About the Project
NIST
Notations

Notations Q

*ABCDEFGHIJKLMNOP♦Q♦RSTUVWXYZ
set of all rational numbers; Common Notations and Definitions
Q ( z ) = 1 2 erfc ( z / 2 )
alternative notation for the complementary error function; §7.1
(with erfcz: complementary error function)
Q ν ( x ) = Q ν 0 ( x )
Ferrers function of the second kind; §14.2(ii)
(with Qνμ(x): Ferrers function of the second kind)
Q ν ( z ) = Q ν 0 ( z )
Olver’s associated Legendre function; §14.2(ii)
(with Qνμ(z): Olver’s associated Legendre function)
Q z ( a ) = Γ ( a , z )
notation used by Batchelder (1967, p. 63); §8.1
(with Γ(a,z): incomplete gamma function)
Q ^ - 1 2 + i τ - μ ( x )
conical function; (14.20.2)
Q ν μ ( x ) = Q ν μ ( x )
notation used by Erdélyi et al. (1953a), Olver (1997b); §14.1
(with Qνμ(x): Ferrers function of the second kind)
Q ν μ ( x )
Ferrers function of the second kind; (14.3.2)
Q ν μ ( x ) = Q ν μ ( x )
notation used by Magnus et al. (1966); §14.1
(with Qνμ(x): Ferrers function of the second kind)
Q ν μ ( z )
associated Legendre function of the second kind; §14.21(i)
𝔔 ν μ ( z ) = Q ν μ ( z )
notation used by Magnus et al. (1966); §14.1
(with Qνμ(z): associated Legendre function of the second kind)
Q ν μ ( z )
Olver’s associated Legendre function; §14.21(i)
Q ( a , z )
normalized incomplete gamma function; (8.2.4)
Q ( ϵ , r ) = - ( 2 + 1 ) ! h ( ϵ , ; r ) / ( 2 + 1 A ( ϵ , ) )
notation used by Curtis (1964a); item Curtis (1964a):
(with h(ϵ,;r): irregular Coulomb function and !: factorial (as in n!))
Q n ( x ; a , b | q - 1 )
q-1-Al-Salam–Chihara polynomial; (18.28.9)
Q n ( x ; α , β , N )
Hahn polynomial; Table 18.19.1
Q n ( x ; α , β , N ; q )
q-Hahn polynomial; (18.27.3)
qs n m ( x , γ 2 ) = Qs n m ( x , γ 2 )
notation used by Meixner and Schäfke (1954) for the spheroidal wave function of the second kind; §30.1
(with Qsnm(x,γ2): spheroidal wave function of the second kind)
Qs n m ( x , γ 2 )
spheroidal wave function of the second kind; §30.5
Qs n m ( z , γ 2 ) = Qs n m ( z , γ 2 )
notation used by Meixner and Schäfke (1954) for the spheroidal wave function of complex argument; §30.1
(with Qsnm(z,γ2): spheroidal wave function of complex argument)
Qs n m ( z , γ 2 )
spheroidal wave function of complex argument; §30.6