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Abstract

This paper advocates chaining the decomposition of shocks into contributions from forecast er-

rors to the shock decomposition of the latent vector to better understand model inference about

latent variables. Such a double decomposition allows us to gauge the influence of data on latent

variables, like the data decomposition. However, by taking into account the transmission mecha-

nisms of each type of shock, we can highlight the economic structure underlying the relationship

between the data and the latent variables. We demonstrate the usefulness of this approach by

detailing the role of observable variables in estimating the output gap in two models.
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1. Introduction

Researchers estimating models using Bayesian methods or maximum likelihood have employed

several different ways of decomposing the latent state vector path to better understand and com-

municate model behavior. Shock decompositions, for example, in which researchers decompose the

estimated latent vector into contributions of the estimated structural shocks, have long been stan-

dard in the literature. In cases where the model is linear and the shocks are Gaussian, moreover, the

latent variables are linear functions of the data. Thus, following Sander (2013) and Andrle (2013),

researchers can decompose the estimated latent vector into contributions of the observed variables

using the so-called data decomposition. In this paper, we propose linking the data decomposition of

the vector of structural shocks and the shock decomposition of the latent vector in what we label as

the double decomposition. This way of analyzing the latent variable path can be particularly illu-

minating when the focus is on inference regarding highly theoretical constructs, such as the natural

rate of interest or the “flex-price” output gap, where the relation between the observable variables

and the latent variable is not intuitive and depends heavily on the model’s theoretical structure.

We first show how the double decomposition can be used to study the behavior of a latent

variable—the output gap—in a simple model by Ireland (2011). After illustrating the mechanics

of the double decomposition, we focus on the output gap in a more complex model—a version

of the model presented in Del Negro, Giannoni and Schorfheide (2015). Using this model, where

inference is more complex, we illustrate the value of the double decomposition for practitioners. A

data decomposition suggests that the estimated path of the output gap in this model shows the

influence of a large number of observables. At the same time, a shock decomposition shows that the

output gap is primarily driven by permanent technology shocks and shocks to idiosyncratic firm risk

(effectively, shocks to the spread between the return on capital and the return on risk-free assets).

Thus, it is illuminating to start with the relationship between the observables that carry a large

signal about the output gap, according to the data decomposition, and the model’s estimates of the

shocks which largely drive the output gap, according to the shock decomposition. This process is

formalized in the double decomposition.

We also illustrate the value of the double decomposition for interpreting the model’s reaction

to incoming news, examining in detail the effects of news flow between the end of 2013 and the

beginning of 2014. The incoming news over this period featured large forecast errors in several

highly influential observables and correspondingly large movements in important latent variables,

such as the output gap. In such circumstances, the double decomposition can provide a clear

economic interpretation of the effects of news on these variables.

Formally, let us consider a model with a linear-Gaussian structure. Let Yt be the vector of

observable variables, Xt be the latent vector, and ηt be the vector of structural shocks. The estimated

vectors of latent variables and structural shocks depend on current, past, and future forecast errors.

We decompose inference about endogenous latent variables in two steps. First, the linear-Gaussian

structure of the model implies that structural shocks at some arbitrary time t, ηt, and the matrix
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of forecast errors for the observable vector over the sample, ν, are jointly normally distributed.1

As a result, we can write E (ηt|ν) = K(t)ν for some matrix K(t), which is a function of time, but,

importantly, independent of the matrix of one-step ahead forecast errors. The data decomposition

exploits this fact to decompose estimated shocks into contributions of each observable at every date

in the sample, holding the other observables constant. Second, linearity also allows us to write

the estimated value of a latent variable i at time t as E
(
Xi
t |Y
)

= [
∑∞

s=0 Φ(θ)sK(t− s)] ν, where

Y = [Y1 Y2 . . . YT ]′, which facilitates tracing the influence of news on the estimates of the

latent variables operating through the transmission mechanism of each type of structural shock

separately.

Both steps of our decomposition have been known in the literature. The shock decomposition

is used to understand model dynamics but does not provide a linkage between data and latent

variables. The data decomposition provides such a linkage but without a transparent relation to

the underlying causal mechanisms which, as we emphasize, explain why the observables and the

latent variables are linked. Because the double decomposition traces the influence of the data on

latent variables through estimates of the structural shocks and their subsequent propagation, this

causal narrative is highlighted. Moreover, as the double decomposition emphasizes inference about

structural shocks, we focus on the role of forecast errors, rather than the level of the data, as is

more common in the literature. This accounting is better for our purposes because contemporaneous

forecast errors are tightly linked to model estimates of contemporaneous structural shocks, but much

less so to past shocks. By contrast, the influence of a quarter of data in levels corresponds to large

structural shocks both in that quarter and also offsetting shocks in the surrounding periods, which

complicates the relationship between the observables and the latent variables of interest.2

The rest of the paper is organized as follows. Section 2 overviews the analysis of the latent

vector in structural models. Section 3 then illustrates how the double decomposition works in a

simple 3-equation New Keynesian model. We then turn to a more complex case, a medium-scale

DSGE model, in Section 4. Section 5 concludes.

2. Latent Variable Analysis in Structural Models

Traditionally, empirical macroeconomic researchers focus on the so-called shock decomposition,

which decomposes the latent variables into contributions of structural shocks (see Appendix A.2).

Recently, exploiting the linearity of the model, Andrle (2013) and Sander (2013) propose the data

decomposition, which traces the independent effect of each observable on the estimated latent vector

(see Appendix A.3). While the shock decomposition does not provide a link between the data

and the latent vector, the data decomposition, which does describe such a relationship, does not

provide a causal narrative underlying the relation. We address these shortcomings by proposing

a new decomposition that does a data decomposition shock by shock. Given the nature of our

1The matrix of forecast errors is defined as ν = [ν1 ν2 . . . νT ]′, where νt is the vector of forecast errors at
time t.

2A data decomposition in levels does have the advantage that the contribution of a given quarter of data tends to
be more closely aligned in time with the corresponding effect on latent variables, while as we discuss below, this is
not always the case in a data decomposition in forecast errors.
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decomposition, we label it as the double decomposition. All these decompositions can be applied

to any linear model with Gaussian shocks.

Let us consider the state space representation of a linear model

Xt = Φ (θ)Xt−1 +R (θ) ηt (1)

Yt = Z (θ)Xt + εt (2)

where Xt is an m × 1 vector of state variables, ηt is a p × 1, random vector with innovations

or structural shocks such that ηt ∼ N (0, Q), Yt is an n × 1 vector of observable variables and

εt ∼ N (0, H) is an n× 1 vector of measurement errors. We assume that the structural shocks and

measurement errors are uncorrelated.

In this framework, estimates of the latent vector are only updated if there is a forecast error.

Hence, we proceed to derive the historical decompositions in terms of forecast errors instead of in

terms of the data matrix.3 Let νt be the one-step ahead forecast error

νt = Yt − Ŷt|t−1 = Z
(
Xt − X̂t|t−1

)
+ εt (3)

We first derive the historical data decomposition of the estimated vector of structural shocks.

As shown in Appendix A.1, the smoothed estimate of the vector of structural shocks can be written

as a weighted sum of current and future one-step ahead forecast errors, νt+h,

η̂t|T = QR′
[
Z ′F−1t|t−1νt + L′t|t−1Z

′F−1t+1|tνt+1

+ . . .+ L′t|t−1L
′
t+1|t . . . L

′
T |T−1Z

′F−1T |T−1νT

]
with Lt|t−1 = Φ

[
I − Pt|t−1Z ′F−1t|t−1Z

]
, Ft|t−1 = ZPt|t−1Z

′ + H, and Pt|t−1 = ΦPt−1|t−1Φ
′ + RQR′.

Let us define the observation weights for the forward recursions as

Ω?
t,τ =

{
I τ = t

L′t|t−1L
′
t+1|t . . . L

′
τ−1|τ−2 τ > t

Then, the data decomposition of the smoothed vector of structural shocks is given by

η̂t|T = QR′
T∑
τ=t

Ω?
t|τZ

′F−1τ |τ−1ντ (4)

= QR′
n∑
j=1

T∑
τ=t

Ω?
t|τZ

′F−1τ |τ−1ν
j
τ (5)

where νjτ is an n− dimensional vector with all rows equal to zero but the jth row, which is set to

the actual forecast error.

3Appendix A.4 provides the double decomposition in terms of the data matrix.
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The second step in the inference about the latent vector is its shock decomposition. Under the

assumption of stationary dynamics, the autoregressive model for the state vector in equation (1)

has an infinite moving average representation

X̂t|T = ΦtX̂0|T +

t−1∑
τ=0

ΦτRη̂t−τ |T (6)

where X̂0|T is the estimated vector of initial conditions, given data through time T. Let us define

η̂it−τ |T as a vector containing the estimated path for the ith structural shock conditional on the

remaining (p−1) structural shocks being zero for all τ . Therefore, the estimated vector of structural

shocks is given by η̂t−τ |T =
∑p

i=1 η̂
i
t−τ |T and the estimated realization of the state vector by

X̂t|T = ΦtX̂0|T +

p∑
i=1

t−1∑
τ=0

ΦτRη̂it−τ |T (7)

where
∑t−1

τ=0 ΦτRη̂it−τ |T states the contribution of the ith structural shock to the estimated vector

of latent variables at time t.

The double decomposition chains the data decomposition, which relates observables to estimates

of shocks, to the shock decomposition, which relates shocks to latent variables. Using equation (4),

we define the contribution of news about the jth observable to the latent vector through the ith

shock as follows

X̂i,j
t|T = ΦtX̂j

0|T +
t−1∑
τ=0

ΦτR

{
QR′

T∑
τ ′=t

Ω?
t|τ ′Z

′F−1τ ′|τ ′−1ν
j
τ ′

}
i

(8)

where X̂j
0|T is the contribution of news about the jth observable to the vector of initial conditions

for the latent variables. Hence, the double decomposition allows us to gauge the influence of data

on the path of latent variables, like the data decomposition. However, by taking into account the

transmission mechanisms of each type of shock, we can highlight the economic structure underlying

the relationship between the data and the latent variables.

The overall contribution of news about the jth observable on the latent vector is given by

X̂j
t|T =

p∑
i=1

X̂i,j
t|T = ΦtX̂j

0|T +

p∑
i=1

t−1∑
τ=0

ΦτR

{
QR′

T∑
τ ′=t

Ω?
t|τ ′Z

′F−1τ ′|τ ′−1ν
j
τ ′

}
i

(9)

and the estimated vector of latent variables is

X̂t|T =

p∑
i=1

n∑
j=1

X̂i,j
t|T =

n∑
j=1

ΦtX̂j
0|T +

p∑
i=1

t−1∑
τ=0

ΦτR

{
QR′

T∑
τ ′=t

Ω?
t|τ ′Z

′F−1τ ′|τ ′−1ν
j
τ ′

}
i

(10)

3. A Simple Model Demonstration

In this section, we provide a practitioner’s view of the logic behind the double decomposition

using a small-scale model. By using the double decomposition, we are able to better understand the
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economic mechanisms in this model by which some variables, such as inflation, are highly informative

about the output gap, while others, such as GDP growth, are less so.

We illustrate how the double decomposition works using an estimated version of the canonical

New Keynesian model presented in Ireland (2011). Formally, the behavioral core of the model

consists of four equations governing the shadow value of wealth (λt), the log-level of detrended

output (Yt), inflation (πt) and the federal funds rate (Rt):

(z̄ − βγ)(z̄ − γ)λt = γz̄Yt−1 − (z̄2 + βγ2)Yt + βγz̄EtYt+1 + (z̄ − βγρa)(z̄ − γ)at − γz̄zt (11)

λt = Rt + Et (λt+1 − πt+1) (12)

(1 + βα)πt = απt−1 + βEtπt+1 − ψλt + ψat + et (13)

R−Rt−1 = ρππt + ρg (Yt − Yt−1 + zt) + εRt (14)

The model features four exogenous processes driven by structural shocks: the growth rate of total

factor productivity (zt), a shock to household preferences (at), a price mark-up shock (et), and a

monetary policy shock (εRt ). Ireland (2011) estimates the parameters of the model by maximum

likelihood, using as observable variables GDP growth, GDP price inflation, and the 3-month T-bill

rate from 1983:Q1 to 2009:Q4. In our analysis, we use the parameter estimates reported in Ireland

(2011).

To illustrate the double decomposition, let us suppose we are interested in understanding how

the model infers movements in the output gap from the path of observable variables.4 In line with

our previous discussion, our analysis proceeds sequentially in an ”onion” structure. First, we show

how the main features of the data decomposition for structural shocks follow from some properties

of the impulse response functions for observables. The impulse response functions for the output

gap then allow us to understand how the model translates news about observable variables into

estimates of the output gap. Finally, we describe the double decomposition of the output gap over

the estimation sample.

Figure 1 reports impulse responses following one-standard-deviation innovations to the exoge-

nous processes. Certain familiar qualitative differences in the response of the observable variables

are visible. First, there are two shocks that drive inflation and output growth in the same direction

on impact –the preference and monetary policy shocks–, which are, in turn, distinguishable from

each other by the reaction of the T-bill rate. Second, the remaining two shocks – the mark-up

and technology shocks– move inflation in opposite directions and can be again distinguished from

each other by the comovement of GDP growth with the T-bill rate: while following a mark-up

shock, GDP growth falls and the T-bill rate rises, both growth and the T-bill rate rise following a

technology shock.

With these qualitative differences, inference about structural shocks given forecast errors in the

observable variables is easy to explain intuitively. First, the fact that the systematic component

of monetary policy depends only on observable variables means that the monetary policy shock is

4In this example, the output gap is defined relative to the level of output that would have prevailed in the absence
of nominal rigidities.
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Figure 1. Impulse Response Functions Following Structural Shocks
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Note: Impulse responses are calculated following one-standard-deviation shocks and are reported in percentage points.

measurable and inference about its path is trivial. Accordingly, we only focus on inference about the

other three structural shocks. The model’s inference about these shocks is most easily understood

by considering the model’s response to forecast error vectors with the property that the implied

monetary policy shock is zero. This restriction implies that the forecast errors in the T-bill do not

have any information beyond what is contained in the forecast errors for GDP growth and inflation.

Therefore, we only discuss the information content of these variables. In this context, we consider

two cases: (i) a case featuring a one-standard-deviation forecast error in GDP growth and a zero

error in inflation and (ii) a case featuring a zero forecast error in GDP growth and a one-standard-

deviation error in inflation. Given the linear-Gaussian structure of the model, inference for all of

the other cases can be represented as a linear combination of cases (i) and (ii). Figure 2 reports

the results of these exercises.

Let us first suppose that the model is presented with a one-standard-deviation forecast error in

GDP growth, a zero forecast error in inflation, and a forecast error in the T-bill consistent with the

monetary policy rule. From Figure 1, we know that the dominant drivers of GDP growth are the
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preference and technology shocks. Therefore, the model accounts for the positive forecast error in

GDP growth using one-standard-deviation shocks to preferences and technology, as shown in the

left column in Figure 2.5 Moreover, as shown in the second row of Figure 1, the effect on inflation

of this combination of shocks is relatively small. Thus, such a combination also mostly accounts for

the zero inflation forecast error, with only a slight movement in the markup shock.

Let us now consider the alternative case: the model is presented with a one-standard-deviation

forecast error in inflation, a zero forecast error in GDP growth, and a forecast error in the T-bill

consistent with the monetary policy rule. This case is more complicated because, as shown in

Figure 1, all one-standard-deviation structural shocks have similar effects on impact for inflation.

The right column of Figure 2 shows that the model can account for this case by sizable movements

in the three non-monetary-policy shocks. In particular, the model infers a 0.8 standard deviation

increase in the preference shock, which, by itself, increases GDP growth. The model offsets the effect

of the preference shock on GDP growth with contractionary supply shocks: a positive markup shock

and a negative shock to technology, so that the overall effect on GDP growth is zero. These shocks

also help explain the positive forecast error in inflation.

Combining the information contained Figure 1 and Figure 2, we obtain Figure 3, which shows

how the model’s estimate of the output gap responds to the two vectors of forecast errors described

above. This two-way decomposition – effects of news about observable variables on structural shock

contributions – is essentially what we formalize in the double decomposition. Let us consider the

left column in Figure 3, which reports the case of a one-standard-deviation forecast error in GDP

growth. In this case, individually, the associated positive preference and technology shocks have

sizable effects on the model estimate of the output gap. However, taken jointly, these two shocks

are offsetting, leaving a much smaller imprint on the output gap than on GDP growth. By contrast,

in the case of a positive forecast error only in inflation, all the associated shocks (positive preference

and markup shocks and a negative technology shock) move the output gap in the same direction.

Therefore, we conclude that the estimated path for the output gap is quite sensitive to inflation

news, but not GDP growth.

We can now use these findings to understand the model’s estimates of the output gap in a sample

from 1983:Q1 to 2009:Q4. The resulting double decomposition is shown in Figure 4. The upper-left

panel displays the data decomposition of the estimated path for the output gap. The remaining

panels show the data decomposition of the contribution of each structural shock to the estimated

path for the output gap. For example, the middle panel in the first row of Figure 4 shows the

estimated path for the output gap if only technology shocks were active and all other shocks were

zero. Consistent with our previous discussion, the data decomposition of the output gap reported in

the upper-left panel of Figure 4 shows that the estimated path of the output gap is almost entirely

driven by inflation news. The shocks associated with news about GDP growth and the T-bill have

largely offsetting effects on the output gap.

5These effects are calculated for an observation 54 quarters from both the beginning and end of the sample. This
corresponds to an observation in the middle of the 1983:Q1-2009:Q4 (i.e., arbitrary period in the middle between
1996:Q2 and 1996:Q3) sample used to estimate the model.

8



Figure 2. Effect of News at Time 0 on Estimated Paths for Structural Shocks
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Note: Shock responses are reported in standard-deviation units. Responses represent the effects of news at time 0 in
the given variable on the estimated path of the shocks (labelled in bold) 20 quarters before and after that time.

Given the simplicity of the model, this outcome could have been anticipated by noting that,

compared to DSGE models estimated on data after the Great Recession, the Phillips curve is

relatively sensitive to movements in real activity. Correspondingly, in the Ireland (2011) model,

the role of markup shocks is smaller than in those DSGE models. In this context, inflation is

naturally highly informative regarding the output gap. However, even in this simple case, running

through the formal logic of the double decomposition helps to narrow the key dynamic features of

the model underlying this outcome, i.e., that inflation is relatively responsive to both technology

and preference shocks.
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Figure 3. Effect of News at Time 0 on Estimated Contributions of Structural Shocks
to the Output Gap
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Note: Responses represent the effects in percentage point of news at time 0 in the given variable to the contribution
of a specified shock (labelled in bold) to the path of the output gap 20 quarters before and after that time.

4. A Large-Model Demonstration

4.1. The Model

To further demonstrate the utility of the double decomposition, we now turn to a larger model,

more like the workhorse models used in academia and central banks, featuring a much larger set of

observable variables and more complex transmission dynamics. In particular, we use an estimated

version of the model originally developed by Del Negro, Giannoni and Schorfheide (2015) (DGS).

Broadly speaking, the DGS model extends the baseline Smets and Wouters (2007) model with

financial frictions on the firm side and a time-varying inflation target in the monetary policy rule.

Our version of the model differs from the one described by DGS in two respects. First, our Taylor-

type interest rate feedback rule responds to the change in real GDP, rather than to the flex-price
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Figure 4. Decomposition of Structural Shock Contributions to the Output Gap in
the Ireland 2011 Model

Note: Upper right panel: data decomposition of the output gap in percentage points. Other panels: data decomposi-
tion of the contribution of the given shock to the output gap in percentage points. Sample: 1983q1-2009q4.

output gap. This assumption implies that the setting of the federal funds rate is not, by construction,

a strong signal about the output gap. The monetary policy rule in our model is given by

Rt = ρr (Rt−1) + (1− ρr) [φπ (πt − π∗t ) + φy (yt − yt−1)] + εrt

where the parameter ρr reflects the degree of interest rate smoothing, π∗t is the time-varying inflation

target, and εrt represents a monetary policy shock. The time-varying inflation target follows

π∗t = ρπ∗π
∗
t + σπ∗επ∗,t (15)
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where 0 < ρπ∗ < 1 and επ∗,t is an iid shock. The time-varying inflation target accounts for the

low frequency movements in longer-horizon inflation expectations in our estimation sample and

potentially any effects of unconventional monetary policy, such as forward guidance, on agents’

expectations. The inflation target is informed by matching model-based average expected inflation

over the next 10 years with the Survey of Professional Forecasters median 10 year-ahead inflation

expectations.

Second, following Barsky, Justiniano and Melosi (2014), we use several indicators of inflation

and wages, incorporating a factor structure in the corresponding measurement equations. For price

inflation, we consider the log difference of the GDP deflator, core CPI price inflation, and core PCE

price inflation. For wage inflation, we use average hourly earnings and the employment cost index.6

The model includes eleven shocks: shocks to transient TFP, permanent TFP, investment specific

technology, the aggregate risk premium, firm-specific risk, marginal bankruptcy costs, net worth,

price markups, wage markups, exogeneous spending, the inflation target, and the monetary policy

rule. For the estimation, we use data on GDP growth, consumption growth, investment growth, the

federal funds rate, the spread between corporate bonds and Treasuries of comparable maturity, net

worth, corporate debt, long-run inflation expectations, wage inflation measured by average hourly

earnings, wage inflation measured by the employment cost index, GDP deflator price inflation, core

CPI price inflation, and core PCE price inflation. The estimation sample is 1987:Q1-2015:Q4.7

4.2. Comparison with Standard Decompositions

In this subsection, in Figures 5-6, we present results from the standard shock and data decom-

positions for the output gap, defined as the log-difference between the level of actual output and the

level of output in a counterfactual economy (the ”flex-price economy”) with flexible prices and wages

and without price and wage markup shocks. The output gap was mostly positive in the second half

of the 1990s and in the 2000s. In 2009, the output gap decreased rapidly to about -9 percent where

it remained for a couple of years before gradually recovering. The shock decomposition suggests

that financial shocks, notably the firm-specific risk shock, drive most of the business cycle variation

together with permanent productivity shocks. Since the Great Recession, investment specific shocks

and monetary policy shocks play an important and very persistent role preventing the output gap

from declining further.

6To illustrate the procedure, let’s consider the case of wages. The vector of Lw quarterly wage growth data series
is given by:

wp′
t =

[
wp

1,t, ..., w
p
Lw,t

]′
(16)

The measurement equation linking the model concept of wage inflation with the jth element of this vector, wp
j,t, is as

follows
wp

j,t = (w̄ + cj) + Λjw
p
m,t + uj,t (17)

where w̄ is the estimated steady state level and cj captures the differences in estimated means among different series.
The idiosyncratic disturbances, uj,t, which follow an AR(1) structure, and loading factors, Λj , are series specific.

7Our results may be specific to the sample period we use and the fact that we abstract from the issues that arise
due to the ZLB. We leave the estimation that would explicitly take into account the ZLB for future research.
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Figure 5. Shock Decomposition of the Output Gap

Note: Bars represent the contribution of shocks to the output gap in percentage points. Sample: 1987q1-2015q4.

Figure 6. Data Decomposition of the Output Gap

Note: Bars represent the contribution of forecast errors in the given observable to the estimated path of the output
gap in percentage points. Sample: 1987q1-2015q4.

Looking at the data decomposition in Figure 6, we see that a number of observables influence

the estimate of the output gap. In particular, the federal funds rate, real consumption growth, and

the corporate bond spread seem to have the largest influence on the estimate of the output gap.
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Some features of these results resonate with other analyses of the output gap over our sample,

but others are more counter-intuitive. For example, the model estimates that the output gap was

far above zero in the second half of the 1990s, peaking at 9.6 percent at the end of 2000. Noting

the low level of unemployment, coupled with strong investment growth and subdued inflation over

that period, contemporary accounts from these years emphasized the role of productivity shocks

and this model agrees with that assessment, finding that almost all of the rise in the output gap

in the late 1990s is accounted for by shocks to permanent productivity. However, as shown by the

data decomposition of the output gap, news about investment growth, hours and inflation played

a very small role in the model’s estimates of the output gap at this time; rather, as in most other

times, contributions from consumption growth, the federal funds rate and the corporate bond spread

dominate. In the next section, we show that a consideration of the double decomposition helps to

explain why these observables are so influential and why they so strongly signal shocks to permanent

productivity.

4.3. Decomposing Estimates of the Output Gap

In this section, we employ the double decomposition to examine the model’s inferences about the

output gap. To provide an intuitive explanation of the double decomposition, we proceed as we did

in Section 3: we first examine the relationship between forecast errors in key observable variables

and the model’s estimates of structural shocks (described in Table 1) and then use impulse response

functions to relate these effects on shock estimates to the model’s estimate of the path of the output

gap (described in Tables 2 and 3).

We conclude that the output gap path is chiefly informed by two classes of observable variables:

spending components and financial variables. In the first class are spending components – consump-

tion growth most importantly – which provide relatively clean signals about permanent productivity

and firm-level risk shocks, the main contributors to the variance of the output gap. In the second

class, the model’s financial observable variables also signal large movements in productivity and firm

risk. These data are influential in the longer term, after the effects of transient offsetting shocks

also associated with these observables have faded. To streamline our discussion, we therefore focus

on this set of observable variables.

Table 1 displays the effect of a one-standard-deviation forecast error in these selected observables

on the model’s estimate of contemporaneously occurring shocks.8 The first two columns of Table 1

describe the effects of one-standard-deviation forecast errors in consumption and investment growth,

respectively, holding all other forecast errors at zero. Because GDP, consumption and investment

growth are all observed, a forecast error in consumption or investment alone, holding the other

two fixed, requires an exactly offsetting movement in exogenous spending, equal to a little more

than one standard deviation (-1.16) in the case of a consumption forecast error and -0.74 in the

case of an investment forecast error. The crowding-in of consumption and investment occasioned

8For expositional ease, in this first step, we abstract from finite-sample effects and present results for inference at
an observation very far from the start and end of the sample (200 quarters). As in the previous section, in this table,
the magnitudes of the shocks are measured in standard-deviation units.
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by the decline in exogenous spending helps the model account for some of the higher-than-expected

private spending, but the model must also rely on other structural shocks. For consumption forecast

errors, the offsetting shock is chiefly a positive shock to permanent productivity, which boosts both

consumption and investment growth, and a much smaller increase in firm-level risk, which offsets

the impetus to investment that the first two shocks would otherwise deliver.

Table 1: Effects of News on Shock Estimates

Positive news on
Shock Cons Inv Hours FFR Spread Net Worth

Prod (temp) -0.11 0.02 -1.45 -0.06 -0.05 -0.02
Prod (perm) 1.01 -0.12 0.02 0.50 0.46 0.21
Firm-level Risk 0.14 -1.11 -0.01 -0.39 -0.35 -0.48
Risk premium -0.15 0.82 0.00 0.28 1.50 0.47
Exog. spending -1.16 -0.74 0.12 -0.01 -0.01 -0.00
Inv. efficiency -0.03 0.52 0.02 -0.21 -0.27 -1.12
Mon Pol -0.02 -0.02 -0.04 0.94 -0.02 -0.01
Price markup 0.06 0.02 -0.11 0.20 0.05 0.06
Wage markup -0.23 -0.03 -0.11 -0.08 -0.14 0.00
Net worth -0.01 -0.32 -0.02 -0.15 -0.33 -0.18
Infl Target 0.11 0.19 -0.23 0.04 0.09 0.25
Mar. bankruptcy 0.08 0.24 0.02 0.15 0.56 0.17

Note: Table entries are the effect of a one-standard deviation forecast error in the given observables on the model’s
estimate of the contemporaneous shock. Shocks are measured in standard-deviation units.

The negative shock to exogenous demand and the positive shock to firm-risk both imply lower

output gaps, while the positive productivity shock would imply a higher output gap. However,

the exogenous spending shock has a relatively weak impact on the output gap, while only a small

firm-level risk shock is necessary to account for the zero forecast error in investment. Accordingly,

we find that positive news on consumption is associated with higher output gaps, mostly because

such news signals the arrival of a permanent boost to productivity. This outcome is quantified in

the first column of Table 2, which shows that, all else equal, a one-standard-deviation forecast error

in consumption raises the estimated contribution of permanent productivity shocks to the output

gap by 0.44 percentage points, with small effects on contributions from other shocks.

Turning now to the case of a forecast error in investment growth (the second column of Table 1),

we find that, again, the implied decline in exogenous spending is not sufficient to explain the forecast

error. In fact, the forecast error is accounted for by a negative shock to firm-level risk, accompanied

by a positive shock to the marginal efficiency of investment (further boosting investment and, to a

lesser extent, consumption). By itself, such a configuration of shocks would entail a sizeable negative

forecast error in spreads and positive forecast errors in consumption, which, by assumption, did not

occur. The model thus infers that the aggregate risk premium must have experienced a large positive

shock, while permanent productivity suffered a modest downward shock; both of these shocks boost
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Table 2: Effect of News on Shock Contributions to the Contemporaneous Output
Gap

Positive news on
Contribution to gap from Cons Inv Hours FFR Spread Net Worth

Prod (temp) 0.03 -0.01 0.34 0.02 0.01 0.01
Prod (perm) 0.44 -0.09 -0.02 0.23 0.18 0.08
Firm-level Risk -0.04 0.29 -0.01 0.13 0.08 0.13
Risk premium 0.02 -0.08 0.01 -0.04 -0.22 -0.05
Exog. spending -0.04 -0.02 0.00 0.00 0.01 0.00
Inv. efficiency -0.01 -0.00 0.00 -0.02 -0.04 -0.06
Mon Pol 0.00 0.01 -0.00 -0.25 0.01 -0.00
Price markup -0.00 0.00 -0.00 -0.00 0.00 0.00
Wage markup 0.01 -0.00 0.04 -0.01 0.01 -0.00
Net worth -0.00 0.00 0.00 -0.02 -0.05 -0.01
Infl Target 0.01 0.01 -0.01 -0.00 -0.00 0.02
Mar. bankruptcy 0.00 -0.01 -0.00 -0.00 -0.02 -0.01

Total 0.43 0.11 0.36 0.04 -0.02 0.11

Note: Table entries are the effect of a one-standard deviation forecast error in the given observables on the model’s
estimate of the contemporaneous output gap, measured in percentage points.

spreads and lower consumption by much more than investment. Putting the pieces together, from

the second column of Table 2, we see that investment forecast errors are associated with an increase

in the contribution of the firm-level risk shocks to the output gap of 0.29 percentage points, about

half of which is offset negative contributions from the aggregate risk premium and permanent

technology shocks. Overall, then, news about investment growth emerges as less informative about

the contemporaneous output gap than news about consumption, essentially because consumption

growth errors are cleanly associated with a permanent productivity shock, which has strong effects

on the output gap, while investment growth is associated with a mix of offsetting shocks.

A data decomposition would find that the second most influential observable for the model’s

estimate of the contemporaneous output gap is aggregate hours: as shown by the third column of

Table 2, a one-standard-deviation forecast error in hours would raise the estimate of the output gap

at that date by 0.36 percentage points, similar to the effect of a one-standard-deviation forecast error

in consumption growth. In the case of aggregate hours, however, the forecast error is accounted

chiefly by a negative shock to temporary productivity. Because the productivity shock is temporary,

its effects on spending growth are largely muted by a rise in labor inputs – a desirable feature when

accounting for a positive forecast error in hours, but zero forecast errors in spending observable

variables. The association of hours with temporary productivity shocks accounts for nearly all of

the effect of hours forecasts errors on estimates of the output gap.

Finally, we now consider the effect of news on financial observable variables, several of which can

be influential on the model’s estimates of the output gap. Overall, these observable variables are

associated with sizeable movements in permanent productivity and firm-level risk. However, they
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are not, taken separately, very informative about the contemporaneous output gap, as the absence

of consistent forecast errors in spending implies the presence of strong offsetting shocks. As we

discuss below, these offsetting shocks are relatively transient and financial observables emerge as

informative about the output gap several quarters in the future.

We start with news about the federal funds rate, shown in the third column of Table 1. In this

model, systematic monetary policy depends only on observables, the unobserved inflation target and

monetary policy shocks. In fact, the forecast error in the federal funds rate alone is accounted for

mostly by the monetary policy shock. To account for the zero forecast errors in spending, the model

offsets the contractionary implications of this monetary policy shock with several expansionary

shocks, including positive shocks to permanent productivity and negative shocks to firm-level risk

and the aggregate risk premium. From Table 2, we see that the positive contributions to the output

gap from the permanent productivity shock and firm-level risk dominate the offsetting negative

contributions. On balance, a positive forecast error in the federal funds rate is associated with a

modest increase in the model’s estimate of the contemporaneous output gap.

The next financial indicator that we will consider, the corporate bond spread, is heavily driven by

shocks to the aggregate risk premium that appear directly as wedges in the equation characterizing

the laws of motion of this variable. As with forecast errors in the federal funds rate, however, the

positive shock to the aggregate premium must be offset by other expansionary shocks, in order to

be consistent with zero forecast errors in spending observables and, as we have also seen before, the

model infers positive shocks to permanent productivity and negative shocks to firm-level risk for

this reason. Again consulting Table 2, we see that these contributions are roughly offsetting and

the total effect of forecast errors in the spread is quite small.

The last observable that we will consider is net worth. A forecast error in net worth is largely

explained by a one-standard-deviation decline in the marginal efficiency of investment, which raises

the price of installed capital because investment flows are a less effective source of new capital.

However, as in the previous cases, this shock alone has counterfactual implications for consumption

and investment. Therefore, they must be accompanied by offsetting expansionary shocks, namely

positive permanent productivity shocks and negative firm-level risk shocks. These expansionary

shocks, as we have previously discussed, have much larger effects on the output gap than the

other main contributors in this case and so a one-standard-deviation forecast error in net worth is

associated with an 0.11 percentage point increase in the estimated output gap.

So far, we have focused on the link between forecast error and estimates of contemporaneous

structural shocks and output gaps. However, as we showed earlier, the contribution of the data to

latent variables can be thought of as contributions to estimated shocks at various horizons, weighted

by the impulse responses of the latent variable of interest at those horizons. In the current model,

the persistence of output gap effects differs quite a bit across different shocks. In particular, as shown

in the Appendix, permanent shocks to productivity and risk premium shocks induce movements in

the output gap that are substantially more persistent than other major sources of variation; indeed,

the output gap impulse response functions for those shocks are hump-shaped, peaking more than

two years after the shock at roughly double their value at impact. Hence, news about variables that
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Table 3: Effect of News on Shock Contributions to the Output Gap 8 quarters in
the Future

Positive news on
Contribution to gap from Cons Inv Hours FFR Spread Net Worth

Prod (temp) 0.03 -0.01 0.40 0.02 0.01 0.01
Prod (perm) 1.29 -0.21 -0.00 0.65 0.58 0.26
Firm-level Risk -0.18 1.38 0.02 0.55 0.47 0.62
Risk premium 0.03 -0.15 0.00 -0.06 -0.30 -0.09
Exog. spending -0.04 -0.03 0.00 0.00 0.00 0.00
Inv. efficiency -0.01 0.09 0.01 -0.06 -0.09 -0.27
Mon Pol 0.00 0.00 0.01 -0.34 0.00 -0.00
Price markup -0.01 -0.00 0.02 -0.01 -0.00 -0.00
Wage markup 0.06 0.01 0.05 0.01 0.03 -0.00
Net worth -0.00 0.14 -0.00 0.00 0.02 0.04
Infl Target 0.03 0.04 -0.05 0.01 0.01 0.06
Mar. bankruptcy -0.00 -0.01 -0.00 -0.01 -0.02 -0.01

Total 1.18 1.28 0.47 0.77 0.72 0.62

Note: Table entries are the effect of a one-standard deviation forecast error in the given observables on the model’s
estimate of the output gap eight quarters later, measured in percentage points.

are linked to large movements in permanent productivity or risk premium shocks tend to be highly

influential about future output gaps, even this influence is somewhat obscured in the near-term by

signals about offsetting shocks. For this reason, we now examine the dynamic contributions of news

about observables to estimates of the future path of the output gap.

To get a sense of how the persistence of the shocks affects the contribution of the different

observables, in Table 3, we examine the effect of the important observables on the contributions of

the various shocks to the output gap 8 quarters after impact.9 From this table, it is immediately

apparent that, at this horizon, this set of observables is still highly influential regarding the output

gap, sometimes even more so than on impact as in the case of the federal funds rate, and that

almost all of that influence is mediated through the persistent effects of permanent productivity

and firm-level risk shocks.

To summarize our findings thus far, then, two classes of observables tend to contribute most

strongly to the estimated path of the output gap in this model. The first class of observables are

spending components, i.e., consumption and investment growth, whose forecast errors have sparse

and large loadings on permanent productivity and firm-level risk shocks, because these shocks

account for a large share of those observables’ variance and have much larger effects on them

than on the others variables in the information set. For the second class of observables (financial

observables) by contrast, productivity and firm-risk shocks are not necessarily the dominant source

9A more comprehensive set of coefficients from the data decomposition for these observables is available in the
Appendix. We note that, because of the effect of shocks on the gap is persistent, estimates of the time-T output gap
can depend on forecast errors after time T. However, as shown by Figure A.4, the influence of future forecast errors
is much smaller than the past and contemporaneous forecast errors, justifying our focus on the latter.
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of variance. Rather, for these variables, the dominant source of variance (monetary policy shocks, for

example, in the case of the funds rate) would, by itself, cause large movements in spending. Thus, a

non-zero forecast error in such a variable alone signals offsetting movements in the dominant drivers

of consumption and investment, muting the impact on the contemporaneous output gap.

Figure 7. Dynamic contributions to two-sided estimates for the flex-price output
gap over the estimation sample

Note: Upper left panel: data decomposition of the output gap in percentage points. Other panels: data decomposition
of the contribution of the given shock to the output gap in percentage points. Sample: 1987q1-2015q4.

Having laboriously worked our way through this underlying logic, we now confirm that these

patterns are, indeed, reflected in the relation between observables and shock contributions in the

estimation sample. By doing so, we also show that the double decomposition can shed light on

why observables are particularly important for the data decomposition. Our results are presented

in Figure 7. Consistent with our theoretical priors, we see that forecast errors in investment growth

and net worth make significant contributions to the path of the output gap through their role in

signalling the level of firm-specific risk, while consumption growth is also influential, but chiefly

as an indicator of permanent productivity. The federal funds rate emerges as a fourth important

19



observable and, in this case, conveys information about the level of both permanent productivity

and firm-level risk.

Tracing the impact of observables on the output gap through their effects on estimates of the

shocks clarifies why these variables emerge as influential, and why the observables emphasized by the

contemporary accounts are not so influential. For example, in this model, forecast errors in hours are

mostly driven by temporary productivity shocks, whose effects on the output gap fade rapidly. By

contrast, forecast errors in consumption, driven by permanent shocks to productivity, have similar

effects to hours errors on estimates of the contemporaneous output gap but build substantially over

subsequent years. Regarding investment growth, our earlier analysis shows that investment growth

can be highly informative about the output gap, but only at longer horizons, because the shocks

underlying investment growth errors have offsetting effects on the contemporaneous output gap.

Moreover, earlier forecast errors, especially in the federal funds rate, were associated by the model

with permanent technology shocks, explaining a significant fraction of the higher investment over

these years, further reducing the contribution of investment growth to the output gap.

4.4. Interpreting the News: An Illustrative Example

In this section, we illustrate the use of the decompositions derived above to construct simple,

easily interpretable narratives connecting news about the observables in the model to revisions to the

forecast. For our example, we focus on the model’s reaction to news between the end of the fourth

quarter of 2013 and the middle of the second quarter of 2014. We focus on this period because

the configuration of incoming news (e.g., very disappointing readings on labor productivity, but

unexpectedly strong consumption growth) is not naturally explained by a single shock, highlighting

the value of the decomposition that we presented above.

Specifically, in this experiment, we took a snapshot of the real-time data for two points in time:

the first one at 9am EST on December 31, 2013 and the second one at 9am EST on May 15, 2014.

That guarantees us that the first dataset includes real-time estimates for the third quarter of 2013,

including the advance estimate of GDP and its components. The second dataset includes real-time

estimates for the first quarter of 2014. We do not attempt to condition on partial information on

the forecast quarter from monthly data sources, such as the Employment Situation report.

Figure 8 displays the real-time data corresponding to both vintages, as well as the associated

forecasts and estimates of the output gap. As is apparent from the Figure, the main feature of the

news between these two datasets is a drastic positive forecast error for 2014:Q1 consumption growth,

while the forecast errors for 2014:Q1 investment growth and output growth are negative. In the

data, the most obvious sources of weakness in 2014:Q1 output growth are in inventory investment

and net exports. Correspondingly, exogenous spending in this quarter was weak. The model was

surprised, to a lesser extent, by inflation, inflation expectations, and federal funds rates. Finally,

aggregate hours were only slightly below expectation, implying a large negative error in average

labor productivity.

Perhaps surprisingly, the model reacts to this constellation of news by keeping its forecast for

both output growth and hours at a very similar level, but revising its estimate of the output gap from
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Figure 8. Comparison of forecasts for selected variables, December 2013 vs. May
2014

Note: The gray line reports the real-time data and forecast as of December 2013. The red line reports the real-time
and forecast as of May 2014. The shaded area covers the common period of forecast for both dates.

about -8.5 percent to -7 percent in 2014:Q1. Furthermore, inflation and inflation expectations have

been revised upward, while the weakness in investments is projected to persist for a few periods. We

can use the general properties of the double decomposition to develop a crisp narrative explaining

this reaction.

Figure 9 displays the double decomposition for the revision to the output growth forecast. In line

with our earlier discussion, we can see that the negative forecast error in output growth signalled to

the model a very transient drop in exogenous demand, by virtue of the aggregate resource constraint

(the panel labelled “Exog Demand”). At the same time, the positive error in consumption growth

was associated with positive contributions to output growth from shocks to productivity (shown

by the positive green bars in the panel labelled “Productivity”), boosting the forecast for output

growth. Similarly, monetary policy shocks, almost exclusively informed by surprises in the federal

funds rate, were expansionary. However, these two effects were balanced by negative financial shocks
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(informed by the negative error in investment growth), so that the forecast for output growth was

little changed at the end of the day.

Figure 9. Decomposition of the revision in the forecast for output growth between
December 2013 and May 2014

Note: Upper left panel: data decomposition of the revision to the forecast. Other panels: data decomposition of the
contribution of the given shock to the revision. Financial shocks include shocks to firm-specific risk, net worth and
bankruptcy costs. Productivity shocks include both permanent and transient shocks. Mark-up shocks include both
price and wage mark-ups.

Turning now to the revision in the output gap, as shown in Figure 10, the situation is somewhat

surprising, but consistent with the analysis of the output growth. As mentioned before, news about

consumption growth is mostly informative about permanent productivity in this model. Given

that we observed a sizeable positive surprise in consumption growth, the model inferred a shock to

permanent productivity, and not a demand shock as it would be the prior for most practitioners. The

output gap narrowed in the response, as growth in potential output increased. The estimated shock

to permanent productivity due to the consumption forecast error is attenuated by the negative

surprise in the federal funds rate. The revision to the output gap is further attenuated by the
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Figure 10. Decomposition of the revision in the forecast for the output gap between
December 2013 and May 2014

Note: Upper left panel: data decomposition of the revision to the forecast. Other panels: data decomposition of the
contribution of the given shock to the revision. Financial shocks include shocks to firm-specific risk, net worth and
bankruptcy costs. Productivity shocks include both permanent and transient shocks. Mark-up shocks include both
price and wage mark-ups.

negative contributions from financial shocks inferred as a result of the surprisingly meagre growth

in real investment.

To summarize, the positive news on consumption growth, accompanied by little change in output

growth, suggested to the model that aggregate supply conditions in 2014:Q1 were better than

expected and the output gap has been revised up. This example demonstrates the utility of the

double decomposition for interpreting the reaction of the model to incoming data.
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5. Conclusion

In this paper, we advocate chaining the decomposition of shocks into contributions from forecast

errors to the shock decomposition of the latent vector in order to better understand model inference

about latent variables. This double decomposition allows us to gauge the influence of data on

the path of latent variables, like the data decomposition. However, by taking into account the

transmission mechanisms of each type of shock, we can highlight the economic structure underlying

the relationship between the data and the latent variables.

We demonstrate the usefulness of this approach by detailing the role of observable variables

in estimating the output gap within the DSGE model à la Del Negro, Giannoni and Schorfheide

(2015). Tracing the logic of the double decomposition, we find that real economic factors, such as

consumption and investment, and certain financial observables, such as the corporate bond spread,

are highly informative about the output gap largely because they provide strong signals about the

arrival of permanent productivity and firm-level risk shocks – the main drivers of variation in the

output gap. Our double decomposition results also highlight the mechanisms that explain some

puzzling features of the data decomposition, such as the weak role of aggregate hours and the

strong role of the federal funds rate in informing the model’s estimates of the path of the output

gap. As these features are key to the model’s reaction to data, the double decomposition enables

practitioners to better understand and communicate model estimates of latent variables.
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Appendix

A.1. The Kalman Filter and Smoother

Let us consider the following state space system:

Xt = ΦXt−1 +Rηt

Yt = ZXt + εt

Let us assume that the structural innovations ηt ∼iid N (0, Q), the measurement errors εt ∼iid
N (0, H), and the initial state X0 ∼ N

(
X̂0|0, P0|0

)
. In stationary models, usually X̂0|0 and P0|0

correspond to the invariant distribution associated with the law of motion for the state vector, Xt.

The Kalman filter and smoother recursions are based on the following lemma.

Lemma A.1.1. Let (x′, y′)′ be jointly normal with

µ =

(
µx

µy

)
and Σ =

(
Σxx Σxy

Σyx Σyy

)

Then the conditional probability density function p (x|y) is a multivariate normal with

µx|y = µx + ΣxyΣ
−1
yy (y − µy)

Σxx|y = Σxx − ΣxyΣ
−1
yy Σyx

The Kalman filter recursions can be summarized as follows:

X̂t|t−1 = ΦX̂t−1|t−1

Pt|t−1 = ΦPt−1|t−1Φ
′ +RQR′

νt = Yt − Ŷt|t−1 = Yt − ZX̂t|t−1

X̂t|t = X̂t|t−1 +Kt|t−1νt

Pt|t = Pt|t−1 −Mt|t−1F
−1
t|t−1M

′
t|t−1

Mt|t−1 = Pt|t−1Z
′

Kt|t−1 = Mt|t−1F
−1
t|t−1

Ft|t−1 = ZMt|t−1 +H

Lt|t−1 = Φ
[
I − Pt|t−1Z ′F−1t|t−1Z

]
Note that

ΦPt|t = LtPt|t−1

We can rewrite the one-step ahead forecast errors or innovations, νt, as

νt = Yt − Ŷt|t−1 = Z
(
Xt − X̂t|t−1

)
+ εt = Zξt|t−1 + εt
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where ξt|t−1 is the state estimation error:

ξt|t−1 = Xt − X̂t|t−1

= ΦXt−1 +Rηt − ΦX̂t−1|t−1

= Φ
[
I −Kt−1|t−2Z

]
ξt−1|t−2 +Rηt − ΦKt−1|t−2εt−1

= Lt−1|t−2ξt−1|t−2 +Rηt − ΦKt−1|t−2εt−1

The equations for the Kalman smoother recursions are given by

X̂t|T = X̂t|t + Pt|tΦ
′P−1t+1|t

(
X̂t+1|T − ΦX̂t|t

)
Pt|T = Pt|t + Pt|tΦ

′P−1t+1|t
[
Pt+t|T − Pt+1|t

]
P−1t+1|tΦPt|t

which require inverting the matrix P−1t+1|t in each recursion. Following Durbin and Koopman (2002),

we reformulate the Kalman smoother recursions for the state vector so that we do not need to

compute the (T − 1) inverse matrices. Let us define

rt = P−1t+1|t

(
X̂t+1|T − X̂t+1|t

)
Let us rewrite the smoothed state vector as

X̂t|T = X̂t|t−1 +Kt|t−1νt + Pt|tΦ
′P−1t+1|t

(
X̂t+1|T − X̂t+1|t

)
P−1t|t−1

(
X̂t|T − X̂t|t−1

)
= rt−1 = Z ′F−1t|t−1νt + L′t|t−1rt

Using forward recursions, we can write the vector rt−1 as a weighted sum of future one-step ahead

forecast errors

rt−1 = Z ′F−1t|t−1νt + L′t|t−1Z
′F−1t+1|tνt+1 + . . .+ L′tL

′
t+1|t . . . L

′
T−1|T−2Z

′F−1T |T−1νT

with rT = 0. Recall the definition rt−1 = P−1t|t−1

(
X̂t|T − X̂t|t

)
, then

X̂t|T = X̂t|t + Pt|t−1rt−1 (A.1)

and, therefore, the smoothed estimate of the state vector can be written as a weighted sum of

one-step ahead forecast errors. Moreover, using this formulation of the smoothed estimate of the

state vector, the econometrician does not need to compute additional inverse matrices since F−1j|j+1

are already computed in the filtering recursions.

Using Lemma A.1.1, we have that the smoothed estimate of the vector of measurement errors

is given by

ε̂t|T =
T∑
τ

E
[
εtν
′
τ

]
F−1τ |τ−1ντ
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where

E
[
εtν
′
τ

]
=


0 τ < t

H τ = t

E
[
εtξτ |τ−1

]
Z ′ τ > t


with

E
[
εtξt+1|t

]
= −HK ′t|t−1Φ

′

E
[
εtξt+2|t+1

]
= −HK ′t|t−1Φ

′L′t+1|t

. . .

E
[
εtξT |T−1

]
= −HK ′t|t−1Φ

′L′t+1|tL
′
t+2|t+1 . . . L

′
T−1|T−2

Then, the smoothed estimate for the vector of measurement errors is given by

ε̂t|T = H
[
F−1t|t−1νt −K

′
t|t−1Φ

′Z ′F−1t+1|tνt+1 −K ′t|t−1Φ
′L′t+1|tZ

′F−1t+2|t+1νt+2

− . . .−K ′t|t−1Φ
′L′t+1|T . . . L

′
T−1|T−2Z

′F−1T |T−1νT

]
= H

[
F−1t|t−1νt −K

′
t|t−1Φ

′rt

]
Similarly, the smoothed estimate for the vector of structural shocks is

η̂t|T =
T∑
τ=1

E [ηtντ ]Fτ |τ−1−1ντ

where

E
[
ηtν
′
τ

]
=

{
0 τ < t

E
[
ηtξτ |τ−1

]
Z ′ τ ≥ t

}
with

E
[
ηtξt|t−1

]
= QR′

E
[
ηtξt+1|t

]
= QR′L′t|t−1

. . .

E
[
ηtξT |T−1

]
= QR′L′t|t−1L

′
t+1|t . . . L

′
T |T−1
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The smoothed estimate for the vector of structural shocks can also be rewritten as a weighted sum

of future one-step ahead forecast errors or innovations, νt,:

η̂t|T = QR′
[
Z ′F−1t|t−1νt + L′t|t−1Z

′F−1t+1|tνt+1

+ . . .+ L′t|t−1L
′
t+1|t . . . L

′
T |T−1Z

′F−1T |T−1νT

]
= QR′rt−1 (A.2)

A.2. Historical Shock Decomposition

The historical shock decomposition represents the estimated latent variables in terms of con-

tributions of the estimated structural shocks. Let êt|T be the estimated path for the ith structural

shock obtained from the Kalman smoother and let η̂it−τ |T be an n-dimensional vector of zeros with

êt|T in the ith row. Under the assumption of independently and identically distributed structural

shocks, the autoregressive model for the state vector in equation (1) has an infinite moving average

representation so that the contribution of the ith structural shock to the vector of latent variables

at time t is given by

X̂i
t|T = ΦtX0 +

t−1∑
τ=0

ΦτRη̂it−τ |T (A.3)

Therefore, X̂i
t|T is the estimated model-implied path for the state vector given the estimated path

for the ith structural shock conditional on the remaining (n− 1) structural shocks being zero for

all τ . The estimated actual realization of the state vector, X̂t|T , is equal to the sum across the

structural shocks contributions

X̂t|T = ΦtX0 +

n∑
i=1

t−1∑
τ=0

ΦτRη̂jt−τ |T (A.4)

A.3. Historical Data Decomposition

Given the linearity of the econometric model, each observable variable has an independent effect

on the Kalman smoother’s estimate of a latent variable. The historical data decomposition traces

these independent contributions of each observable variable to the estimated smoothed realization

of each latent variable. We first compute the data decomposition for the filtered vector of state

variables, X̂t|t, which is given by.

X̂t|t = Ωt,0X̂0|t +

t∑
τ=1

Ωt,τKτ |τ−1Yτ (A.5)
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In order to obtain the sequence of weights {Ωt,τ}Tτ=1, let us consider the updated state vector

from the Kalman filter recursion

X̂t|t = X̂t|t−1 +Kt|t−1νt

= Kt|t−1Yt +
[
I −Kt|t−1

]
ΦX̂t−1|t−1

Let us define

Nt|t−1 =
[
I −Kt|t−1

]
Φ

Note that Nt = Φ−1Lt|t−1Φ. Then,

X̂t|t = Kt|t−1Yt +Nt|t−1X̂t−1|t−1

= Kt|t−1Yt +Nt|t−1Kt−1|t−2Yt−1 +Nt|t−1Nt−1|t−2Kt−2|t−3Yt−2 + . . .+

Nt|t−1Nt−1|t−2 . . . N2|1K1|0Y1 +Nt|t−1Nt−1|t−2 . . . N2|1N1|0X0|0

Thus, the observation weights for the filtered state vector are given by

Ωt,τ =

{
I τ = t

Nt|t−1Nt−1|t−2 . . . Nτ+1|τ τ < t

and the weight for the initial conditions is

Ωt,0 = Nt|t−1Nt−1|t−2 . . . N1|0

In order to compute the data decomposition for the smoothed vector of state variables, X̂t|T , let

us write the smoother recursion as

X̂t|T = X̂t|t + Pt|tΦ
′P−1t+1|t

(
X̂t+1|T − ΦX̂t|t

)
= X̂t|t + Pt|t−1Φ

′rt−1

We have already computed the observation weights for the filtered vector of state variables, X̂t|t.

Thus, we only need to compute the data decomposition of rt−1, which is a weighted sum of future

forecast errors

rt−1 = Z ′F−1t|t−1νt + L′t|t−1Z
′F−1t+1|tνt+1 + . . .+ L′t|t−1L

′
t+1|t . . . L

′
T−1|T−2Z

′F−1T |T−1νT

= Z ′F−1t|t−1Yt + L′t|t−1Z
′F−1t+1|tYt+1 + . . .+ L′t|t−1L

′
t+1|t . . . L

′
T−1|T−2Z

′F−1T |T−1YT

−Z ′F−1t|t−1ZΦX̂t−1|t−1 − L′t|t−1Z
′F−1t+1|tZΦX̂t|t − . . .− L′t|t−1 . . . L

′
T−1|T−2Z

′F−1T |T−1ZΦX̂T−1|T−1

Let the observation weights for the forward recursions in rt−1 be

Ω?
t,τ =

{
I τ = t

L′t|t−1L
′
t+1|t . . . L

′
τ−1|τ−2 τ > t
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Then,

rt−1 =
T∑
τ=t

Ω?
t,τZ

′F−1τ |τ−1Yτ −
T−1∑
τ=t−1

Z ′Ω?
t−1,τFτ+1|τZΦX̂τ |τ

=

T∑
τ=t

Ω?
t,τZ

′F−1τ |τ−1Yτ −
T−1∑
τ=t−1

Z ′Ω?
t−1,τFτ+1|τZΦ

τ∑
j=1

Ωτ,jKj,j−1Yj

The data decomposition of the smoothed state vector is

X̂t|T = Ωt,0X̂0|T +
t∑

τ=1

Ωt,τKτ |τ−1Yτ

+Pt|t−1Φ
′

 T∑
τ=t

Ω?
t,τZ

′F−1τ |τ−1Yτ −
T−1∑
τ=t−1

Z ′Ω?
t−1,τFτ+1|τZΦ

τ∑
j=1

Ωτ,jKj|j−1Yj

 (A.6)

which states that the time-varying observable weights depend on the relative position of τ with

respect to t.

The contribution of the jth observable variable to the estimated latent variable vector at time

t, X̂j
t|T , is given by

X̂j
t|T = Ωt,0X̂

j
0|T +

t∑
τ=1

Ωt,τKτ |τ−1Y
j
τ

+Pt|t−1

[
T∑
τ=t

Ω?
t,τZ

′F−1τ |τ−1Y
j
τ −

T−1∑
τ=t−1

Z ′Ω?
t−1,τFτ+1|τZΦ

τ∑
l=1

Ωτ,jKl|l−1Y
j
l

]
(A.7)

where Y j
τ is an n−dimensional vector with all rows equal to the unconditional mean of the corre-

sponding observable variable but the jth row, which is set to the actual observed value.

The estimated actual realization of the smoothed state vector, X̂t|T , is equal to the sum across

the observable data series contributions.

X̂t|T =

n∑
j=1

X̂j
t|T = ω?tΩt,0

n∑
j=1

X̂j
0|T +

n∑
j=1

t∑
τ=1

Ωt,τKτ |τ−1Y
j
τ

+Pt|t−1Φ
′
n∑
j=1

[
T∑
τ=t

Ω?
t,τZ

′F−1τ |τ−1Y
j
τ −

T−1∑
τ=t−1

Z ′Ω?
t−1,τFτ+1|τZΦ

τ∑
l=1

Ωτ,jKl|l−1Y
j
l

]
(A.8)

Similarly, the data decomposition of the smoothed vector of structural shocks is given by

η̂t|T = QR′

 T∑
τ=t

Ω?
t,τZ

′F−1τ |τ−1Yτ −
T−1∑
τ=t−1

Z ′Ω?
t−1,τFτ+1|τZΦ

τ∑
j=1

Ωτ,jKj|j−1Yj


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A.4. Historical Double Decomposition

The historical double decomposition links the historical data decomposition of the structural

shocks and the historical shock decomposition of the latent vector.

The data decomposition of the smoothed estimate for the vector of structural shocks is given by

η̂t|T = QR′

[
T∑
τ=t

Ω?
t,τZ

′F−1τ |τ−1Yτ −
T−1∑
τ=t−1

Z ′Ω?
t−1,τFτ+1|τZΦ

τ∑
l=1

Ωτ,lKl|l−1Yl

]
(A.9)

Substituting this expression for the vector of smoothed structural shocks in the ∞−MA represen-

tation of the smoothed vector of latent variables in equation (A.4), we obtain

X̂t|T = ΦtX̂0|T+
n∑
j=1

t−1∑
τ=0

ΦτRQR′

[
T∑

k=τ−1
Ω?
τ−1,kZ

′F−1k|k−1Y
j
k −

T−1∑
k=t−τ−1

Z ′Ω?
t−τ−1,kFk+1|kZΦ

k∑
l=1

Ωk,lKl|l−1Y
j
l

]
(A.10)

A.5. Tables and Figures

Table A.1: Effects of News on Shock Estimates
Positive news on

Shock Real GDP Infl core PCE core CPI Exp Infl Debt Wages ECI

Prod (temp) 1.17 0.00 0.00 0.00 0.02 -0.01 -0.01 -0.02
Prod (perm) 0.09 -0.01 -0.02 -0.02 -0.16 0.00 0.02 0.07
Firm-level Risk 0.14 0.01 0.01 0.01 0.08 -0.05 -0.00 -0.02
Risk premium -0.10 -0.00 -0.01 -0.01 -0.05 0.04 0.01 0.02
Exog. spending 1.76 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.01
Inv. efficiency 0.02 0.01 0.01 0.01 0.04 -0.11 -0.00 -0.00
Mon Pol -0.23 -0.06 -0.16 -0.16 0.02 0.02 0.01 0.03
Price markup 0.02 0.14 0.36 0.37 -0.11 -0.03 -0.04 -0.14
Wage markup 0.02 0.02 0.06 0.06 0.28 -0.01 0.09 0.36
Net worth 0.05 0.00 0.01 0.01 0.05 -0.02 0.00 0.00
Infl Target -0.08 -0.02 -0.04 -0.04 1.02 0.03 -0.02 -0.09
Mar. bankruptcy -0.04 -0.00 -0.01 -0.01 -0.04 0.01 -0.00 -0.01

Note: Table entries are the effect of a one-standard deviation forecast error in the given observables on the model’s
estimate of the contemporaneous shock. Shocks are measured in standard-deviation units.
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Table A.2: Effects of News on Estimates of the Contribution of Shocks to the
Output Gap

Positive news on
Contribution to gap from Real GDP Infl core PCE core CPI Exp Infl Debt Wages ECI

Prod (temp) -0.28 0.01 0.02 0.02 -0.02 -0.00 0.00 0.00
Prod (perm) 0.07 0.00 0.01 0.01 -0.09 0.05 0.02 0.07
Firm-level Risk -0.05 0.00 0.00 0.00 -0.02 0.13 0.00 0.02
Risk premium -0.00 -0.00 -0.00 -0.00 0.01 -0.07 -0.00 -0.01
Exog. spending 0.05 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00
Inv. efficiency 0.01 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00
Mon Pol 0.07 0.03 0.07 0.07 -0.02 -0.01 0.00 0.00
Price markup 0.00 -0.01 -0.03 -0.03 0.01 -0.00 0.00 0.01
Wage markup -0.03 -0.01 -0.04 -0.04 0.01 0.01 -0.01 -0.04
Net worth 0.01 -0.00 -0.00 -0.00 0.00 -0.06 0.00 0.00
Infl Target -0.01 -0.01 -0.02 -0.02 0.10 0.01 -0.01 -0.02
Mar. bankruptcy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total -0.15 0.01 0.01 0.01 -0.01 0.03 0.01 0.03

Note: Table entries are the effect of a one-standard deviation forecast error in the given observables on the model’s
estimate of the contemporaneous output gap, measured in percentage points.

Table A.3: Effect of News on Shock Contributions to the Output Gap 8 quarters in
the Future

Positive news on
Contribution to gap from Real GDP Infl core PCE core CPI Exp Infl Debt Wages ECI

Prod (temp) -0.32 0.01 0.01 0.01 -0.01 -0.00 0.00 0.01
Prod (perm) 0.15 -0.00 -0.01 -0.01 -0.23 0.08 0.04 0.14
Firm-level Risk -0.20 -0.00 -0.01 -0.01 -0.10 0.33 0.01 0.04
Risk premium 0.02 -0.00 -0.00 -0.00 0.01 -0.04 -0.00 -0.01
Exog. spending 0.07 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00
Inv. efficiency 0.02 0.00 0.00 0.01 0.01 -0.02 -0.00 -0.00
Mon Pol 0.08 0.03 0.07 0.07 -0.02 -0.00 -0.00 -0.00
Price markup -0.01 -0.02 -0.04 -0.04 0.02 0.00 0.00 0.02
Wage markup -0.03 -0.02 -0.04 -0.05 -0.03 0.02 -0.03 -0.13
Net worth -0.00 -0.00 -0.01 -0.01 -0.01 -0.23 0.00 0.00
Infl Target -0.03 -0.01 -0.02 -0.02 0.27 0.01 -0.01 -0.04
Mar. bankruptcy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total -0.25 -0.02 -0.05 -0.05 -0.10 0.14 0.01 0.03

Note: Table entries are the effect of a one-standard deviation forecast error in the given observables on the model’s
estimate of the output gap eight quarters later, measured in percentage points.
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Figure A.1. Impulse responses functions for major output gap drivers
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Note: Impulse responses are calculated following one-standard-deviation shocks and are reported
in percentage points.
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Figure A.3. Effects of data news on two-sided estimates of structural shocks.
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Note: Each row shows the effect of a one-standard deviation forecast error in a selected observable at time 0 on the

two-sided estimate of various shocks, also expressed in standard deviations.
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Figure A.4. Effects of selected forecast errors at time 0 on the path of the output
gap
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Note: Panels represent the effect of a one-standard-deviation forecast error in the given variable at time 0 on the

estimated path of the output gap between 10 quarters before that date and 40 quarters after. Effects are calculated

assuming that the news arrives 200 quarters after the beginning of the data set.
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