This
assumption is implicit in many studies of the business cycle.® In a non-linear economic system, business
cycle variation can be induced by a policy shock of any frequency, because the policy shock can interact
non-linearly with other structural disturbances.?

In this paper, we adapt a well-known univariate test for non-linearity to test a system of non-
stationary macroeconomic variables for non-linear dynamics. We focus on the case of integrated and
possibly co-integrated systems. We use Hall and Heyde’s (1980) representation theorem to show these
stationary co-integration relations will, generally, be non-linear stochastic processes, and develop a
sequential estimation procedure to test the stationary co-integration relations for non-linearity.

In Section I, we provide basic results on testing stationary time series for non-linear dynamics

using polyspectral methods. Hinich (1982) derives a test for non-linearity based on the property that



stationary linear stochastic processes have flat bispectra.” The Hinich bispectrum test explicitly requires
stationarity of the process being tested.®

In order to apply the bispectrum test, non-stationary data must be transformed to produce
stationary data. One type of non-stationarity that has been extensively investigated in economics is
integration. A time series that is integrated of order d has a stationary d difference. Integrated time
series can be reduced to stationarity either by differencing the level of the series, or through co-
integration.” Co-integration has become one of the most important empirical characterizations of
macroeconomic time series, and empirical analyses are often conditioned on the integration and co-
integration properties of the data.®

In Section II, we use a representation theorem due to Hall and Heyde (1980) to show that the co-
integration relations of an integrated system are generally stationary non-linear processes.” We propose a
sequential non-parametric testing procedure to test stationary co-integration relations for non-linear
dynamics. Bierens (1997, 1998) developed a non-parametric test for co-integration, based on Hall and
Heyde’s theorem. This test does not require linearity, which implies that the estimated co-integration
relations are valid even if the system is non-linear. We can test the resulting co-integration relations,
which are stationary, for non-linear dynamics using variants of Hinich’s (1982) non-parametric test for
non-linearity. Granger (1991) proposes several non-linear generalizations of co-integration including non-
linear error-correction. If our test rejects linearity of the stationary co-integration relations, non-linear
error-correction is one possibility.

In Section III, we apply our test to a system of short-term U.S. interest rates as an illustration.
We show that the Treasury bill rate, the commercial paper rate, and the federal funds rate are co-
integrated over the period 1971-1997. Short-term interest rates are well suited for non-linear testing,
because the power of tests for non-linear dynamics increase substantially with sample size, and short-term
interest rates have large sample sizes relative to other business cycle variables, such as real output and
inflation. In addition, discrete sampling of a continuous time series causes aliasing, which Hinich and

Patterson (1989) found empirically biases tests for mnon-linearity toward finding linearity.! We



constructed high frequency weekly interest rate data using an anti-aliasing filter, following Hinich and
Patterson (1985b, 1989), that minimizes the effect of aliasing."’ Using variants of Hinich’s (1982) test, we
find that the resulting stationary linear combinations are non-linear. These results are robust to sample
period and suggest that the untested linearity assumption implicit in many macroeconomic models may
be incorrect. In particular, our analysis suggests that interest rate spreads, which are important to the
monetary transmission mechanism, exhibit non-linear dynamics.

Appendix 1 describes our bispectrum estimator and the null distributions of the test statistics.
Appendix 2 discusses aliasing and anti-aliasing filter design.
I. Non-Linearity and Polyspectral Analysis

Let X, be a real, mean zero, third-order stationary stochastic process."” Define the first three
cumulants as C,(t) = E[X ], Cu(t,t,)=FE th th] , and  Cyy (L ,t,,t) = E[ th th Xt3] 1 Third-order
stationarity implies ¢, (t) =0 for all ¢ cC, (t,,t,)is a function only of 7 =(t, —-t,), and cC, (t ,t,,t;)is a
function only of 7, =(t, —t,) and7, =(t, -t;). We therefore denote the second and third-order cumulant
functions by C,, (T) and C,(7,,7,) respectively. These functions are assumed to be absolutely

summable. Under mild regularity conditions, X, has a representation of the form:
X =Y O, (1)
u=—c

where @, is a sequence of coefficients, and & is a serially uncorrelated white noise input sequence. In
this representation, X, is the output of a time-invariant linear filter applied to white noise input, but it is

not necessarily a linear process. X, is a linear sequence if & is stochastically independent.”” In general,

t
whiteness is not sufficient for stochastic independence unless the white noise sequence is Gaussian.

The response of a linear sequence to a shock is completely characterized by the transfer function

of the filter:

G(f)= 3 g, @)

u=-o0



If the input to a linear sequence is a sine wave of frequency f, the output will also be a sine wave with
frequency f The amplitude will be scaled by |G(f)]|, and the phase will be shifted by
tan(ImG(f)/ReG(f)) .16
A general model for a non-linear sequence is
X, =& &1 & 1 Eiarr Ernnres) (3)
where & 1is stochastically independent. If X, is causal, it does not depend on the future values of &,.
This is a common assumption that would not substantively affect our discussion. If & is a well-behaved

function it can be represented as a Volterra series:'’

X; = i 0.&-u + i i gu,vgt—ugt—v + i i i gu,v,wgt—ugt—vgt—w-{-'" (4)
u=—w U=—%0 V=t u

=—00 V=—00 W=—00
The response of the non-linear sequence to a shock will depend on generalized transfer functions of the

form:

G(f): i gue—i(2ﬂf)u’ G(f,g): i i gu,ve—i2ﬂ(fu+gv) s (5)

W= = v
If the input to a non-linear sequence contains components with frequencies f and g, then the output will
contain components with frequencies f, g, (f +9), 2f, 2¢, 2(f +9), 3f, 39, 3(f +9),..., and the amplitudes
and phases of these components will depend on the generalized transfer functions.

Tests for linearity and Gaussianity can be based on the higher-order polyspectra of stationary
sequences.’® In general, the k™-order polyspectrum is the Fourier transform of the k™-order cumulant
function. The second-order cumulant polyspectrum (power spectrum) is defined as the Fourier transform

of €y (7):
R1)= 3 Cu(DE™™ [ fc (6)
X s XX ’ 2

Similarly, the third-order cumulant polyspectrum (bispectrum) is defined as the second-order Fourier

transform of C,, (7,,7,) :

Bo(f,9)= 5 3 Cuu(ry, 7)™ (7)

T) =—00 T, =—00



(f,9)OD={(f,g): 0<f<(/2),g<f, 2f +g<B . If the second and third-order cumulant functions
are absolutely summable, then the power spectrum and the bispectrum exist and are well defined.

The power spectrum and bispectrum can be interpreted using the Cramér spectral representation

of X, :
X, = [0z, (1) 8)
where,
Eld, (1] =0. EI0Z, (A, (@)1= o (22 ©)
and
0 f+g#h

E[dZ, (f)dZ, (9)dZy (h)] = %3“ (10)

g)dfdg f+g=h’
The power spectrum describes the contribution to the expectation of the product of two Fourier
components whose frequencies are the same, whereas the bispectrum describes the contribution to the
expectation of the product of three Fourier components where one frequency is equal to the sum of the
other two. The integral of the power spectrum is equal to the variance of the sequence, C,, (0), and the
power spectrum can be interpreted as a decomposition of the variance by frequency. Similarly, the
bispectrum decomposes the skewness of the sequence, C,,, (0,0) , by pairs of frequencies.

Define the skewness function, I', (f,g), as the normalized square modulus of the bispectrum:

B.(TLOF
R(NP (IR (T +0)

rx(f.0)= (11)

Let & be a stochastically independent sequence, then P.(f)=c,(0) and B,(f,g)=c

EEE

(0,0) for all
(f,g)OD. This implies that a linear process has a constant skewness function equal to
M (f.9) =C...(0.0)°C.(0)°, because B (f)=|G(f)[ P.(f) and B, (f,9)=G(f)G(9)G (f +9)B.(f,g).”

If the stochastically independent input sequence is also Gaussian then

(0,0) =0 and I, (f,g) will be

CEEE

identically zero. These properties form the basis of Hinich’s (1982) and Rao and Gabr’s (1980) tests of
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Gaussianity and linearity. The tests used in this paper are based on Hinich (1982).” The null hypothesis



of the Hinich test that ', (f,Q)is constant for all frequency pairs is a necessary but not sufficient
condition for linearity.* These tests and their distributions under the null are described in Appendix 1.
II. Integration and Co-integration

Macroeconomic time series often appear to be subject to permanent shocks, and it has become a
standard practice to model these time series as non-stationary integrated processes.®® The polyspectral
tests for non-linearity cannot be applied directly to integrated time series, but they can be applied to
either the first differences or the co-integration relations. In this section, we develop a model, which
proves that stationary co-integration relations are generally non-linear processes.

Initially, we establish some notational conventions. Let (Q,F, ) denote a probability space. Let
T:Q - Q denote a one to one ergodic measure-preserving shift transformation. If X, (w) is a random
variable, then X, (w)=X,(T'w) defines a strictly stationary ergodic sequence.” Hall and Heyde (1980,
pp. 136) prove that X, (w) has a representation of the form:

X, (@)=Y, (@)+Z, (@)~ Za() . (12)

where Y, (@)=Y, (T'w) is a stationary martingale difference sequence, and Z, (w)=2Z,(T'w) such

that Z,(w) is in L' *" Explicit formulas for the representation are given by:
Yo = Z (E[X¢ IR 1-E[X [FLD) s (13)
K=o
and

Z,=3 EX D= 3 (X B Rl (14)

where {F,} is the filtration generated by the shift transform.

A stochastic sequence is said to be integrated of order one, 1(1), if the first difference of the
sequence is stationary.® TLet § be a g-dimensional |(1) vector sequence, § = (Qt,...,Sm)T. The first-
difference sequence is stationary and has the following representation:

S —84 =48 =X =Y 4 -4y, (15)
where Y, is a stationary vector martingale difference sequence, and Z, is a stationary vector sequence.”

The level of the integrated sequence



§ = ZYS ~Z,*tZ +§ (16)

is non-stationary and is dominated by the accumulated martingale difference which gives rise to the
permanent shocks.

A system of integrated time series is co-integrated if some linear combinations of the time series
are stationary. Co-integration can be defined as a reduced rank condition involving the covariance matrix
of the vector martingale difference. Let the covariance matrix have the form:

T —
E[\(‘YST]:%CC ifs=t

0 ifszt 17)

If C has reduced rank, (q-r), then there will exist r non-trivial vectors S, ,..., 3,

., called co-integration

vectors, such that ﬁ]TC =0, for all j=1...,r. Let B be the ¢ by r matrix H3 B, .5 B The linear

combinations, B[S , called co-integration relations are stationary, for all j=1,...,r .*

By contrast, the
(q-r)-dimensional sequence, B1S , called the common stochastic trends, is integrated but not co-
integrated, where B, is the ¢ by (q-r) orthogonal compliment matrix of B.%

The ¢-dimensional sequences AS and g?T ﬁEAES are both stationary.® The components of

AS have the form:

AS, =Y, +Z,-Z,,.,. (18)
Both Y, and Z; generally exhibit non-linear dependence, although Y, is a martingale difference and is
non-forecastable in the mean square metric, see Hinich and Patterson (1987). The co-integration relations
have the form,

BIS =B (Z -Z.)+BS, (19)
and have been purged of the effects of the permanent shocks generated by the martingale difference.
These relations are generally non-linear, because they are linear combinations of the potentially non-linear
components of (Z, =Z,,,) .*

Our proposed method for testing for whether co-integration relations are non-linear is to first

determine the number of co-integrating vectors using Bierens’ (1997, 1998) non-parametric test. We then



test the estimated co-integrating relations for Gaussianity and linearity using Hinich’s (1982) tests. This
sequential method allows us to test the stationary components of the system for non-linear dynamics.

Our method contrasts with the standard approach to co-integration.  Stationary linear
combinations of integrated variables are usually specified to follow a linear ARMA process or are included

in linear structural models. The standard linear vector error correction model (VECM) has the form:
p-1
AS :cr,ZS’T3_1+ZIFjAS_j+gt : (20)
&

If the model is co-integrated then the ¢ by r parameter matrices, @ and S, have rank r. The co-
integration relations enter the model linearly, through the coefficient vector a. The error-correction
model is usually estimated under the assumption that & is stochastically independent, which implies that
the co-integration relations are linear stochastic processes. Our discussion shows that co-integration does
not generally imply linearity, therefore, there is no reason to expect & to be either Gaussian or
independent.

Granger (1991) proposes three non-linear generalizations of co-integration. The first
generalization is that non-linear functions of the time series may be co-integrated in the sense that
0,(x,)and g,(x,) have a dominant property that the linear combination of non-linearly transformed
variables z =g, (X,)— Ag,(X,) does not exhibit. A second generalization is to allow time-varying co-
integration vectors. A third generalization is non-linear error correction, in which the co-integration

relations would enter the error-correction model through a non-linear function f, i.e.
p-1
AS = f(ﬂTS—l)+ZFjAS—j TE . (21)
<

A natural non-linear error correction specification is to allow mean reversion only for large

deviations of the co-integration relations from their means, so that f has the form:
f(2) = Ep , . (22)

In this case, z = ﬁTS behaves like a unit root in a neighborhood of its mean, but exhibits mean reversion

when it is outside the neighborhood. This model is a straightforward generalization of the standard error-



correction model that exhibits non-linear dynamics, but the linear combination, z =8'S , is not
generally stationary.® This last point is the main difference between our approach and non-linear error
correction. We show that co-integration relations can be non-linear stationary stochastic processes. If
our test rejects linearity, then the class of stationary non-linear error correction models could be
investigated as a possible model for the non-linearity. An alternative approach would be to model the co-
integration relation using any of the standard univariate non-linear models such as bi-linearity, threshold
auto-regression, non-linear moving average, etc.*

ITII. Empirical Results

In this section, we test a co-integrated system of short-term U.S. interest rates for non-linear
dynamics. We focus on interest rates because we can obtain a long, high frequency sample, which is
essential in testing for non-linearity. Ashley, Patterson, and Hinich (1986, pp. 171-173) show that the
power of the bispectrum test for non-linearity improves considerably as sample sizes increase, and has
very high power at sample sizes over one thousand against certain non-linear models.

Short-term interest rates on federal funds and on unsecured corporate and government debts are
frequently included in studies of the business cycle, money demand, and the monetary transmission
mechanism. Improper sampling of high frequency time series leads to a type of bias called aliasing.
Hinich and Patterson (1989) found that correcting for aliasing improved the performance of the
bispectrum test for non-linearity. We obtained business daily data for the federal funds rate, the
secondary market rate on one-month treasury bills, and the interest rate on one-month commercial paper
from 4/08/1971 to 8/29/1997.>" These interest rates are converted to one-month holding period yields on
a bond interest basis, and are passed through an anti-aliasing filter. The anti-aliasing filter is designed to
remove the high-frequency power in the daily rate series to minimize the bias caused by converting the
daily time series to weekly time series.® The daily rates are converted to weekly rates by sampling the
filtered daily rates every seven days. These weekly rates are denoted as CP1M, TB1IM, and FF. We

show that these rates are integrated and co-integrated and exhibit non-linear serial dependence.



The method we use to solve the aliasing problem follows Hinich and Patterson (1985b, 1989).
The problems of aliasing and anti-aliasing filter design are discussed in detail in Appendix 2.

II1.1 Integration and Tests for Non-Linearity

The assumption that short-term U.S. interest rates are integrated is quite common.* We ran a
battery of univariate tests of the unit root and stationarity hypotheses on In(CP1M), In(TB1M), In(FF),
and their first differences. ADF1 and ADF2 are augmented Dickey-Fuller tests of the unit root and unit
root with drift hypotheses against stationarity and trend stationarity respectively.”” PP1 and PP2 are the
Phillips-Perron tests of the same hypotheses. KPSS1 and KPSS2 are tests of the stationarity and trend
stationarity hypotheses against the alternatives of unit root and unit root with drift respectively.”
Finally, the Bierens (1997) non-parametric test for the existence of co-integration is run as a univariate
test of the unit root with drift hypothesis against trend stationarity on each variable. These tests, which
are reported in Table 1, show that In(CP1M), In(TBIM), and In(FF) are 1(1). Figures 1 and 2 display
the levels and first differences of the interest rates.

Let § denote the vector of logged interest rates. We can test each component of the stationary
first difference vector, A, for non-linearity by testing for flatness of the skewness functions, using the
tests described in Appendix 1. We pre-whiten each of the components using an AR(6) filter to eliminate
bias in the spectral estimation prior to testing, to decrease the likelihood of falsely rejecting the null of
linearity.

The results of the non-linearity tests are reported in Table 2. The Z, test statistics are normally
distributed under the null of linearity, and we treat these tests as two tailed tests.”® Using the full
sample, the tests provide strong evidence of non-linearity. Broadly speaking the values of the 10%, 20%,
40%, and 60% fractiles of the skewness function are too negative and the 80% and 90% fractiles are too
positive to be consistent with the null hypothesis of linearity. Linearity is rejected for Aln(TBIM) by
Z,,2,, 2,, Z,,Z using the 99% critical values and by Z, using the 95% critical values. Linearity is
rejected for Aln(CP1M) by Z,, Z,, Z,, Z,, and Z, using the 99% critical values. Linearity is rejected
for Aln(FF) by Z2,, Z,, Z

using the 99% critical values and by Zgand Zg, using the 95% critical
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values. These tests provide overwhelming evidence of non-linear dynamics for the first differences of these
short-term interest rates.
II1.2 Co-Integration

Friedman and Kuttner (1992, 1993) claimed that the spread between the commercial paper rate
and the Treasury bill rate was stationary. We conducted a co-integration analysis of the system
S =(In(CP1IM),In(TB1M),In(FF))" .

The co-integration analysis is conducted in two steps: rank identification and estimation. The
rank identification, which determines the number of co-integration relations, is based on the non-
parametric test procedure developed by Bierens (1997, 1998). The number of co-integration relations is
determined by a set of hypothesis tests, called A -min tests that are essentially non-parametric versions of
the well-known Johansen (1988) parametric A-max tests. The test is non-parametric because the
matrices involved are constructed from the data independently of the data-generating process; see Bierens
(1997).

The number of co-integration relations can also be estimated using a function of the eigenvalues,
g,,(r). The value of r that minimizes §,(r)is a consistent estimate of the true number of co-integration
relations, see Bierens (1997, Section 4.4).

The rank of the system is determined using both the estimation and hypothesis test methods.
The estimated number of co-integration relations is 2. The A -min tests are reported in Table 3. The
tests are run in sequence, starting with the null hypothesis that the number of co-integrating vectors is
zero, followed by a test of the null hypothesis that there is one co-integrating vector, and so on until the
null cannot be rejected. In Table 3, we find that 7 = 0 (no co-integration) is decisively rejected, as is the
hypothesis that 7 = 1 (one co-integrating vector), but we cannot reject the hypothesis that r = 2.

We also applied the maximum likelihood A -max and trace tests developed by Johansen (1988,
1991, 1992) and Johansen and Juselius (1990). The |(1) maximum likelihood method estimates a finite-
order VECM, as in (20), where the coefficient matrices nr,,.,r,, are 3 by 3. If the system is co-

integrated then the matrix M has reduced rank r <3, and can be decomposed into M =aB" . The
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matrices @ and [ are full rank 3 by r matrices, and the columns of [ are the co-integration vectors.
Pantula (1989) and Johansen (1992) have suggested a procedure to jointly identify the deterministic
components and the rank of . The idea is to test the models sequentially, beginning with the most
restrictive model considered. Each hypothesis can be tested using either the trace or A-max test
statistics. We conducted these tests for a set of lag lengths p=4,5,...,20. These tests uniformly find that
there are two co-integration vectors and that the correct deterministic component is a constant that is
restricted to the co-integration space. This specification is therefore extremely robust to the lag length
and agrees with the rank determination of the non-parametric test. Table 4 reports these tests for a lag
length of p=6.*

The co-integration vectors can be estimated either parametrically or non-parametrically. The
parametric estimates are more useful for purposes of forecasting and Bierens (1998) has argued that
hypothesis tests in the parametric model have higher power than comparable tests in the non-parametric
model. This, however, is not necessarily true for our analysis, because the hypothesis tests are predicated
on linearity. The parametric estimate of the co-integration vectors is [B=[f,[5,], where
B, =(-1.03L,0)" and B, =(0,1,-0.913)" * The first basis vector B, reflects the near stationarity of the
spread between the logarithms of the commercial paper rate and the Treasury bill rate. The second basis
vector [, reflects the near stationarity of the spread between the Treasury bill rate and the federal funds
rate. Chi-squared tests in the VECM(6) accept the hypothesis that S, =(1L-10)" but reject the
hypothesis that S =(0,2,-1)" * Nevertheless, these results are broadly consistent with stationarity of
short-term interest rate spreads. The common stochastic trend for the system is given by ﬁ;S , Where
B, =(L(1/1.031),(1/1.031)(1/0.913))" .  The non-parametric estimate of the co-integration vectors is
B =[Bines Bonel s where B =(L-1.075,0)" and S, =(0,,-0.863)", which are consistent with the
parametric estimates. Figures 3 and 4 show that the parametric and non-parametric estimates of the co-

integration relations are almost identical.
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The short-run dynamics can be removed from the co-integration relations by computing ﬁTRm ,
where R, are the residuals from regressing §_, on AS_,,..,AS_,,;. The relations ﬁTRm are the ones
actually tested for stationarity in the maximum likelihood procedure, see Hansen and Juselius (1995).
I11.3 Robustness

Miyao (1996) has argued that maximum likelihood co-integration tests should be carefully
checked for robustness. He argues that the maximum likelihood test should be used in conjunction with
other tests of the same null, and should be carefully tested for robustness to lag length and sample period.
Therefore, we test for co-integration using both non-parametric and parametric tests, and test the results
for robustness to sample period. The results of those tests are consistent, as are the estimated co-
integration relations. We also tested these results for robustness to sample period. We examined the
integration and co-integration properties of the data over two sub-periods: 1974:09:13 through 1979:09:19,
and 1984:3:1 through 1996:12:31. These are periods over which a target for the federal funds rate can be
constructed, see Rudebusch (1995).

The results of the non-parametric and parametric co-integration tests for the two sub-samples are
reported in Tables 3a/3b, and 4a/4b respectively. The results show that the rank identifications are
consistent with those from the full sample. Further, the estimated co-integration vectors are consistent
with the estimated vectors from the full sample, because we cannot reject the joint hypothesis, H,:
B, =(,-1.031,0)" and B, =(0,1,-0.913)", for either sub-sample.*’

I11.4 Tests for Non-Linearity of the Co-integration Relations

The stationary components of the system are the two co-integration relations and the first
difference of the common stochastic trend. We test the estimated co-integration relations for non-linear
serial dependence using the bispectrum tests, described in Appendix 1. We note that the co-integration
vectors, [, and f, are basis vectors for the co-integration space, so that any linear combination of f, and
B, are also stationary. Thus, evidence of non-linearity in one of the basis co-integration relations is

actually evidence that the stationary components of the system are non-linear.
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Each of the co-integration relations is pre-whitened by an AR(6) filter prior to testing to
eliminate bias in the spectral estimation. As a robustness test, we tested these relations for stationarity
using the frequency domain test derived by Hinich and Wild (1999). The Hinich and Wild (HW) test
checks for residual non-stationarity due to the existence of a waveform with random phase and amplitude.
This test has a very different alternative than the co-integration test, and should detect non-stationarity
at seasonal frequencies. The test is chi-square under the null of stationarity. The HW - stationarity
tests, which are reported in Table 5, confirm that the co-integration relations are stationary.

If the time series are Gaussian then the real and imaginary components of the bispectrum are
zero. The test statistics for these two hypotheses, called Gaussl and Gauss2 respectively, are also
reported in Table 5. If either the real or imaginary components of the bispectrum are non-zero then
Gaussianity is rejected. If the imaginary component is non-zero then the sequence is not time-reversible
as discussed in Appendix 1. These tests indicate that the stationary components of the system are highly
non-Gaussian and, in particular, are not time-reversible.

Table 6 gives the results of the tests for non-linearity for the full sample. The tests are computed
for three estimates of the stationary co-integration relations: the parametric estimates ﬁlT S and ﬁzT S;
the parametric estimates purged of short-run dynamics g R, and Bl R, ; and the non-parametric
estimates as ﬁlT w and ﬁzT w - The test statistics are distributed as standard normal variates under the
null of linearity, and rejections indicate the existence of non-linear dynamics. Broadly speaking the values
of the 10%, 20%, 40%, and 60% fractiles of the skewness function are too negative and the 80% and 90%
fractiles are too positive to be consistent with the null hypothesis of linearity, which is consistent with our
findings in Section III.1 for the first differences.

The strongest evidence for non-linearity is for the first co-integration relation. Linearity is
rejected for ﬁlTS by Z2,, Z2,, Z,, Z,, and by Z, using the 99% critical values and by Zgusing the 95%
critical values. Purging these relations of their short-run dynamics does not change the results. Linearity

is rejected for ﬁlTRm by Z,, Z,, Z,, Z, using the 99% critical values, by Zjusing the 95% critical values

and by Z, using the 90% critical values. The results for the non-parametric estimate, ﬁlTNPS , are
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consistent with those from the parametric estimates. Linearity is rejected for ﬁlT w by 2,,2,,2,, Z,
and Zgusing the 99% critical values and by Z,using the 95% critical values.

There is also evidence that the second co-integration relation is non-linear, although this evidence
is somewhat weaker. Linearity is rejected for ﬁzT S by Z, using the 95% critical values and by Z, using
the 99% critical values. Linearity is rejected for ﬁzTRm by Z,, Z,, Z,, and Zgusing the 99% critical
values, by Zjusing the 95% critical values, and by Z, using the 90% critical values. The evidence is
similar for the non-parametric estimates. Linearity is rejected for ﬁzT w3 by Z, using the 95% critical
values, by Z, using the 99% critical values, and by Zgusing the 95% critical values.

The common stochastic trend is a linear combination of the first differences of the variables,
which have already been shown to be non-linear. It is therefore not surprising that the tests reject
linearity for BIAS and ﬁgARm.

It is possible that structural shifts over the long period being analyzed could be mistaken for non-
linear dynamics.”® We attempt to address this issue by deleting the period 1979-1983, during which the
Federal Reserve targeted non-borrowed reserves and many interest rates were deregulated. We consider
the two sub-samples 9/13/1974 through 9/19/1979, and 3/1/1984 through 12/31/1996, which have been
studied by Rudebusch (1995). In Section III, we found that the co-integration rank and the estimates of
the co-integration relations are not statistically different in these sub-samples to the results over the full
sample. In Tables 6a and 6b, we provide the results of the non-linearity tests over these two sub-samples.
If the co-integration relations are linear over the two sub-samples then the structural shift hypothesis
could be true. In addition, we ran the linearity tests on Aln(CP1M), AIn(TBIM), and Aln(FF) for
each sub-sample; these tests are reported in Table 2.

The evidence is mixed. The tests generally fail to reject linearity for the first sub-sample, 1974-
1979, but they provide very strong evidence of non-linearity over the second sub-sample 1984-1996. The
number of data points for the shorter sub-sample is 258 versus 669 for the longer sub-sample and 1363 for
the full sample. The evidence reported in Ashley, Patterson, and Hinich (1986) would indicate that the

power of these tests is substantially higher over the longer sub-sample and over the full sample. We
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conclude that there is strong evidence of non-linearity in the stationary components of the system, but
there is some lack of robustness to the sample of data being tested.
IV. Conclusion

We have argued that the co-integration relations in I(1) systems are generally non-linear.
Because the co-integration relations derived from I(1) systems are stationary; they can be tested for non-
linear serial dependence using standard polyspectral techniques.

Tests for the existence of non-linear dynamics require large sample sizes and may be adversely
affected by aliasing and other problems associated with time aggregation. Interest rates are measured
with high frequency and aliasing can be controlled by adequate attention to filter design. For these
reasons, the conditions are more favorable to testing interest rate data for non-linear dynamics than for
most other variables that are important to the business cycle, money demand, and the monetary
transmission mechanism. We have shown that an integrated system of short-term US interest rates is co-
integrated and there is strong evidence that the stationary components of the system are non-linear. The
test we employ is one of the most conservative tests for non-linearity available, strengthening the impact
of our findings.

These results suggest that the untested assumption of linearity, which is implicit in many
macroeconomic studies, may be incorrect. The failure to find robust evidence of non-linearity in lower
frequency macroeconomic time series may be due to the low sample sizes that can be obtained for those
time series and to problems associated with sampling and time aggregation. QOur particular example
shows that the spread between both the commercial paper rate and the Treasury bill rate, and the
Federal Funds rate exhibits third-order non-linearity. Our results are consistent with work that suggests
there are asymmetric effects of monetary policy on interest rates, such as Choi (1999). Our results
suggest that better forecasts of these spreads might be obtained with non-linear models, such as bi-linear

models.
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Appendix 1: Bispectrum Estimation and the Hinich Tests for Gaussianity and Linearity
Let {X,,.... Xy_} be a finite data record of N observations. If necessary, standardize the entire
sample by subtracting the sample mean and then dividing by the sample variance. Segment the record

into K non-overlapping frames of length I, called the frame-length, {X¢,.., X[} = { X kLo Xewad
K
k=1.. K.%® Let )?i = ZXik/K be the mean of the i elements of each frame. The elements of each

frame are standardized so that {)2(';,..., )2:_(_1} ={( X=X (X, =X, )} . The motivation for this
standardization is to remove any non-stationarity due to the existence of a purely deterministic waveform
in the data. Hinich and Wild (1999) have provided a test for non-stationarity due to the existence of a
waveform with stochastic phase and amplitude, but this test should be used only after correcting for unit
roots and trends in practice. The Hinich and Wild test is chi-square under the null of stationarity.

The finite Fourier transform of the k™ standardized frame is defined as
d.(f,)= i)%;‘e'”"fnlsﬂk'”” , k=1..,K, (23)
where f. =n/L, forn = 0,...,L/2. The power spectrum estimator is defined as
~ 1 K
Bulf) =40 3 (1), (1)

where I, (f,)=(/L)|d.(f,) |* is the second-order periodogram for the k" frame. ® The bispectrum

estimator is defined as
~ 1 K
Bx(fnifm):E;Gk(fn7fm) (25)

where G, (f,, f,)=@/L)d,.(f,)d . (fm)d;k (f, +f,) is the third-order periodogram for the A" frame.”

These estimators are consistent if In(L) < .5In(N) and have resolution bandwidth J =(1/L).”” Increasing
the frame length, L, increases resolution, but at the cost of higher variance.”® If the frame length is larger
than .5In(N) the estimators are not consistent. Brillinger and Rosenblatt (1967,b pp. 203-5) show that
the data should be pre-filtered prior to estimation to eliminate bias, which might lead to spurious

rejection of the null of linearity or Gaussianity.

17



These estimators are used to construct the test statistic. Let )Zn,m be defined as

)2 5\/ﬁ B (fnl m \/7 B (fn1 m) ] (26)
BB (F)B(Fy + ) VLB ()R (F)B (f, + £,

All of the tests used in this paper derive from the asymptotic distribution of )Zn,m. Hinich (1982) proved
that the estimators?2 | )Zn,m f are asymptotically distributed as independent non-central chi-squared
random variables, 2 | )Zn,m f~x? (2], ), with non-centrality parameter A, . =2(3°N)I,(f,,f,).”
Gaussianity and Time Reversibility

The null hypothesis for the Gaussianity test is H,: I, (f,g)=0, Of,g0OD. Under the null,

A =2(0°N)F (f,, T )= 0 and 22 2|Xnm f is asymptotically distributed x?(2P,0) (the summations

55

are over i and m such that (f ,f YOD, and P is the number of such pairs).” The null hypothesis is

n’'m

rejected if 22 z | )Zn,m f is large relative to x*(2P,0) .
The bispectrum can be written using the Euler relation as follows:

B, (f.0) = i i Cyux (Ty, T, ) COS(2mT T, +271QT, ) +i i i Coxx (T1:T,)SIN(2rf 1, +2m1gT,) . (27)

T, =—00 T, =—o T =00 T, =—®
If the time series is time reversible, such that C,y (7;,7,) = Cyy (-7,,-T,) , then the second summation will
be identically zero. Therefore, time reversibility implies that the bispectrum is real valued.®® Hinich and

Rothman (1998) proved that 22 z | |m>2n,m f is asymptotically distributed x*(P,0) under the null
H,: ImB,(f,g)=0, 0Of,g0D. The null hypothesis of time reversibility is rejected if 22 z| |m>2n,m f
is large relative to y?(P,0) . Similarly, 22 z | Re)zn,m i is asymptotically distributed x?(P,0) under the

null hypothesis H,: ReB,(f,g)=0, Of,gOD.
Linearity

The null hypothesis for the linearity test is H,: ', (f,g) =kOf,g0D, where k is a constant.
Under the null, the estimators 2|)2n,m f are asymptotically distributed as P independent draws from a

non-central chi-square distribution )(2(2,/\0), and the non-centrality parameter, A,, can be consistently
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estimated by /TO = 22 z ( )Zn,m f /P)- 2. If the sequence is non-linear then the A, are not constant for

all (n, m) pairs, and the sample dispersion of 2|)2n,mf should exceed that expected under the
hypothesized distribution. The dispersion can be measured using the quantiles of the empirical

distribution. Let gep be the (1000)% quantile of the empirical distribution of 2| )Zn,m f, where 0< p<1.

It can be shown that gep is asymptotically distributed N(& ,0';), where o2 :M " The statistic

’OPEAE,)
z, E(gep —-¢,)/0, is N(0,) under the null hypothesis. We consider tests based on p = .1, .2, 4, .6, .8,
and .9. Linearity is rejected if | Z,| is large relative to N(0,1).
Ashley, Hinich, and Patterson (1986) show that the Hinich non-linearity test has substantial
power against several commonly estimated non-linear models, such as bi-linear models, non-linear moving

% Nevertheless, the conservatism of the Hinich test

average models, and threshold autoregression models.
has been reflected in empirical studies. Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1994)
find that the Hinich test was much less likely to reject its null than other competing tests, such as the
Brock, Dechert, Scheinkman, and LeBaron (1996) test, and the Kaplan (1993) test.

Appendix 2: Aliasing and the Construction of Anti-Aliasing Filters

Let X

. be a continuous-time series that is sampled at regular intervals of time,

0,AT,2AT,...,(N-DAT. AT is called the sampling interval, and 1/AT is the sampling rate. The

sampled sequence is denoted X,,;, K=0,...,N-1.

The power spectrum of the continuous-time series is g(f) :I_w Co (NE'®™" . The power
spectrum of the discrete-time sampled sequence, g, (f), is given by the following:
o j
f)= f+—), 28
Gur () j:ng( A (28)

for | f € (1/2AT) . The frequency f, =(1/2AT) is called the Nyquist folding frequency. If g(f)=0 for
all f2|f,| then the power spectrum of the continuous-time series and the discrete-time sampled
sequence are equal. If the continuous-time series does not have this property then the power spectrum at

frequency, f, of the sampled sequence is equal to the sum of the values of the power spectrum of the
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continuous-time series at all frequencies of the form f +(j/AT) for j=0,214,%2,... Thus, the low
frequency harmonics are made indistinguishable from the combined power of higher frequency harmonics
because of sampling. This phenomenon is called aliasing.

It is very important to eliminate any power in a time series at frequencies that exceed the
Nyquist folding frequency prior to sampling, because failure to do so will lead to biased estimation due to
aliasing. Aliasing has traditionally been described in the frequency domain, but Hinich (1998) has
recently shown that aliasing corrupts the impulse response functions in the time domain and therefore
leads to serious identification problems.

The same problem results if a discrete-time sequence is sampled at a lower frequency, such as
sampling a daily interest rate at weekly intervals. In this case, the sampling interval is AT =7 and the
Nyquist folding frequency is (1/2AT)=(1/14). 1If the daily interest rates have power at frequencies
exceeding (1/14) then aliasing will occur. The solution to this problem is to filter the daily interest rates
in such a way that the power spectrum of the filtered rates will be zero at frequencies exceeding the
Nyquist. If {g i } are the filter weights then the power spectrum of the filtered sequence equals the power

spectrum of the wunderlying sequence multiplied by the gain of the filter |G(f)f where

G(f)= z gje_i(z’mj . The solution to the aliasing problem would be to design a filter with gain:

j=—o

fl<f
oty p=p | TE N (29)
1> fy
This gain function corresponds to the ideal symmetric low-pass filter with weights
En2rf,)/nk k=%1+2,...
_ [En(r,) 1 a0

9 Hof =vaT k=0
which cannot be realized with a finite data sample. In fact, the rate of decrease of the filter weights is too
slow to simply truncate the filter at some finite number of leads and lags. The usual solution is to taper
the weights of the ideal filter. We taper the ideal weights using a Hanning cosine taper. The gain
function of the Hanning tapered filter, with 7 leads and lags, is compared with the ideal gain function in

Figure 5 for a cutoff frequency of (1/14) . This filter is referred to as an anti-aliasing filter in the text. A

20



common approach in economics is to report un-weighted weekly averages of daily interest rates. The un-
weighted averaging filter is similar to the filter used in this paper, but it has larger side lobes. See Figure
6.
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Table 1 — Univariate Stationarity Tests

Variable ADF1 ADF2 PP1 PP2 KPSS1 | KPSS2 | Bierens
Ln(CP1M) -1.9132 | -2.271 -8.6587 -10.1641 9272 .5386 1.14414
Ln(TB1M) -1.8289 | -2.2407 | -9.4498 -11.2726 1.0186 | .5626 77406
Ln(FF) -1.8174 | -2.2031 | -8.8747 -10.7101 1.0027 | 5511 1.02026
ALn(CP1M) -7.4386 | -7.4820 | -740.9803 | -738.3171 | .1120 .0524 0.00000
ALn(TB1M) -8.0123 | -8.0573 | -877.6077 | -874.0001 | .1210 .0567 0.00000
ALn(FF) -7.3217 | -7.3561 | -2118.753 | -2109.664 | .1249 .0584 0.00000
Ho: UR URD UR URD S TS URD
H1: S TS S TS UR URD TS

5% c.v. <-386 | <-341 | <-14 < -21.5 > 436 | > 146 | < .025
10% c.v. < -257 | <-3.13 | < -11.2 < -18.5 > 347 | > 119 | < .006
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Table 2 — Linearity Tests

Variable Z, Z, Z, Zg Zg Zy
Full Sample: 1971-1997
Aln(CP1M) -2.70 -3.91 -3.80 -3.63 0.28 2.78
Aln(TB1M) -2.72 -3.95 -4.38 -2.86 2.64 2.51
Aln(FF) -2.65 -3.65 -3.54 -1.32 241 2.48
Sub-Sample #1: 1974-1979
Aln(CP1M) -0.92 -1.42 -1.88 -0.15 0.51 1.01
Aln(TB1M) -1.15 -1.71 -1.15 -0.96 0.44 0.68
Aln(FF) -0.60 -1.13 -1.00 -0.46 -0.80 0.30
Sub-Sample #2: 1984-1996
Aln(CP1M) -1.58 -1.12 0.00 0.16 1.11 0.72
Aln(TB1M) -1.57 -2.39 -2.14 -2.10 0.16 1.85
Aln(FF) -2.00 -2.99 -4.44 -0.09 2.74 2.00

Z, is standard normal under the null HO: B(f,g) is constant V(f,g)e D

c.v. 1.65 (90%) 1.96 (95%) 2.58 (99%)
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Table 3 — Non-Parametric Co-Integration Tests

Full Sample: 1971-1997

Hypothesis Test Stat Critical Region Conclusion
HO:r=0 0.00000 20% (0,.006) Reject
Hl:r=1 0.00000 10% (0,.017) Reject
0.00000 5% (0,.008) Reject
HO:r=1 0.00054 20% (0,.077) Reject
Hli:r=2 0.00054 10% (0,.034) Reject
0.00054 5% (0,.017) Reject
HO:r =2 0.76618 20% (0,.341) Accept
Hl:r=3 0.76618 10% (0,.187) Accept
0.76618 5% (0,.111) Accept
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Table 3a — Non-Parametric Co-Integration Tests

Sub-Sample #1: 1974-1979

Hypothesis Test Stat Critical Region M Conclusion
HO:r=0 0.00000 20% (0,.006) 3 Reject
Hl:r=1 0.00000 10% (0,.017) 4 Reject
0.00000 5% (0,.008) 4 Reject
HO:r=1 0.00523 20% (0,.077) 3 Reject
Hli:r=2 0.00523 10% (0,.034) 3 Reject
0.00523 5% (0,.017) 3 Reject
HO:r =2 1.33438 20% (0,.341) 3 Accept
Hl:r=3 1.33438 10% (0,.187) 3 Accept
1.33438 5% (0,.111) 3 Accept
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Table 3b — Non-Parametric Co-Integration Tests
Sub-Sample #2: 1984-1997

Hypothesis Test Stat Critical Region M Conclusion
HO:r=0 0.00000 20% (0,.006) 3 Reject
Hl:r=1 0.00000 10% (0,.017) 4 Reject
0.00000 5% (0,.008) 4 Reject
HO:r=1 0.00008 20% (0,.077) 3 Reject
Hli:r=2 0.00008 10% (0,.034) 3 Reject
0.00008 5% (0,.017) 3 Reject
HO:r =2 2.33982 20% (0,.341) 3 Accept
Hl:r=3 2.33982 10% (0,.187) 3 Accept
2.33982 5% (0,.111) 3 Accept
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Table 4 — Parametric Co-Integration Tests

Full Sample: 1971-1997

Hypothesis A -max Trace A-max c.v. Trace c.v. Result
90% 90%
95% 95%
Ho: r = 0 constant restricted to 103.48 158.63 14.09 31.88 Reject
co-integration space 34.78
Ho:r=0 103.47 158.60 13.39 26.70 Reject
Unrestricted constant 29.88
Ho: r = 0 unrestricted constant 114.26 172.02 16.13 39.08 Reject
trends in co-integration space 42.20
Ho: r = 1 constant restricted to 50.59 55.15 10.29 17.79 Reject
co-integration space 19.99
Ho:r=1 50.59 55.13 10.60 13.31 Reject
Unrestricted constant 15.84
Ho: r = 1 unrestricted constant 51.41 57.77 12.39 22.95 Reject
trends in co-integration space 25.47
Ho: r =2 constant restricted to co- | 4.55 4.55 7.50 7.50 Accept
integration space 9.18
Ho:r=2 4.54 4.54 2.71 2.71 N/A
Unrestricted constant 3.84
Ho: r = 2 unrestricted constant 6.36 6.36 10.56 10.56 N/A
trends in co-integration space 12.586
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Table 4a — Parametric Co-Integration Tests

Sub-Sample #1: 1974-1979

Hypothesis A -max Trace A-max c.v. Trace c.v. Result
90% 90%
95% 95%
Ho: r = 0 constant restricted to 25.51 45.50 14.09 31.88 Reject
co-integration space 34.78
Ho:r =0 25.46 44.55 13.39 26.70 Reject
Unrestricted constant 29.88
Ho: r = 0 unrestricted constant 42.51 71.10 16.13 39.08 Reject
trends in co-integration space 42.20
Ho: r = 1 constant restricted to 19.24 19.99 10.29 17.79 Reject
co-integration space 19.99
Ho:r=1 18.86 19.08 10.60 13.31 Reject
Unrestricted constant 15.84
Ho: r = 1 unrestricted constant 21.04 28.59 12.39 22.95 Reject
trends in co-integration space 25.47
Ho: r =2 constant restricted to co- | .75 .75 7.50 7.50 Accept
integration space 9.18
Ho:r=2 .22 .22 2.71 2.71 N/A
Unrestricted constant 3.84
Ho: r = 2 unrestricted constant 7.55 7.55 10.56 10.56 N/A
trends in co-integration space 12.586
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Table 4b — Parametric Co-Integration Tests
Sub-Sample #2: 1984-1996

Hypothesis A -max Trace A-max c.v. Trace c.v. Result
90% 90%
95% 95%
Ho: r = 0 constant restricted to 58.93 91.86 14.09 31.88 Reject
co-integration space 34.78
Ho:r=0 58.93 90.97 13.39 26.70 Reject
Unrestricted constant 29.88
Ho: r = 0 unrestricted constant 69.81 103.99 16.13 39.08 Reject
trends in co-integration space 42.20
Ho: r = 1 constant restricted to 29.90 32.93 10.29 17.79 Reject
co-integration space 19.99
Ho:r=1 29.83 32.04 10.60 13.31 Reject
Unrestricted constant 15.84
Ho: r = 1 unrestricted constant 31.96 34.19 12.39 22.95 Reject
trends in co-integration space 25.47
Ho: r =2 constant restricted to co- | 3.03 3.03 7.50 7.50 Accept
integration space 9.18
Ho:r=2 2.21 2.21 2.71 2.71 N/A
Unrestricted constant 3.84
Ho: r = 2 unrestricted constant 2.23 2.23 10.56 10.56 N/A
trends in co-integration space 12.586
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Table 5 — Stationarity, Gaussianity, and Time Reversibility Tests

Full Sample 1971-1997

Parametric
Estimates HW Gaussl Gauss2
7 22.6120 539.2411 610.5936
B S
(0.9321) (0.0000) (0.0000)
T 20.4589 334.3938 442.1985
ﬁl Rpt
(0.9676) (0.0000) (0.0000)
’ 33.9137 343.3336 945.0921
By 5 (0.4719) (0.0000) (0.0000)
T 13.1550 296.2166 330.7980
ﬁ? Rpt
(0.9995) (0.0000) (0.0000)
ﬁfASt 29.0369 495.1035 244 .4961
(0.7095) (0.0000) (0.0000)
32.7482 281.7567 283.7022
BTAR,
(0.5289) (0.0000) (0.0000)
Non-Parametric
Estimates
T g 25.2276 638.6265 707.1962
ﬁl,NP t
(0.8620) (0.0000) (0.0000)
T g 34.2187 387.4622 465.5005
ﬁQ,NP t
(.4572) (0.0000) (0.0000)

HW is the Hinich and Wild (1999) test. Test statistic x*(34) under the null of stationarity.
Gaussl is x?(72) under the null HO: Re(B(f,g))= 0 V(f.9)e D
Gauss2 is x?(72) under the null HO: Im(B(f,g))= 0 V(f.g)e D
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Table 6 — Linearity Tests
Full Sample: 1971-1997

Parametric
A A A A A A
Estimates 1 2 4 6 8 9
ﬁlTSt -2.81 -3.95 -5.42 -3.20 2.24 2.72
ﬁlTRpt -2.73 -3.79 -4.37 -2.65 2.46 1.88
ﬁQTSt -2.25 -2.91 -1.59 0.25 1.06 1.47
ﬁQTRpt -2.23 -3.02 -3.52 -1.90 2.58 2.15
ﬁfASt -2.61 -3.54 -4.92 -3.32 1.06 2.46
ﬁfARpt -2.44 -3.13 -4.17 -4.04 1.44 1.44
Non-
Parametric 7, Zy Z, Zg Zg Zy
Estimates
ﬁfNPSt -2.81 -4.09 -5.39 -2.65 2.78 2.19
ﬁQTNPSt -2.26 -2.66 -0.93 -0.38 1.29 1.94

Z, is standard normal under the null HO: B(f,g) is constant V(f,g)e D. Linearity is rejected if

| Z,| exceeds the critical value. These values are 1.65 (90%) 1.96 (95%)

2.58 (99%)
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Table 6a — Linearity Tests
Sub-Sample #1: 1974-1979

Parametric
7, Z, 7,4 Zg Zg Zg

Estimates
ﬁngt -1.08 -1.38 -2.01 -0.38 0.75 1.13
ﬁlTRpt -0.61 -0.66 -1.04 -1.72 0.32 0.58
ﬁQTSt -1.15 -1.72 0.68 0.63 0.34 0.73
ﬁQTRpt -0.25 1.44 1.57 2.29 1.10 1.26
ﬁfASt 0.31 -0.17 -1.00 0.19 0.24 0.70
ﬁfARPt -0.27 -0.67 -0.37 0.75 0.40 0.34

Non-

Parametric 7, Z, 7,4 Zg Zg Zg

Estimates
ﬁfNPSt -1.07 -1.39 -1.99 -0.36 0.98 1.12
QT,NPSt -1.15 -1.72 0.50 0.79 0.15 0.67

Z, is standard normal under the null HO: B(f,g) is constant V(f,g)eD. Linearity is rejected if

| Z,| exceeds the critical value. These values are 1.65 (90%) 1.96 (95%) 2.58 (99%)




Table 6b — Linearity Tests
Sub-Sample #2: 1984-1996

Parametric
7, Z, 7,4 Zg Zg Zg
Estimates
ﬁngt -2.00 -2.96 -4.44 -3.76 1.89 1.96
ﬁlTRpt -1.97 -2.65 -3.48 .039 1.07 1.96
ﬁQTSt -2.00 -2.83 -2.41 0.11 2.43 1.92
ﬁQTRpt -1.94 -2.89 -3.36 -0.69 1.78 1.99
ﬁfASt -1.93 -2.81 -3.08 -3.23 1.92 1.96
ﬁfARPt -1.62 -2.23 -2.69 -0.89 0.86 1.50
Non-
Parametric 7, Z, 7,4 Zg Zg Zg
Estimates
ﬁfNPSt -2.00 -2.95 -4.43 -3.88 1.95 1.96
T
27NPSt -1.99 -2.82 -2.14 0.05 2.40 1.91

Z, is standard normal under the null HO: B(f,g) is constant V(f,g)e D. Linearity is rejected if

| Z,| exceeds the critical value. These values are 1.65 (90%) 1.96 (95%) 2.58 (99%)




End Notes

L A linear stochastic process is defined as the output of a time invariant linear filter applied to a stochastically independent input
process.

% See, for example, King, Plosser, Stock, and Watson (1991), and Leeper, Sims, and Zha (1996).

% For example, King and Watson (1996 pp. 37-39) study the business cycle covariability of various macroeconomic time series after
first removing all frequencies outside of the business cycle range.

4 See Priestly (1988) for further discussion of these points.

® The bispectrum, which is the double Fourier transform of the third-order cumulant function, will not exist if the process is non-
stationary. The first use of the bispectrum in economics was by M. D. Godfrey (1965).

% A set of tests for non-linear dynamics have been used applied to economic data. Barnett et al (1996a, b, ¢, 1997) apply some of the
most widely used tests to real and simulated data.

" Integrated time series are dominated by a martingale term, and provide a model for time series that are subject to permanent
shocks. If two time series are dominated by the same martingale then a particular linear combination of them is stationary, and
they are co-integrated.

8 See King, Plosser, Stock, and Watson (1987, 1991), Miyao (1996), and Friedman and Kuttner (1992) for examples.

¥ The Wold decomposition theorem proves that the stationary linear combination can be represented as the output of a moving
average filter applied to uncorrelated white noise input. The process may nevertheless be non-linear because the uncorrelated input
process may not be stochastically independent.

Y Lowering the sampling rate of a discrete process also cause aliasing.

! See also, Ashley and Patterson (1986), Scheinkman and LeBaron (1986), and Brockett, Hinich, and Patterson (1988).

2 The assumptions of real and mean zero can be relaxed, see Hinich and Messer (1995).

1% Cumulants and moments are equivalent up to the third-order. This is not true for higher orders.

4 This is a consequence of the Wold decomposition theorem. See Brockwell and Davis (1991) and Engle and Granger (1987).

15 See Hinich (1982) and Hinich and Patterson (1989). See also Priestley (1988, pp. 13-16) for related discussion.

' The operation | | denotes complex modulus.

" For details on Volterra representations, see Schetzen (1980, 1981) and Rugh (1981).

8 More complete discussions on higher order polyspectra can be found in Nikias and Raghuveer (1987), Mendel (1991), Brillinger
and Rosenblatt (1967 a, b), and Brillinger (1965).

¥ Throughout the paper, frequencies are measured in units of inverse time. Multiplying these frequencies by 27 converts them to
radian measure.

0 This region is called the principal domain. See Hinich and Messer (1995).

1 See Nikias and Raghuveer (1987). The * notation denotes the complex conjugate operation.

22 This result is due to Brillinger (1965).

% See also Hinich and Patterson (1985b, 1989) and Ashley, Hinich, and Patterson (1986).

24 The Hinich test is based on the fact that independent sequences have a constant bispectrum. In fact, independent sequences have
constant polyspectra of all orders. Thus, dependence can be reflected in any of the higher-order polyspectra, and some dependent
sequences have constant bispectrum. We could design tests based on higher-order polyspectra, but most economic time series are not
long enough for consistent estimation of even the fourth-order polyspectrum.

% See Engle and Granger (1987) for properties of integrated processes. Fisher and Seater (1993) discuss the connection between
integration and neutrality and super neutrality hypotheses.

% See Davidson (1994, pp. 192-193) and Hall and Heyde (1980, pp. 128).

> The representation theorem requires mixingale assumptions on the stationary sequence, see Davidson (1994, pp. 247-252). Hall
and Heyde also require E | X |< oo .

% Engle and Granger (1987) add the condition that the stationary moving average representation of the first difference, obtained
from the Wold decomposition, be invertible.

% See Bierens (1997). The operator A is the standard difference operator.
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30 This decomposition is valid because vector martingale differences are serially uncorrelated and have positive semi-definite
covariance matrices.

t t T t t T
31 This is because E[[;@TY; ][; ﬁ],TY; ] |= ﬁfE[[;YS ][;)Y ] 18, = ﬁ],chTﬁ], =070=0.
32 The orthogonal complement has the property ﬁTﬁi =0.
3 In the absence of co-integration, the two transformations are equivalent. If r = 0, then @, is full rank and can be taken as the
identity matrix.
3 Tt is possible that a linear combination of non-linear processes could be linear, but this would not hold in general.
% For example, the process resulting from the example presented will not be stationary, but will instead behave like a unit root
process when near its mean. Granger (1991) gives conditions under which f{2) is stationary.
% See Hinich and Patterson (1985a) for a method of estimating the coefficients of a quadratic non-linear process.
37 The federal funds rate and the commercial paper rate are available from the Federal Reserve Board’s website. The commercial
paper rate series was discontinued in August 1997. Richard Anderson of the Federal Reserve Bank of St. Louis provided us with the
secondary market rate on one-month treasury bills.
3 The filtering procedure is similar to the five day unweighted averages suggested by the Board of Governors, but, we would argue,
is superior for our purposes.
39 See for example Stock and Watson (1989), Friedman and Kuttner (1993), and King, Plosser, Stock, and Watson (1991).
40 See Fuller (1996), Said and Dickey (1984), and Said (1991). The lag length, p, is chosen by the formula p = 5(n)? .
41 See Phillips and Perron (1988). The truncation lag for the Newey-West estimator is p = 5(n)? .
42 See Kwaitkowski, Phillips, Schmidt, and Shin (1992). The truncation lag for the Newey-West estimator is p = 5(n)2" .
45 Ashley, Patterson, and Hinich (1986) found that one-tailed tests may fail to detect certain types of non-linearity that would be
detected by two-tailed versions of the tests.
4“4 We computed various information criteria for the VECM. The Schwartz criteria indicated a lag length of 4 and the Akaike
criterion indicated a length of 20. Using these as a range of models to consider, we chose to estimate the model with p = 6 on the
basis that this model was fairly parsimonious and passed tests for absence of first and fourth order auto-correlation.
% The basis for the co-integration space has been transformed into a basis with one zero in each vector. Since any linear
combination of co-integration vectors is a co-integration vector this does not change any of our analysis. The form of the basis
reported in the text is easier to understand than the untransformed basis. The constant that is subtracted from the co-integration
relations is the estimated restricted constant.
46 These tests are x2(1) . The values of the test statistics are 1.31 and 10.87 respectively.
47 These tests are x2(2). For the 1974-1979 sub-sample the test statistic is 3.26 (p-value of .2) and for the 1984-1996 sub-sample the
test statistic is .38 (p-value of .83).
48 See Barnett, Medio, and Serletis (1999, pp. 61) for discussion of this issue.
4 TIf the last frame is incomplete, it is dropped from the calculation of the estimator.
* This estimator is described in Welch (1967) and Groves and Hannan (1968). Kay and Marple (1981) discuss various methods of
power spectral estimation. We employ a trapezoidal data taper, which leads to minor modifications of these formulas.
®1 This estimator is described in Hinich and Messer (1995).
*2 The resolution bandwidth is the approximate spacing between independent power spectral estimates, see Koopmans (1974, pp.
304).
* Koopmans (1974) called this tradeoff the Grenander uncertainty principle.
% The proof follows from the fact that the an are asymptotically independently normal.
% This is true because | an ‘2 are asymptotically independent.

%% The imaginary part of all polyspectra is zero if the sequence is time reversible, see Brillinger and Rosenblatt (1967a).

57 See David (1970) Theorem 9.2.
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% As noted in Nikias and Raghuveer (1987), the bispectrum can be particularly useful in identifying quadratic phase coupling,
resulting from interaction between two harmonic components at their sum and/or difference frequencies.

% See Koopmans (1974, pp. 66-73).
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