
Foreword

Mathieu functions have many applications, especial-
ly in mathematics and physics:
• separation of variables in elliptical coordinates
• separation of variables in parabolic coordinates
• vibrations in a stretched elliptical ring membrane
• stability of a pendulum with periodically varying

length
• amplitude distortion in moving-coil loudspeakers
• relativistic oscillators
These applications are mentioned in the chapter on
Mathieu functions, written by Gerhard Wolf for the
NIST Digital Library of Mathematical Functions.
Professor Wolf is coauthor (with J. Meixner and F. W.
Schäfke) of Mathieu Functions and Spheroidal
Functions and their Mathematical Foundations, Lecture
Notes in Mathematics 837, Springer-Verlag, 1980.

The DLMF is scheduled to begin service in 2009
from a NIST Web site. A hardcover book will be pub-
lished also. These resources will provide a comprehen-
sive guide to the higher mathematical functions for use
by experienced scientific professionals.

The DLMF is modeled after the enormously success-
ful but increasingly out-of-date NBS Handbook of
Mathematical Functions, National Bureau of Standards
Applied Mathematics Series 55, M. Abramowitz and I.
A. Stegun (editors), 1964. The NBS handbook has sold
more than 700,000 copies and is frequently cited in sci-
entific journal articles. The need for a modern reference
is being filled by NIST editors and staff, aided by the
scientific content provided by approximately 50 exter-
nal authors and validators

In addition to the main purpose of the DLMF, which
is to provide a comprehensive and authoritative
research tool, the project also seeks to guide further
research in special functions. The paper that follows is
an example. It provides the proofs of results that Wolf
presents for the first time in §28.4(vii) of the DLMF.

Daniel W. Lozier
DLMF General Editor
NIST Mathematical and Computational Sciences
Division
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1. Introduction and Definitions

In this paper we aim to give asymptotic formulae for
Fourier coefficients of the periodic solutions of
Mathieu’s equation

(1)

Equation (1) possesses the fundamental pair of solu-
tions wI(z; a, q), wII(z; a, q) called basic solutions (see
Ref. [1]) with

(2)

Furthermore, we obtain eigenvalues and eigenfunctions
of (1) for n = 0, 1, 2, ... .

Table 1 gives their notations and properties. “Period
π” means that the eigenfunction has the property
w(z + π) = w(z), whereas “Antiperiod π” means that
w(z + π) = –w(z). “Even parity” means w(–z) = w(z) and
“Odd parity” means w(–z) = –w(z).

The Fourier coefficients satisfy the recurrence rela-
tions

(3)

(4)

(5)

(6)

In §2 we examine the asymptotic behavior of the coef-
ficients A2n

2m(q), A2n+1
2m+1(q), B2n+1

2m+1(q), and B2n+2
2m+2(q) for fixed

n, q (≠ 0), as m → ∞.

2. Asymptotic Forms

The following result will be proved:
Proposition 1. For fixed n and q ≠ 0, as m → ∞

(7)

(8)

(9)

(10)

Proof of (7). We consider for q ≠ 0 the three term-
recurrence relation

(11)

For the two independent solutions um, vm of (11) with
u1 = a, u2 = a (1 – a) + q2 and v1 = 1, v2 = (1 – a), it
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Table 1. Eigenvalues and eigenfunctions

Eigenvalues Eigenfunctions Periodicity Parity Fourier series

a = a2n(q) ce2n(z, q) Period π Even

a = a2n+1(q) ce2n+1(z, q) Antiperiod π Even

a = b2n+1(q) se2n+1(z, q) Antiperiod π Odd

a = b2n+2(q) se2n+2(z, q) Period π Odd
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follows from Sätze (Theorems) 1 and 3 of F. W.
Schäfke [2] that

(12)

Transformation of (11) with

(13)

yields

(14)

We note the following special solutions of (14):

(15)

Then

(16)

Furthermore, we have

(17)

If, now, a = a2n(q), then w′I(π/2; a2n(q), q) = 0 and um →
0 as m → ∞.

Set U0 = q. Then for m = 2, 3, 4, ...,

(18)

Comparison with A2n
2m(q) of (3) shows that

(19)

Thus U2m is the minimal solution of (14), and by the
substitution

(20)

we find that

(21)

(22)

The constant k is determined with the aid of (17):

(23)

and for m → ∞

(24)

Together with (19) we obtain (7).
Proof of (10). In the same way it follows, if a =

b2n+2(q), then wII ( π; a, q) = 0, vm → 0, and

(25)

Comparison with B2n+2
2m (q) of (6) shows that

(26)

Thus V2m is the minimal solution of (14), and for

(27)

we find again ρm – ρm–1 = O(1/m2) and

(28)

The constant k can be computed via (17):

(29)

Letting m → ∞, we obtain
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(30)

Together with (26) we obtain the formula (10).
Proof of (8) and (9). We start with the recurrence

relations

(31)

The two independent solutions um and vm of (31) with
u0 = 1, u1 = q – a + 1 and v0 = 1, v1 = –q – a + 1, respec-
tively, satisfy

(32)

see Sätze (Theorems) 1 and 3 of F. W. Schäfke [2]).
Then transformation of (31) with1

(33)

yields

(34)

We note the special solutions

(35)

and obtain

(36)

Furthermore, we observe that

(37)

If, now, a = a2n+1(q), then wI(π/2; a2n+1(q), q) = 0 and
um → 0 for m → ∞.

Comparison with A2n+1
2m+1(q) of (4) shows that

(38)

Thus U2m+1 is the minimal solution of (34), and with

(39)

we find that

(40)

(41)

The constant k is determined with the aid of (37):

(42)

Letting m → ∞, we obtain

(43)

Together with (38) we find (8).
The formula (9) is obtained by the transformation

q → –q, a2n+1(–q) = b2n+1(q), and A2n+1
2m+1(–q) =

(–1)n–mB2n+1
2m+1(q).

3. Improvement of the Rate of
Convergence

If a2n ≠ (2m)2, then for m = 0, 1, 2, . . . we transform
(21) via

(44)

and obtain (as in Ref. [2]) ζm – ζm–1 = O(1/m4), ζm – ζ =
O(1/m3), where Finally we
have

(45)
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In the other cases, for example (40), similar results
can be obtained.

Error bounds are possible with the aid of Refs. [2]
and [3].

Remark: Further improvements of the rate of con-
vergence are possible by application of the results of
Ref. [3].
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