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PRICING SYSTEMIC CRISES:

Monetary and Fiscal Policy When Savers Are
Uncertain

Abstract

In our model, the return on assets depends on the joint behavior of all
savers; if all savers sell the asset simultaneously then there will be a fi-
nancial “Armageddon” and the return will be quite low. We assume that
individual savers are risk-neutral but uncertainty-averse and cannot form
precise estimates of the behavior of the market (all other savers). We de-
termine equilibrium investment using the modern theory of Knightian un-
certainty, that is, decision-making with multiple subjective prior distribu-
tions, which shows that savers will act to maximize their minimum payoff
in the presence of uncertainty. Savers divide their portfolios between two
assets: A risky asset, representing a fully-diversified share in economy-
wide production, and a riskless asset, representing government bonds.
Government bonds are backed by the tax authority of the state, and so
always pay off. In times of high uncertainty, savers' demand for govern-
ment bonds will increase, and spreads between the return on bonds and
the expected return on risky assets will widen. As a result, investment in
the risky asset will decrease. If the government responds with a purely
monetary policy of reducing the risk-free rate, it will make the bond less at-
tractive and force savers to hold more of the risky asset. We show that such
monetary expansions are Pareto-improving, but that they fail to recapture
the optimal allocation. To restore investment and savings to their optimal
levels, the government must also use a fiscal policy of distortionary taxes to
discourage current consumption and leisure. Journal of Economic Literature
classification numbers: G2, E5, E44, D8.

Keywords: Knightian uncertainty, financial crisis, monetary and fiscal
policy



1 Introduction

During times of market turmoil, savers are unable to form precise esti-
mates of the distribution of returns of their portfolios. Such times are also
often marked by unusually high interest-rate spreads between riskless and
risky assets, unusually high levels of asset return volatility, and an atten-
dant difficulty in obtaining project financing. The distribution of an as-
set's returns is difficult to forecast, at least in part, because it depends on
the likely actions of other market participants. If worried savers liquidate
part of their portfolios, the value of all risky assets can fall dramatically. To
combat such crises of confidence, governments are urged, on the one hand,
to take dramatic action to restore confidence in financial markets with a
mix of an expansionary monetary policy and explicit or implicit guaran-
tees to producers or to financial institutions. On the other hand, govern-
ments are cautioned not to provoke inflation or promote moral hazard. In
this paper, we characterize the government's optimal policy responses to

such an episode.

Financial assets typically carry a promised rate of return, but this return is
subject to a host of so-called “risks.” These range from the well understood
and predictable (such as actuarial risk) to the exotic (such as “fat-finger”

risk) or unpredictable (such as political risk)! Somewhere in the middle

L«Fat-finger” risk is the risk of mis-keying an order into an electronic terminal. For a
representative “taxonomy of risks” see Rahl (1998).



lies so-called model risk, the risk of having mis-modelled the underlying
stochastic process of interest. This “risk” is largely what we have in mind
when we discuss “uncertainty,” although, of course, all risks carry some
uncertainty with them. Uncertainty occurs when the information available
about a particular event is too sparse or too vague to form a precise esti-
mate of its probability; the sparser or vaguer the information, the greater

the uncertainty.

Uncertainty has a qualitatively different effect on financial markets than
risk. For example, on November 3, 1998 the Chicago Mercantile Exchange
(CME) listed a futures contract based on the Quarterly Bankruptcy Index
(QBI).2 If savers were truly risk-neutral, there should have been a brisk
trade in the contract, given the disparity in estimates of the distribution of
bankruptcies, and the fact that the CME waived its contract fee. However,
as of mid-April, 1999, not a single contract had been traded. While there
are several possible explanations for this, market participants often cite
high levels of model risk for staying away from contracts based on the

CME-QBI, suggesting that uncertainty indeed plays a role?2

Similarly, in the late summer and fall of 1998 spreads between risky and

riskless assets widened dramatically, while asset return volatility also in-

2The CME-QBI is a count, measured in thousands, of all new bankruptcy case filings in
U.S. bankruptcy courts. For more information, see Chicago Mercantile Exchange (1999).

3As a further example of this kind of uncertainty, Christofferson, Diebold, and Schuer-
mann (1998) analyze the typical volatility forecast underpinning the popular “Value at
Risk” risk-management model and find that, beyond a ten-day trading horizon, the
volatility forecast is of very poor quality.



creased. Market participants reported that they were dissatisfied with
their risk-management models. There was a widespread sense that savers
were less willing to accept risk, which reduced liquidity in financial mar-
kets and, as a result, jeopardized the continued expansion of real economic
output. The Federal Reserve responded by cutting the target Fed Funds
rate by 75 basis points. The return on risky assets also declined, although
spreads remained elevated, and the real consequences of the financial tur-
moil never materialized. We argue that the turmoil was a direct conse-
guence of uncertainty: savers began to doubt their estimates of the distri-
bution of portfolio returns, in part because these returns depend on the
behavior of other savers. In particular, savers' estimates of the probabil-
ities of extreme financial events became more imprecise, causing them to

flee risky assets in favor of riskless assets?

In our model savers are able to invest in two assets: A risky asset, rep-
resenting a share in economy-wide production and a riskless asset, rep-
resenting a government bond. The risky asset carries only aggregate risk
because we assume that the saver has diversified away all of the idiosyn-
cratic, project-specific, risk. We model financial crises by assuming that if
total investment in the risky asset falls below a critical level, its per-share
return will plunge. Above the critical level, the return is smoothly decreas-

ing in total investment.

“Formally, we model uncertainty following Liu (1999) and Epstein and Wang (1994),
where uncertainty and uncertainty-aversion are summarized by a scalar parameter.



Government bonds, in contrast, pay a return that varies neither with the
state of nature nor with the level of aggregate investment. They are ul-
timately backed by the tax authority of the state and so will be paid off
even if a bad state of nature is realized or if investment falls below the crit-
ical level [see Burnham (1989)]. Uncertainty-averse savers will demand
an uncertainty premium over the return on these bonds to hold a share
in the productive, though risky, asset. In periods of greater uncertainty
these spreads will widen, investment will decline, and total output will be

lower.

We show that, in times of increased uncertainty, savers will “flee to qual-
ity” and demand too much of the government's safe bond relative to the
risky asset. We further show that a purely monetary policy of reducing the
risk-free rate is Pareto improving, because it makes the bond less attractive
and induces savers to hold more of the risky asset, although it also causes
savers to save less in total. We also discuss the consequences of a policy
that holds the stock of riskless bonds constant, so that uncertainty drives
down the equilibrium risk-free rate. When there is a bad technology shock
(so that labor's product is low), we show that the scope for monetary ex-
pansions will be sharply limited; and we further show that if uncertainty
is very high, monetary policy may be wholly ineffective. To recapture the
optimum-that is, to restore total savings, labor effort and consumption to

their optimal levels-the government must use an additional fiscal policy of



distortionary taxes to discourage current consumption and leisure.

The paper is organized as follows: In section 2 we present the model with-
out uncertainty, in section 3 we present a condensed discussion of the
modern theory of uncertainty and show how it affects outcomes in our
model and in section 4 we derive optimal monetary and fiscal policies. In
section 5 we provide conclusions and a brief discussion of the implications
of this work for the conduct of monetary policy. Proofs of propositions are

relegated to an appendix.

2 The Model

2.1 Savers

Many individual savers, whose population is normalized to one, are born
in each period ¢ and live for two periods. Savers consume an amount
¢t while young and ¢ while old. (We will generally denote generations
with superscripts and age with subscripts.) In addition, young savers are
endowed with a single unit of time which they may split between leisure,

¢4, and labor effort, 1 — ¢;. Savers have preferences given by:

(1) u(ch, 0y) + &, where u,, up > 0, U, uge < 0 and u2, < ue .



Note that savers are risk-neutral with respect to consumption while old.
This allows us to isolate the pure effect of uncertainty aversion. Finally,
because all savers are identical, we will define equilibria using a represen-

tative saver.

Labor effort earns a certain real wage of W;, which will depend on the state
(see below). Thus at the end of the first period of life, agents have available
to them an amount s, = (1 — ¢5)W, — ¢} to save for consumption while
old. Their savings portfolio is divided between investment in an economy-
wide risky asset, 2; and holdings of the safe asset, 5. The safe asset will
pay a gross return in the following period of ;. The risky asset will pay
a state-contingent gross return in the following period, ¢ + 1, conditional
on the total amount invested (see below). For now, assume that the risky

asset pays a gross per-share return of R (w1, X;).

Aggregate states w, which represent a technology shock, must lie in the set
of allowed states 2. There is a known, true, distribution over these states

7*, which does not change over time.

The wage earned by young agents will depend on the state in the current

period, W; = W (w,). Assume that the wage function W (w) satisfies:

(Al) W(w,X) >0, all w;

This assumption guarantees that young workers will always earn a posi-



tive wage.

Savers must pay an excise tax rate of 7. on consumption while young and
a labor income tax rate of 7,. In addition, the government makes lump-
sum transfers (taxes if negative) in each period of life of H} and H}. The

saver's budget constraints in each period of life are:

2) (14 7)ch + (1 — ) Wily + 2 + by < (1 — 70) W, + H,

(3) Ctl (th) = R(wtﬂ, Xt)l’t + Tbt + HI’

Savers take as given the return to the risky asset in each state, R(w).

2.2 Producers

The risky asset stands for a fully diversified investment share of a large
number of risky projects. These projects are owned and operated by two-
period-lived entrepreneurs who consume only in the second period of life,
are risk-neutral and have no other productive assets. As a result, they will
be willing to accept a loan to finance their projects if the expected value
of output net of loan costs is greater than or equal to zero. Projects' ex
ante risk characteristics and ex post outputs are costlessly observed by
all parties in the economy. There is a continuum of producers and their

associated projects; these are named n and are distributed uniformly in the



range [0, /;]. Projects of type n potentially produce a return to their owners
(the producers) of p(n,w) in state w, where p(n,w) is twice continuously
differentiable in n for each w. Assume that these projects are ordered so
that:

dp(n,w)

o = pn(n,w) <0, all win Q.

In other words, the most productive projects have the lowest name. In ad-
dition, assume that p(0,w) < oo, so that even the most productive project
in the best possible state has a finite return. Finally, define the potential

expected return to projects of type n as p(n):

When a project type is funded by savers, it generates an external social
benefit. If not enough projects are funded, then the projects that are funded
do not achieve their potential, and produce a very low return, p. Let this
critical level of investment be denoted as X;. Thus if some total amount
X is invested in the risky projects (i.e. the project type named X and all

better project types n < X are financed), total expected economy-wide



production is:

p()X |fX S XLI

X
0

fX) =
p(n)dn ifX > Xg.

Finally, assume that the return when aggregate investment is too low, p,

is smaller than the return earned by any project in any state:

po < p(n,w), alln €0, 1], win Q.

An expected return function satisfying these characteristics is displayed in

figure 1.
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Figure 1. Expected returns to the risky asset as a function of total invest-
ment, p(X).



This form of production captures the sense of recent research into financial
crises. As total investment decreases, the projects that are financed may
suffer because they do not have access to the products of other projects,
as in the *“race for the exit” model of Subrahmanyam and Titman (1999).
Further, the projects themselves may be illiquid, so that a decrease in in-
vestment from one period to the next requires the premature (and costly)
liguidation of fundamentally illiquid assets, as in Allen and Gale (1998)
and Diamond and Dybvig (1983). Finally, failure to invest in one project

may cause the default of another, as in Lagunoff and Schreft (1998,1999).

Note that all of our results are unaffected if the critical aggregate invest-
ment level is zero, X; = 0. All that we require is that the returns realized
by the very first project to be funded are quite low if that project is the only
one funded. As a result, a saver who believes that no other savers intend

to finance projects will not find it profitable to fund a project.

Savers place their investments z; with a zero-cost, zero-profit economy-
wide competitive intermediary that allows them to own a fully-diversified
share of the projects that are funded. Both savers and producers will act as
price takers with respect to the interest rate charged on individual loans.
All projects will be charged the same rate in each state. If a total quantity
X > X, is committed to the intermediary, the owners of the last project
type that is financed must be just indifferent between accepting their loans

and undertaking production and not. Thus savers realize per-share re-

10



turns of p(X,w). If an amount below the critical level is invested, X < X},
we assume that all production is surrendered to the savers by the produc-

ers, so that the per-share return is p.

Thus if an amount X > X is invested, total expected producer’s surplus

(the sum of all expected utilities) is given by:
X
@ PS(XIX 2 X) = [ [pln) - p(X)] dn.
0

If less than X, is invested, we assume that producers make zero surplus
and all output is divided among savers. Although we do not explicitly
consider them here, we also assume that the government has available to
it a complete array of lump-sum taxes and transfers that it can levy on

producers.

2.3 The Government Bond

The government receives goods in period ¢ from the young of that pe-
riod in exchange for tokens which may be redeemed in period ¢ + 1 for
some known amount. In this paper, we assume that the government has
a monopoly on the safe asset, which is backed by a storage technology
earning a unit return. Thus by manipulating the return to the only truly
safe asset in the economy, the government will be able to directly affect the

risk-free rate of return.

11



If the government pays a gross return r, < 1 on its bonds from period ¢ to
t + 1, it realizes net revenues in period ¢ + 1, while if it pays a gross return
r, > 1, itmust make a net outlay in period ¢+1. In the first case, we imagine
that this “seigniorage” revenue is refunded lump-sum to the generation
that pays it, while in the latter case, we imagine that the government levies
taxes on either generation to meet its obligation. Thus government bonds
are special because they are backed by the tax authority of the government
and because the return on bonds is totally independent to the quantity of

bonds sold.

The government's period-t budget constraint is thus:

(6) —H,—H '+ 701 =)Wy +1ech+ (1 =14 1)By 1 + B, > 0.

Recall that superscripts denote generations and subscripts denote age. In
period ¢ the government removes from storage the bond purchases of the
current old generation, B;_;. The government promised a gross return
r,—1 on its bonds, and so realizes revenue of (1 — r, 1)B; ; on its bonds.
Notice that the government can transfer resources between the two gener-
ations alive in each period with lump-sum transfers (or taxes) on the cur-
rent young (H() and the current old (H{ '). We assume (see below) that
the government treats each generation as essentially independent from its
neighbors, and so does not favor one over the other. Because we assume

that the government has no expenses of its own the inequality in (5) holds

12



with equality.

2.4 Equilibrium Without Knightian Uncertainty

In the case without Knightian uncertainty we look for an equilibrium in
each period ¢, conditional on a realization of the shock term «; (and thus
the wage rate ;), in which the government does nothing but provide a

zero-cost storage asset paying a gross return r, > 0.
Assume that the risk-free rate lies between the maximum and minimum
expected returns on the risky asset:

i < < .
min p(X) <. < max p(X)

Because savers are risk neutral, they are not concerned with the distribu-
tion of returns, and will demand a common expected return of r; on ele-
ments of their savings portfolio (if both assets are held in positive quan-
tities). As a consequence of this, we can characterize a saver's optimal
policy, the solution to maximizing (1) subject to the constraints (2) and
(3), as a savings function s[WW (w;), ] or s(wy, 7). Note that a saver's total
savings is increasing in the risk-free rate r;.

Definition 1 (Equilibrium Without Knightian Uncertainty)

Given (a) An announced choice for the risk-free rate r;; (b) A realization of the

aggregate state w;; and (c) A wage rate W, = W(w;), an additive probability

13



measure @), (with support on the interval [0, s(1}, r;)]) over the investment levels
x of other savers and an aggregate level of investment X, are a Nash equilibrium

if:

1. The representative saver is indifferent, under (Q;, among all levels of risky

investment, 0 < z; < s(wy, ).

2. The level of aggregate investment in the risky asset is given by:

X, = /X 2dQ, ().

Further, the aggregate quantity of savings, S;, is given by the representative
saver's choice of savings, S; = s(wy, r;); and the aggregate quantity of bond

holdings, By, is given by S; — X,.

Here, ; is the probability distribution over levels of investment in the
risky asset that the representative saver ascribes to all other savers existing
at time ¢. If the representative saver is to be indifferent among all levels of
investment, z;, then it must be the case that there is expected rate-of-return

equality between assets:

p(EQ{Xi}) =4,

where Eq{-} is the mathematical expectations operator under distribution

Q. There are many possible equilibria to the investment game in each

14



period, associated with many possible distributions @), including one in
which the saver expects no-one else to invest, and so does not himself.
For positive quantities of investment, aggregate investment will be X*(r),

defined as:

(6) plX* ()] = 7.

The representative saver born each period has some probability distribu-
tion @); in mind for the investment behavior of his fellows, where ), must
only satisfy equation (6). We interpret (), as a purely subjective distribu-

tion, and determine the level of aggregate investment from equation (6).

As shown by figure 2, when the risk-free rate is » = 1 and there is no
uncertainty, total savings is s(W;, 1) and equilibrium investment is X*(1)
(we assume that for all realizations of the technology shock «;, total sav-
ings exceed X*(1) when r, = 1). The remaining S; — X*(1) of aggregate
savings is allocated to the riskless asset. Clearly, when labor's product 17},
and hence savings, is low, bond sales will also be low. As we shall see in

the next section, this will limit the government's ability to use monetary

policy.

15
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Figure 2: Equilibrium without uncertainty.

3 Analysis With Knightian Uncertainty

3.1 Description of Knightian Uncertainty

Knight (1921) made the original distinction in economics between risk and
uncertainty that has since become conventional. For this reason, uncer-
tainty in the sense of multiple prior distributions has become known as
Knightian uncertainty. Keynes [see Glahe (1991)] famously argued that
uncertainty opened the door for “animal spirits” to affect financial mar-
kets. However, the modern economic analysis of choice under random-

ness, due to Savage (1954), explicitly requires a unique subjective prior

16



distribution. The formal analysis of choice when there are multiple priors
begins with Gilboa (1987), Schmeidler (1989) and Gilboa and Schmeidler
(1989). The Schmeidler-Gilboa analysis assumes, as does the classic Sav-
age analysis, a series of axioms of choice. To accommodate the presence
of multiple priors, they weaken the axiom of independence and add an
axiom of uncertainty aversion. With these additions, preferences can be
represented using a “maxmin” functional form—agents will act to maxi-

mize their payoff under the most pessimistic probability distribution.

The theoretical advances of Schmeidler-Gilboa over the standard Savage
economic theory are necessarily complex and beyond the scope of this arti-
cle. Gilboa and Schmeidler prove that expected utility may be represented
by either a single but non-additive prior or a set of additive priors. (Non-
additive distributions are subjective probability distributions that do not
sum to one, and are also known as capacities.) In simple cases, like the ones
considered here, the two approaches yield identical results. [See especially
Gilboa and Schmeidler (1993) and Wakker (1989) for a description of the
connection between the two approaches.] Because information about ex-
treme events is relatively vague, Knightian uncertainty is particularly ap-
posite for modeling such events [see Epstein and Wang (1995) and Dow

and Werlang (1992a)].

A classic example of uncertainty is one of appraising the value of a (pur-

ported) Ming dynasty vase [see Shafer (1976) and Dempster (1968)]. The

17



vase in question is worth $1000 if it really is from the Ming dynasty, but
zero if it is a fake. A risk-neutral saver who is not an expert in Chinese
pottery examines the vase and concludes that it is as likely real as fake. A
strictly Bayesian approach would then require us to ascribe a subjective
probability distribution of {0.5,0.5} to the states {real, fake}. The agent
would then buy the vase for any price below $500 and sell it for any price
above $500. (Imagine that if the agent sells the vase, he receives the sale
price with certainty and then loses the revealed true value of the vase.
The agent is “shorting” the vase asset.) This description seems to miss
something crucial about how agents, even risk-neutral agents, react to in-

complete information.

If the agent's behavior is instead described by the non-additive subjective
probability distribution {0.4,0.4} the two events are still equiprobable (so
that the agent still believes that the vase is as likely real as fake), but their
sum is less than one. An amount 0.2 of the total probability over states has
been “lost” to uncertainty. Expected values of random variables under
non-additive probabilities may be calculated using the Choquet integral
[see Dow and Werlang (1992b) and Gilboa (1987)]. If the agent buys the
vase for some price p, and it turns out to be fake, his realized utility is —p.
If it turns out to be real, the agent's utility is 1000 — p, an improvement of
$1000. Thus his expected utility from buying the vase is —p + 0.4(1000)

or 400 — p. The agent would buy the vase for any price below $400. If

18



instead the agent sells the vase for some price p, and it turns out to be
real, his utility is p — 1000. If it turns out to be fake, his utility is p, an
improvement of $1000. Thus his expected utility from selling the vase is
p— 1000+ 0.4(1000) or p — 600. The agent would sell the vase for any price
above $600. At prices between $400 and $600, the agent would neither buy

nor sell the vase.

More generally, if agents have a subjective probability distribution over
events of P, = (1 — €)@, where @ is an additive probability distribution
over events in the o-algebra & constructed from the discrete set of states (2
(so that P. is a “uniform squeeze” of ()), we say that agents have constant
uncertainty aversion of degree e. If an agent has a utility in each state of

u(w), then “expected utility” is formed as:
(7 Ep{u(w)} = eminu(w) + (1 — €) Eg{u(w)}.

Thus uncertain savers behave as if they were pessimistic, in the sense that

they ascribe all of the missing probability to the worst-case scenario.

In related work, Gilboa and Schmeidler (1989) and Wakker (1989) demon-
strate formally that, under certain assumptions, agents with many addi-
tive prior distributions behave as if they had a single but non-additive
probability distribution. Such agents will also have the maxmin form of

the utility function. Assume that an agent has the collection of additive

19



priors P,, defined as:

8) P={(1-€Q+em:me M},

where the constant, 0 < ¢ < 1 indexes uncertainty, () is the reference
or true additive probability distribution and M is the set of all probabil-
ity measures defined on the support of (. Then expected utility is again

formed using the maxmin formulation, equation (7), above.

Notice the interesting parallel with certain types of difficult-to-quantify
financial risks, e.g. model risk. Savers have many different competing
hypotheses about the probability distribution of the returns to some finan-
cial asset. These correspond with the many distributions lying in P.. Such
savers, according to the theory of uncertainty, will act to maximize utility,
equation (7). They will, as a result, be disproportionately concerned with
the worst-case scenario. The more the competing hypotheses differ, i.e.

the more uncertain agents are, the greater the weight on the worst-case.

3.2 Nash Equilibrium With Knightian Uncertainty

In this section, we extend the definition of a Nash equilibrium in the in-
vestment game, played by the representative saver against the market, to
the case when the saver is uncertain about the market's behavior. In doing

so, we use the extension of Nash equilibrium due to Dow and Werlang

20



(1994). Notice that uncertainty will not be over the aggregate state, which

follows the known i.i.d. process 7*, but rather over the behavior of other

savers.

Market
L H
. —| 00 0,a

S

]

>

=
<| -b,0 a,a

Figure 3: A simplified version of the investment game.

To motivate our definition of a symmetric Nash equilibrium with Knigh-
tian uncertainty, we provide the following example. Figure 3 displays a
stylized version of the investment game that the representative saver plays
against “the market” (all other savers taken together) in which both sides
are allowed only two simple actions. The individual saver can play ei-
ther a high (*h”) or a low (“¢”) level of investment in the risky asset. The
market can do the same, playing either “H” or “L”. The behavior of the
individual (small) saver will not affect the payoff of all other savers taken
together. If the market invests the low amount, it realizes the risk-free rate,
here normalized to zero, and if it invests the high amount, it realizes some

increment ¢ > 0 over that. If the individual follows the market, he real-
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izes the same return as the market. However, if the individual invests the
high amount when the market invests the low amount, he suffers a loss
of —b < 0. This corresponds to the case of being the last saver out of a
“rush to the exit” model, or a depositor at the back of the line in a bank
run model. Although the saver can eliminate L as a strategy of the market
(because it is strictly dominated by H), if the market (for whatever reason)
did play L, and b was large, then the saver would be exposed to a large

loss.

We use the augmented definition of a Nash equilibrium due to Dow and
Werlang (1994). Assume that the saver's beliefs about the play of the mar-
ket can be described by the set of probabilities {p;, py}. Assume further
that the saver ascribes probability zero of the market playing L, but, be-
cause of Knightian uncertainty, a probability less than unity of the market
playing H, py < 1. We can form expected utilities as described in equation
(7) above, and see that the individual saver invests the high amount if and
only if py > b/(a + b). Thus if the loss exposure b is small, the individual
saver will invest even if py is quite small, while if b is large, py must be
relatively close to unity. This is equivalent to assuming that the saver has

an uncertainty parameter of e = 1 — py.

With this example in mind, we generalize the definition of a Nash equi-
librium in the period-t investment game to include the case when agents

have Knightian uncertainty. Because he is uncertain about the behavior
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of the market, the representative saver will have beliefs about aggregate
investment that can be represented by a non-additive probability distribu-
tion. As a result, the saver will demand a premium for holding the risky
asset. He is guarding against the possibility of a financial Armageddon-
when aggregate investment falls below the critical level, X;.

Definition 2 (Equilibrium With Knightian Uncertainty)

Given (a) An announced choice for the risk-free rate r; (b) A realization of the
aggregate state w;; (c) A wage rate W, = W (w;); and (d) A realization of the un-
certainty parameter ¢;, an additive probability measure @; (with support on the
interval [0, s(W;, r)]) over the investment levels x of other savers and an aggre-
gate level of investment X; are a Nash equilibrium with Knightian uncertainty

if:

1. The representative saver is indifferent, under the non-additive probability
measure P.,(x) = (1 — ¢)Q;(x), among all levels of risky investment, 0 <

xp < s(wyg, 1.

2. The level of aggregate investment in the risky asset is given by:

X, = /X 2dOy(x).

The level of aggregate savings S; and bond holdings, B, are given by the

representative saver’s choices: S; = s(w;, ;) and B, = S; — Xj.

We further assume that the uncertainty parameter ¢ is drawn i.i.d. each
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period from a known distribution on the interval [0, 1], and that it is cost-
lessly observed by all agents before they make their consumption, effort
and investment decisions in a period. We make no assumptions about the
covariance (if any) between the preference shock ¢ and the technology

shock wy.

3.3 Investment Under Knightian Uncertainty

For a saver with uncertainty parameter ¢ to be indifferent between all
portfolio divisions, the rate of return equality condition (6) must be altered
to reflect uncertainty. Thus aggregate investment will be given by X7 (r;),

defined implicitly by:

9) (1—¢) /Qp[w, X7 (ry)] dr* + €,po = 14

Because p(X) is decreasing in X, the uncertainty-contaminated level of in-
vestment in the risky asset in period ¢, X* (r,), is below the no-uncertainty
level of investment X*(r;), as shown in figure 4. Recall from section 2.2
that the return p(X) is finite; as a result, if the uncertainty parameter ¢
grows large enough, investment in the risky asset falls to zero because
even the project with the highest return, when corrected for the saver's
fear of a financial Armageddon, does not yield more than the risk-free

rate.
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Figure 4. Effect of uncertainty. Notice that aggregate investment in the
risky asset falls from X, to Xj;.
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The following proposition formalizes the effect of increases in the uncer-
tainty parameter ¢. It is quite close in spirit to proposition 1 from Liu
(1998).

Proposition 1 (Effect of Uncertainty)

If no government action is taken, a generation j born with an uncertainty pa-
rameter ¢; will invest less than all generations 7 born with smaller uncertainty
parameters, ¢; < ¢;. In addition, in times of high uncertainty, spreads between
risky assets and the riskless asset will widen.

Proposition 2 (Financial Armageddon)

In each period, given an announced risk-free rate ry, if r; > po there is some level of
uncertainty ¢ < 1 such that, if ¢, > €*, no equilibrium with positive investment

exists.

4 Optimal Monetary and Fiscal Policy

In periods of certainty (when generations are born with uncertainty pa-
rameters ¢, = 0) there is no need for government intervention. In such
periods, the government sets the interest rate on bonds to the storage rate
r, = 1 and does not levy any taxes on the young. In periods of uncer-
tainty (when ¢, > 0) the government may choose a mix of fiscal and mone-
tary policies to undo the distortions—decreased investment and possibly a

complete financial Armageddon-described in section 3.3 above. We take
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as monetary policy a choice for the return on government bonds, r; and
as fiscal policy a choice of distortionary tax policy, {7/, 7/}. An expansion-
ary monetary policy is one which pushes the gross return on government

bonds below its natural level of one (the storage return).

The government will take as its problem that of maximizing a social wel-
fare function formed by the equally-weighted sum of the expected utility
of the representative saver plus the producers' surplus. Notice that be-
cause savers and producers are risk-neutral with respect to consumption
while old, an increase in this social welfare function means that the gov-
ernment, by using a lump-sum tax and transfer policy in the second period
of life, could make both producers and savers (at least weakly) better off.
Thus we identify increases in the social welfare function with potential
Pareto improvements, with the caveat that the government may have to

lump-sum transfer resources from one class of agents to another.

Governments often use monetary policy to respond to (at least the ini-
tial stages of) a financial crisis, perhaps because fiscal policy is costly to
change. In this model, because government bonds are backed by a riskless
storage technology, the optimal monetary policy when there is no uncer-
tainty is to set the gross return on bonds to the technologically-determined
return of unity. When we introduce Knightian uncertainty, a solely mone-
tary policy (that is, a monetary policy without an associated fiscal policy)

will have two countervailing effects. First, it causes agents to work less
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and consume more while young, pushing down total savings. Second, it
will, by the portfolio balance equation (9), cause them to hold more of the
risky asset, which has a true expected rate of return greater than the risk-
free rate. The second, good, effect will dominate the first, bad, effect for at

least small decreases in the risk-free rate, if uncertainty is not too large.

The effect of a monetary expansion will depend on the current realization
level of labor productivity W(w,), and the uncertainty level ¢,. Consider
the case, displayed in figure 5, of “good times,” when labor productiv-
ity, W, is high. In such periods, the savings schedule s(W;,r,) lies rela-
tively far to the right—for any given interest rate, savers will save in total
more when W, is high. If the saver had no uncertainty, then the equilib-
rium would be the optimum presented in section 2.4 above. At the point
marked “C” in the figure, the saver saves a total amount s(1¥}, 1), of which
an amount X*(1), marked “A,” is invested in the risky asset. The differ-
ence, the interval marked “B,” is devoted to bonds. The uncertainty real-
ization ¢, shifts the apparent (to the saver) return on the risky asset down,
from the solid line to the dashed line. If the risk-free rate is still held at one,
then the saver's portfolio now contains an amount X,, < X*(1) of the risky
asset, where the dashed line and the solid line intersect at the point marked
“D.” The government (in this figure) responds with a large monetary ex-
pansion, forcing down the risk-free rate from its initial level of one (the

solid line) to * < 1 (the dashed line). Now the saver's portfolio contains
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Figure 5: Effect of monetary policy in relatively good times. Investment in
the risky asset returns to its optimal level, but total savings falls.

just the right amount, X*(1), of the risky asset again, at the point marked
“E.” However, the amount of total savings fall to s(W,,r*) < s(W;, 1), at

the point marked “F.”

In contrast, when labor's productivity is low, i.e. in “bad times,” as shown
in figure 6, the scope for monetary expansions is limited. If there is no un-
certainty, aggregate investment in the risky asset is still X*(1) (at the point
marked “A”) and aggregate bond holdings are still given by the interval

marked “B.” Because the savings schedule is shifted quite far to the left,
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the demand for government bonds when there is no uncertainty is quite
small. We assumed, in section 3.2 above, that without uncertainty, there is

always a positive demand for bonds at r, = 1.

When uncertainty is present in addition to lower labor productivity, the
apparent expected return to the risky asset is given by the dashed line
in figure 6. As before, when the government decreases r; total savings
fall and the portfolio level of risky assets rises, so the demand for bonds
falls. When the interest rate is r, the demand for bonds falls to zero (at the
point marked “E”) and hence further decreases in r, do not fuel further
increases in holdings of the risky asset. The maximum level of investment
in the risky asset that can be generated from monetary policy alone is X, <

X*(1).

Now consider the effect of the uncertainty parameter ¢ on the effective-
ness of monetary policy. As uncertainty increases, the apparent (to the
saver) rate of return on risky assets falls. If uncertainty is high enough,
the highest possible apparent return to the risky asset (when aggregate
investment is X;) would not stimulate enough savings to cover the min-
imum investment level X;. Here monetary policy is completely ineffec-
tive and the saver will hold a portfolio made up entirely of government
bonds. As shown on figure 7, if the uncertainty-adjusted apparent rate
of return schedule on risky assets (the dashed line) at X}, falls below the

point marked S,, then savers would never be willing to save enough to
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Figure 6: Effect of monetary policy in bad times. Note the lower bound
on the effective risk-free rate and the (suboptimally low) upper bound on

aggregate investment in the risky asset.
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Figure 7: Effect of very high uncertainty. No monetary policy can stim-
ulate investment; without fiscal policy, portfolios are made up entirely of
the safe asset.

cover the critical investment level X;. In contrast, in figure 5, because the
savings schedule is shifted quite far to the right, even at very low risk-free
rates the saver is willing save enough to cover the critical level X;. Thus
there is further interaction between the technology shock and the effective-
ness of monetary policy: When labor's product is low, there may be some
level of uncertainty so large that no monetary policy can avoid a financial

Armageddon.

We now formalize these ideas.
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Proposition 3 (Pareto Improving Role of Monetary Expansions)

In times of moderate uncertainty, when 0 < ¢ < €*, where ¢** is defined as:

sIWi, (1= 7)p(X1) + €7 po] = Xi,

decreasing the risk-free rate r, from r, = 1 increases the social welfare function.
Monetary expansions alone cannot restore the optimal allocation. If there is no
uncertainty the optimal risk-free rate is one.

Proposition 4 (Limits to Monetary Expansions)

There is some minimum effective risk-free rate, r,(17;), available to the govern-
ment. The level of aggregate risky investment at this rate may be below the op-
timum. The minimum rate r, (1) is higher when labor*s productivity, ¥;, is

low.

To fix ideas, consider figure 8 below, which shows the relationship of ¢*
to labor productivity, ;. When labor is productive, it is more likely that
at least a small decrease in the risk-free rate will have an effect. However,
even within the region marked as effective, as an economy approaches the
border with ineffectiveness (from a combination of high uncertainty and
low labor productivity), the minimum possible level for the risk-free rate,

r,, will be increasing.

So far we have imagined that the government has conducted monetary

policy by choosing a risk-free rate and accommodating the resulting de-
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mand for bonds. In this view, the demand for bonds is irrelevant, as long
as it is positive. However, we might imagine that the government's ability
to vary bond sales was limited either because the government has some
minimum financing needs, or because its monetary policy is simply to
sell the same number of bonds each period, regardless of the level of la-
bor's product or uncertainty. Figure 9 below plots the demand schedule
for bonds under different realizations of labor's product W (w;) and uncer-
tainty ¢;. The two solid schedules correspond to different realizations of
labor's product W (w;) when uncertainty is zero, and the dashed schedule
shows the effect of uncertainty. For the reasons discussed above, bond de-
mand drops to zero at r,(17;). This level is higher in bad times and lower
when uncertainty is high. Demand for bonds rises smoothly with the rate
they pay, until the critical level at which bonds pay a higher return than
the largest possible return, correcting for Knightian uncertainty, that the
risky asset can pay. If bonds pay a return greater than this critical level,
demand for bonds jumps up as savers adjust their portfolios to contain
only bonds. Bonds have completely crowded out investment in the risky
asset. If uncertainty exceeds ¢* as defined in proposition 3 above, then this
critical level is at or below r,, so no equilibrium with positive investment

is possible.

If the government followed a policy of always selling (if possible) some

amount B* > 0 of bonds, and adjusting the risk-free rate to accommodate
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this, then the return would vary depending on labor's product, W (w;) and
uncertainty, ¢. In bad times, when labor's product was low, the equi-
librium risk-free rate would be higher than in good times, when labor's
product was high, even if there was no uncertainty. In times of increased
uncertainty, as the demand schedule for bonds shifts out, the equilibrium
risk-free rate would be lower. This immediately raises the possibility that,
if the government adopted a constant bond-sale policy, monetary policy
would be self-stabilizing, with decreases in the risk-free rate in times of
high uncertainty. However, this turns out not to be the case:

Corollary 1

There is no level of bonds, B* > 0, such that, if the government maintained bond
sales at B* for all realizations of w;, and ¢,, altering bond sales would not produce

a Pareto improvement.

This is a simple application of propositions 3 and 4. First, notice that if
the government pursues a constant bond-sale policy, the risk-free rate will
vary in response to shocks to labor's product W (w;). We know from propo-
sition 3 that the optimal risk-free rate is the same for all levels of W (w).
Second, from proposition 4 we know that in times of high uncertainty and
a realization of labor's product, W (w;), the optimal monetary policy will
be to sell zero bonds. If B* > 0, then this condition can never be met; while

if B* = 0, then too few bonds will be sold in periods of low uncertainty.

Next, we describe how a fiscal policy can encourage savings by discour-
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aging current consumption and leisure, thus allowing the government to
recapture the optimum. By increasing the tax on current consumption and
decreasing the labor income tax (that is, actually subsidizing labor effort),
the optimal tax system rewards saving. As a result, for any prevailing
risk-free interest rate, savers facing such a tax system will save more than
savers who face no distortionary taxes. The government can then depress
the risk-free rate, recovering the optimal level of risky investment through
the portfolio-balance effect, without causing an over-all decrease in sav-
ings. The additional effect of a fiscal policy is illustrated in figure 10 be-
low. A combined monetary and fiscal policy move the aggregate invest-
ment level to A' and total savings to C'. Note that these are the same as the
optimal levels, at points A and C. Such a policy is always feasible, because
we assumed that S(w;, 1) > X*(1) for all w,.

Proposition 5 (Optimal Fiscal and Monetary Policy)

In times of uncertainty, when ¢, > 0, if the government sets the risk-free rate to
r*(e;) < 1satisfying X7 () = X*(1); the tax rates on consumption while young
and labor income to: 7* = —1 + 1/r*; and 77 = 1 — 1/r*; and the lump-sum
transfers to satisfy the government's budget constraint, then the representative
saver will consume, work, save and invest exactly as if there were no uncertainty.

In particular, risky investment in period ¢ will be at its optimal level: X; = X*(1).
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Figure 8: Region in which monetary policy is effective.
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Figure 9: Bond demand as a function of technology shock and Knight-
ian uncertainty. The dashed line indicates an increase in Knightian uncer-

tainty.
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Figure 10: Effect of fiscal and monetary policy in good or bad times. The
appropriate fiscal policy manipulates aggregate savings so that monetary

policy is always effective.
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5 Conclusion

In this paper we used the relatively new theory of choice under Knight-
ian uncertainty to study the equilibrium effects of saver uncertainty and
the optimal government policy response. Because uncertain savers be-
have like pessimists, they will underinvest in the risky asset, starving the
economy of productive capital, and overinvest in the risk-free asset, the
government bond. The optimal monetary policy response to uncertainty
is one that decreases the rate of return to bonds, inducing savers to hold
risky assets. A strategy of combating uncertainty with a purely monetary
policy is shown to be Pareto improving, but to be unable to recapture the
optimal allocation. To recapture the optimum, monetary policy must be
combined with a fiscal policy of taxing current consumption and subsi-

dizing current labor effort, so that total savings does not fall.

This analysis allows us to draw several conclusions about the market tur-
moil of the late summer and fall of 1998. First, it implies that portfolio
adjustments may have been the primary reason that a monetary expan-
sion undid some of the ill-effects of the financial turmoil. Second, it im-
plies that interest rate spreads between riskless and risky assets are in large
part determined by the level of uncertainty in the economy. As a result,
spreads remained elevated even after the monetary expansion, indicating

that savers continued to be uncertain. Third, our analysis implies that it is
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easier for the government to counteract uncertainty-driven financial crises
in good times than in bad times. The fact that the U.S. economy was par-
ticularly healthy in the fall of 1998 allowed it to use monetary policy alone
to calm financial markets. Finally, the model provides an explanation for
the underlying cause of the sudden increase in uncertainty. If savers per-
ceived that other savers were withdrawing from risky investments, they

would have had no incentive to maintain their own risky investments.

More generally, our analysis points to rules for conducting monetary pol-
icy in the face of shocks to labor income and uncertainty. Roughly speak-
ing there are three levels of the uncertainty parameter: zero (or very low),
moderate, and extremely high. In the same way, we can consider the two
extremes of labor's product: low and high. If uncertainty is close to zero,
then there is no role for monetary policy in our model (proposition 3).
This result derives fundamentally from the fact that financial markets are
assumed to be perfect; that is, they are zero-cost, fully transparent, and
free of any underlying moral hazard problems. When there is moderate
uncertainty, spreads between risky and riskless asset will widen, and there
will be a general flight to safety (proposition 1). An expansionary mone-
tary policy will be Pareto improving, but will be limited by the current
level of labor's product (propositions 3 and 4). If labor's product is high,
demand for bonds will be relatively strong, and the government will be

able to push the risk-free rate fairly low. If labor's product is low, demand
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for bonds will be relatively weak, and the government will not be able to
push the risk-free rate very far away from its natural level. The mone-
tary expansion undoes, to a certain extent, the flight to quality. Even after
the decrease in the risk-free rate, spreads will remain elevated, although
returns to the risky asset will fall. Thus although spreads are useful in sig-
nalling increases in uncertainty, monetary policy should not target them

directly, instead targeting the returns on risky assets.

Finally, if uncertainty is extremely high, investors may perceive that ag-
gregate investment will fall below the critical level, and thus choose to
prudently invest nothing in the risky asset, with disastrous consequences
for output (proposition 2). Further, at some levels of uncertainty, monetary
policy may be ineffective, and so monetary policy alone will be unable to
stem a catastrophic decline in investment (proposition 4). In such cases,
only a combination of monetary and fiscal policies will be able to avert

this financial Armageddon (proposition 5).
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Appendix

Proof of Proposition 1

Given that the government is not conditioning variables on the signal, we must
show that investment in the risky asset is decreasing in e for all values of the
risk-free rate » > 0 and realizations of the production shock, w:

X2 (r) = XZ(r), allr >0,¢; > e

Here X*(r) is determined by the portfolio balance equation (9). This equation
implies that the expected return to the risky asset is increasing in the uncertainty
parameter, ¢, as savers demand an uncertainty premium for holding the risky
asset. Because the production function p(w, X) is decreasing in aggregate invest-
ment X, it must be the case that equilibrium investment in the risky asset declines
as uncertainty increases. The effect of the production shock w is to shift the total
savings curve s(w,r). For any given level of total savings, higher values of ¢ are
associated with a decreased portfolio holding of the risky asset.

To think about the spread between a risky and the riskless asset, consider an asset
that pays a state-contingent return of R(w). Assume for convenience's sake that
the return can take on only two values: R; > 0, when aggregate investment
lies above X, and zero, when aggregate investment falls below X, (imagine a
AAA-rated corporate bond that repays in all states of the world, and defaults
only if there is a financial “Armageddon”). Uncertainty-contaminated rate-of-
return equality then requires that the expected return to the bond, formed under
the non-additive probability measure P., must satisfy:

(1 - E)Rl =T,

where r is the prevailing risk-free rate. Thus for risk-neutral (but uncertainty-
averse) savers to hold positive quantities of this asset, its return must satisfy:

1
1—c¢€

R1 Z T.

The spread is then:

(A.1.1) Ry—r=rs ¢

— €

43



This is increasing in e. [ |

Proof of Proposition 2

The highest possible expected return to the risky asset occurs when aggregate in-
vestment just equals X ;. We can then define ¢* from the portfolio balance equa-
tion (9) as that level of uncertainty at which, even if savers expect the risky tech-
nology to pay off at its highest possible level (that is, if aggregate investment is
expected to be just X)), they are just indifferent between the risky and the riskless
asset:

(1—€)p(XL) 4+ €po=r.
Or, manipulating:

*x p(XL) -r
p(XL) —po

Notice the importance of the assumption of » > py. In the next proposition, we
discuss why the risk-free rate might be bounded from below. [ |

€

Proof of Proposition 3

In this section we consider the problem of a benevolent government constrained
to combat uncertainty with a purely monetary policy. We construct a social wel-
fare function and show that, in times of uncertainty, it is increasing in an expan-
sionary monetary policy (decreasing in the risk-free rate). Because increases in
the risk-free rate can make savers better off by capturing some monopoly rents
from the producers, we have to consider both the welfare of savers and produc-
ers. The government will have available to it a lump-sum tax on (transfer to)
producers which it uses as a transfer to (tax on) savers.

Note first that monetary policy will never influence portfolio decisions if uncer-
tainty is greater than a critical level ¢, defined implicitly as:

s[Wi, (1 — €7)p(XL) + € po] = XL

If uncertainty ¢; is greater ¢;*, the Knightian-uncertainty contaminated expected
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rate of return schedule never intersects the savings schedule at any level of sav-
ings greater than the critical level, X;,. Note that ¢;* is increasing in W;. If W, is
large enough, there may be no ¢;* less than unity, in which case monetary policy
is effective no matter how uncertain savers are. Thus when the production shock,
wy, takes on a bad value monetary policy is more likely to be ineffective.

Now we turn to the question of the effect of monetary policy when uncertainty is
not too great: ¢; < €.

From equation (4) above, if the prevailing risk-free rate is r» and savers invest an
amount X/ (r;) in the productive (risky) technology, the representative producer
has an expected surplus of:

Xg,(re)
PS, (1) = /0 {p(n) — p[X7 ()]} dn.

Note that the price paid for loans is not r;, but rather an uncertainty-premium
over r;. Recall from equation (9) that the uncertainty adjusted expected rate of
return on the risky asset satisfies, in period ¢:

Tt — €00

X (o)) = T

Substituting back into the expression for PS,(r;) produces:

Xz, (re) Py —
(A3.1) PS () = /0 ) dn = X (),

Appealing to Leibnitz's rule, the derivative is:

Tt — €tPo 8th (’)”t) 1 *
— X .
1— €t } or 1— €t €t (Tt)

PS,(ry) = {p[X;<rt>] -

Again substituting in for the uncertainty premium from equation (9) produces:

1

— ¢

(A.3.2) PS;(r) = —T o Xa(r)-

To compute the saver's indirect utility, it will be convenient to abstract from his
choice of consumption and leisure while young, ¢, and ¢;. Consider the partial
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value function ¢(W; — s;):

d(Wy —s4) = max u(ch, £5) subject to: cf + Wilh — HE < Wy — .

co -l

If the saver faces a risk-free rate of r;, his problem may be expressed as:

msax ¢(Wt - St) + 7¢8¢.
t

As a direct consequence, notice that ¢/(-) = r. This problem induces a savings
relation s(wy, ) in the usual way. Given that there is a continuum of savers of
mass unity, aggregate savings are S; = s(wy, r¢).

Begin by considering the representative saver's expected utility, formed using
maxmin preferences:

VY (ry) = oW, — Si(r4)] + reSi(ry) + HY.

The agent expects a rate of return of r, on all parts of the total savings portfolio,
including holdings of the risky asset (although he will earn, in reality, a higher
return on the risky asset). Assume that the government refunds (taxes) lump-
sum any seigniorage revenue (cost) derived from manipulating the rate paid on
storage, ry:

H{ = (1 —r)[S; — X[ (ry)].
Now the saver's indirect utility function becomes:
(A3.3) ViU (ry) = gIWi = Se(ro)] + S — (1 — 1) X[, (re).
The slope with respect to r is:

AV (ry)
dr

0X¢ (rt)

(A.3.4) =S —¢'()]—(1— )+ Xa,(re)-

Notice immediately that when the paid return on government bonds equals the
technological rate of return unity, this slope becomes:

dvi<(ry)

re=1

This term is positive because, if the risk-free rate increases, the saver captures
some surplus from producers.
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So far we have concentrated on the representative saver's expected utility under
Knightian uncertainty. We may also be interested in the true expected utility of
the saver, thus explicitly recognizing that the risky asset will pay off more than r,
in expected value. The representative saver's indirect utility function is now:

Vi (ry) = @IW = Sulro)] + Sulre) = X7 (re) + pIXZ (ro)] X7, ().

The representative saver divides his total savings S; into a portfolio of the risky
asset, X7 (r;), and the safe asset, S; — X (r;). The saver will earn a certain return
of unity on savings placed in the safe asset (because any difference between the
prevailing risk-free rate and unity will be refunded lump-sum in H}). However,
the saver will earn a true expected return of p[ X (r;)] > 1 on investments in the
risky asset. Thus by decreasing the risk-free rate, the government can stimulate
greater investment in the high-return risky asset that is shunned by pessimistic
savers.

Substituting out for the uncertainty premium, the representative saver's true in-
direct utility over r, becomes:

(A.3.5) VI (1) = G[Wy — Se(r)] + Se(re) — X2 (ry) + %Xﬁt (re)-
Taking the derivative with respect to » produces:
(A3.6) V™' (r) = —¢/[W; — Si(ry)]Si(re) + Si(re)

B 8X§:rt) 1- etl—_ri:— epo| | 1 _1 etX:t ().

The final term again represents the monopoly rents captured by savers when the
risk-free rate increases. It will be exactly offset by a corresponding decrease in the
surplus of the producers.

The government (in its role as a social planner) chooses a purely monetary policy,
that is, a level of the risk-free interest rate, to solve the social welfare problem.
Here we assume that producers and savers are assigned equal Pareto weights, so
the social welfare function becomes:

max Fi(r) = VY (ry) + PSy(r1), subject to: X7 (r;) < Si(ry).
Tt

The value functions PS; and VXV are given by equations (A.3.1) and (A.3.4), re-
spectively. By assumption, the constraint that S; > X7 doesnotbind whenr; =1,
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for any level of the uncertainty parameter ¢ > 0.
Using equations (A.3.2) and (A.3.4), the slope of the social welfare function is:

dF(re)

ar = SUr)lL = ()] — (1 = 2Xalr) e

or 1—

EtX:t(Tt)-

Because ¢}(-) =, when ¢, = 0 the solution to the social welfare problem is to set
rp = 1.

dF(ry)

=0.
dr

re=1,e,=0
If ¢, > 0 and r;, = 1 then the slope of the social welfare function is negative:

d]:t(’f‘t)
dr

__a 0Xa(r)
C1—¢ Or

re=1,e¢>0

Thus, even using the Knightian uncertainty contaminated expected utility of the
representative saver, a decrease in the risk-free rate increases the total surplus
available to be divided between producers and savers. The reason is that Knigh-
tian uncertainty produces a wedge between what the producer must pay for a
loan and what the saver expects to realize on it. A decrease in the risk-free allows
more production (worthy projects are funded), and thus an increase in producer's
surplus greater than the decrease in saver's surplus. With appropriate transfers
between the two parties, savers can be made better off without hurting producers.
In a democracy, all parties would vote for such a system.

This implies that an expansionary monetary policy, that is, a policy of depress-
ing the risk-free rate below its natural rate of unity, increases the social welfare
function, and is thus potentially Pareto improving, when ¢, > 0. However, as the
risk-free rate decreases, the constraint that investment in the risky asset not ex-
ceed total savings will begin to bind, so that we cannot derive exactly the optimal
pure monetary policy. Further, as we shall see, this constraint is more likely to
bind in bad times (when labor's product W, is low) than in good times. With the
addition of the fiscal policy instruments of distortionary taxes, the government
can completely manipulate the savings schedule and restore the optimum.

Finally, notice that the true expected consumption of a saver while old is:

Tt — €P0

E{ci(r)} = Si(ry) — X7, (ry) + 1—¢

X7 (1)
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Taking the derivative with respect to ry:

OE{c| (r)}

OX}, (rt)
8’f‘t '

1 €t
=9 - X* 1t (11—
)+ T XA )+ (= )
This may be either positive or negative, depending on the sensitivity of the port-
folio level of investment to the prevailing interest rate, which in turn depends on

the sensitivity of the production function p(-, X') to investment.

Proof of Proposition 4

Monetary policy faces another limit beyond that imposed by the maximum level
of uncertainty which it can combat, ¢*. Even if uncertainty is below this critical
level, there is a lower bound on the risk-free rate, r,(W;). When the risk-free rate
reaches this bound, demand for bonds will drop to zero and further changes in r;
will not affect portfolio or savings decisions.

This critical return r,(W,) is defined implicitly from:
s[Wi, (W) = XC, [ (W)

If ry < r,(W;) then savings S; fall below investment in the risky asset, X7 (r;). In
such a situation, the non-negativity constraint on the storage technology is bind-
ing: Savers would like to bring forward assets from the future to finance invest-
ment in the present. In section 2 we saw that in this situation savers would invest
their portfolio entirely in the risky asset, so that further changes in r, would not
affect portfolios. Notice that because the savings schedule s(W;,r;) is increasing
in Wy, that r, is therefore also increasing in W;. In bad times, the government will
find that monetary policy is less effective. [

Proof of Proposition 5

Assuming that the saver's savings schedule could be manipulated to any desired
level (see below), the right choice of risk-free rate is the one that induces a port-
folio with the optimal quantity of risky investment:

s X7 (rY) = X*(1).
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Even if r* is below r,, it will still be achievable, because the government will use
fiscal policies to manipulate the savings schedule. Further, by our assumption
that S(w, 1) is always greater than X*(1), this will be feasible.

Take as given for the moment the saver's choice of portfolio conditional on the
risk-free rate »*, and consider his optimization problem, that of maximizing (1)
subject to the budget constraints (2) and (3), by choice of consumption while
young, leisure and total savings. The first-order conditions from this problem
are:

ue = ri(1+7t), and:

Uy = ’f'tWt(l — Tl/t)
Thus a decrease in r, will increase consumption and leisure while young. How-
ever, this decrease can be offset by an optimal choice of 7/ and 7. For any
O0<r <1
(A5.1) ol = 1+ 1/r}, and:
(A5.2) b= 1—1/r}.

Note that by (A.5.2), the optimal tax rate on labor income will be negative.

The taxes and transfers levied on the young, 2t and TZ’t, may cause the govern-
ment to run a net surplus or deficit. The seigniorage revenue realized on bond
holdings (1 — rf) will also leave the government a surplus in the second period
of each generation’'s life. The differences are made up with lump-sum transfers
(taxes if negative) so that:

(A5.3) HY = rrteh + 0t (1 — £5),
(A.5.4) HY = (1—r9)[1 = X*(1)].

Here ¢ and /¢ denote the saver's optimal choices of consumption and leisure
while young, given the government's fiscal and monetary policy choices. [
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