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Glossary

Note: Glossary definitions are taken from Langbein and Iseri (1960) whenever possible

Annual exceedance probability (AEP) The
probability, or chance, of a flood of a given
streamflow magnitude being equaled or
exceeded in any given year. The probability
can be expressed as a fraction, decimal, or
percentage.

Annual exceedance probability flood
quantile (AEP flood quantile) The value

of the peak streamflow that corresponds to a
particular annual exceedance probability (for
example, 1-percent AEP flood quantile)

Bulletin 177B  Report by the Interagency
Advisory Committee on Water Data,

published in 1982, that delineates the
recommended method for flood-probability
analysis in the United States.

Confidence Limits To gauge the accuracy
of an approximation based on a probability
distribution, upper and lower confidence
limits can be estimated based on the prop-
erties of the probability distribution. This
report includes the 95-percent confidence
limits of the estimate of the flood quantiles
as computed by the methods outlined in Bul-
letin 17B.

Discharge In its simplest concept dis-
charge means outflow; therefore, the use

of this term is not restricted as to course or
location, and it can be applied to describe the
flow of water from a pipe or from a drainage
basin.

Flood An overflow or inundation that
comes from a river or other body of water,
and causes or threatens damage.

Flood Peak The highest value of the stage
or streamflow attained by a flood; often
designated as peak stage or peak streamflow
respectively.

Flood Quantile See “Annual Exceedance
Probability Flood Quantile”

Flood Stage The stage at which overflow
of the natural banks of a stream begins to

~

cause damage in the reach in which the
water surface elevation is measured.

Hydrograph A graph showing stage,
streamflow, velocity, or other property of
water with respect to time.

Log-Pearson Type lll Probability Distribution
(LPII)  One of the family of probability
distributions developed by Karl Pearson

that is used in the United States as a best-

fit for the distribution of annual peak flood
streamflows in the Bulletin 17B analysis
procedures developed by the Interagency
Advisory Committee on Water Data (1982).

Peak-of-Record Streamflow  The larg-
est instantaneous streamflow value for the
period that data have been collected.

Peak Stage See “Flood Peak.”
Peak Streamflow See “Flood Peak.”

Precipitation  As used in hydrology,
precipitation is the discharge of water, in
liquid or solid state, out of the atmosphere,
generally upon a land or water surface. It is
the common process by which atmospheric
water becomes surface or subsurface water.
The term “precipitation” is also commonly
used to designate the quantity of water that
is precipitated.

Probability A means to express the likeli-
hood of something occurring, also known as
chance. The probability can be expressed as
a fraction, decimal, or percentage.

Probability Distribution  Describes the
range of possible values that a random vari-
able can attain and the probability that the
value of the random variable is within any
subset of that range.

Rating Curve A graph showing the relation
between the stage (gage height), usually
plotted as the ordinate, and amount of

water flowing in the channel (streamflow)
expressed as volume per unit time, plotted as
abscissa.



Recurrence Interval The average inter-
val of time within which the given flood is
expected to be equaled or exceeded once.

Regional Regression Equation Equa-
tion developed through use of regression
techniques that relate the flood-probability
data at many streamgages in a region to
the basin characteristics of the streams
monitored by the streamgages. For any
location along a stream, a user can enter
the basin characteristics (drainage area,
basin slope, etc.) as independent vari-
ables into the equations and compute
various flow characteristics (for example,
1-percent AEP flood quantile, 2-percent
AEP flood quantile, and annual mean
streamflow).

Stage Height of a water surface above
an established datum, also known as gage
height.

Streamflow  The discharge that occurs
in a natural channel. Although the term
discharge can be applied to flow in a
canal, the word streamflow uniquely
describes the discharge in a surface
stream course. The units of measure-
ment often are reported in cubic feet per
second (ft3/s).

Streamgage A particular site on a
stream where a record of streamflow is
obtained.

Trend The change of a particular vari-
able with either time or spatial location as
computed by statistical analysis.

Trend Magnitude The value of the trend
as computed by a statistical analysis.

USGS streamgage on the Meramec River near
Eureka, Missouri (USGS streamgage 07019000).
Photograph by Robert Holmes, USGS.
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Flooding at Burlington Street Bridge over the
lowa River at lowa City, lowa, July 2008.
Photograph by James Caldwell, USGS.



Abstract

During 2008, record precipitation amounts, coupled
with already saturated soils, resulted in flooding along many
rivers in the United States Midwest. Separate flooding events
occurred in January, February, March, April, May, June, July,
and September of 2008. The June floods were by far the most
severe and widespread with substantial (and in places record)
flooding and damage occurring in Illinois, Indiana, lowa,
Kansas, Michigan, Minnesota, Missouri, Nebraska, Oklahoma,
South Dakota, and Wisconsin. Indiana had the most recurrent
flooding during 2008, with peak-of-record streamflows occur-
ring during January, February, March, June, and September.
During 2008, peak-of-record streamflows were recorded at
more than 147 U.S. Geological Survey (USGS) streamgages.
The annual exceedance probability of the peak streamflows at
26 streamgages was less than 0.2 percent and between 0.2 and
1 percent at 67 streamgages. Trends in flood magnitudes were
computed for USGS Midwest streamgages that had no regula-
tion. No Midwest-wide systematic trends upward or down-
ward were evident, although clusters of consistent trends (both
upward and downward) were detected in parts of the Midwest.

USGS hydrographer making a streamflow measurement on the
Salt Fork near Sidney, lllinois (USGS streamgage 03337848).
Photograph by Robert Holmes, USGS.

Introduction

Flooding occurred on numerous rivers throughout
the Midwestern United States (hereafter referred to as the
Midwest) at various times during 2008 (fig. 1). The Midwest,
and in particular the southern Midwest, has been identified as
an area of the conterminous United States where the largest
flood streamflows are likely to occur because of the close
proximity of subtropical moisture from the Gulf of Mexico
(O’Connor and Costa, 2003). This tendency toward large
floods was dramatically displayed in 2008 as flooding domi-
nated the media for weeks, with reports of property destruc-
tion, evacuations, and loss of life. At various times during
2008, flooding in the Midwest occurred in parts of Arkan-
sas, Illinois, Indiana, lowa, Kansas, Michigan, Minnesota,
Missouri, Nebraska, Oklahoma, South Dakota, and Wisconsin.
Examples of the severity of the flooding include the Cedar
River, which inundated 14 percent of Cedar Rapids, lowa,
displaced more than 24,000 people, and damaged or destroyed
an estimated 5,400 houses and 700 businesses (National
Weather Service, 2009). In southwestern Wisconsin, an
earthen embankment between Lake Delton and the Wisconsin
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River failed, causing a rapid emptying of Lake Delton
and more than $5 million in property destruction
(Adams, 2008). In Columbus, Indiana, the Colum-

bus Regional Hospital had more than $125 million in
damages (Indiana News Center, 2008), and at least

70 businesses were inundated and suffered damages
(Indianapolis Star, 2008). The June 2008 flooding
resulted in the loss of 11 lives and damages in excess of
$5 billion (National Weather Service, 2009).

The 2008 Midwest floods stand out not only with
respect to their cost in human lives, property damage,
and environmental effects, but also with respect to their
persistence. Separate incidences of flooding occurred
over several months in parts of the Midwest; for
example, Indiana had severe flooding during January,
February, March, June, and September. Because of the
severity and unusual repetitiveness of the flooding in
parts of the Midwest, documenting the 2008 floods is
essential.

Previously published U.S. Geological Survey
(USGS) reports provide detailed documentation and
analysis of the 2008 flooding in particular geographic
areas of the Midwest (Fitzpatrick and others, 2008;
Funkhouser and Eng, 2008; Morlock and others, 2008),
and two of these reports contain flood-inundation
maps for selected rivers in Indiana and Wisconsin.
This report consolidates the flooding information and
documents the flood peaks (stage and streamflow) for
all States in the Midwest that were affected by the
2008 floods. Flood peak data are reported for USGS
streamgages in the Midwest that had peak streamflows
with an annual exceedance probability (AEP) of less
than 10 percent. AEP is the probability, or chance, of a
flood of a given streamflow magnitude being equaled
or exceeded in any given year. In addition, flood peak
data for selected streamgages, which had AEPs greater
than 10 percent, also are included to aid in comparing
the 2008 floods with previous floods. Documenting
the flood peaks, along with the antecedent conditions,
flood chronology, AEP, and flood trends, will help put
the 2008 floods in historic context and facilitate public
and private consideration of flood-control, land-use,
and flood-insurance regulations by local and regional
citizens and elected officials.

Wabash River at Riverton, Indiana (USGS streamgage 03342000).
Photograph by Paul Baker, USGS.
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The Role of the U.S. Geological Survey
in Flood Response

The USGS was established in 1879 by Congress to
classify the public lands and “examine the geological struc-
ture, mineral resources, and products of the national domain”
(Rabbitt, 1989). As part of this mission, the USGS provides
practical, unbiased information about the Nation’s rivers and
streams that is crucial in mitigating hazards associated with
floods. Some of the scientific investigations conducted by the
USGS that include data collection and scientific interpretation
to address flood issues include the following:

* Operating a nationwide network of long-term
streamgages;

* Determining and documenting high water-mark
elevations;

* Constructing inundation maps;

* Determining peak streamflow at miscellaneous
locations by using indirect methods;

* Collecting remotely-sensed geospatial information;

* Analyzing trends, geographic distribution, and flood
probabilities;

* Determining paleoflood occurrence, timing, and
magnitude; and

* Modeling flood processes, including rainfall-runoff,
flood wave movement, multidimensional
hydraulics of floods, and sediment transport.

The operation of more than 7,500 active streamgages
nationwide enables the USGS to provide data for a variety
of needs, with one of the most important needs being flood
prediction and characterization. USGS streamgages provide
critical real-time streamflow and stage data during flooding
events to support the operational programs of the National
Weather Service (NWS; flood forecasting), U.S. Army Corps
of Engineers (USACE; water-control, flood-fighting, and
mitigation activities), Federal Emergency Management

Agency (FEMA; emergency management and mitigation), and
numerous State and local agencies. The USGS expends extra
effort to keep streamgages operational during floods, when
damage to the streamgages increases. USGS streamgages
operate autonomously for collecting stage data; however,
on-site direct streamflow measurements are required and
consist of USGS personnel making on-site physical obser-
vations of stream velocity and stream depth to determine
streamflow. These direct streamflow measurements are
required periodically to calibrate the stage-streamflow rating
curve (rating curve). The rating curve is used to determine the
streamflow from the stage data when USGS personnel are not
physically present at the streamgage to make a streamflow
measurement.

The need for direct streamflow measurement (fig. 2) to
calibrate the rating curve increases during floods, because the
rating curve can change as a result of river-channel changes.
An example of the changes that can occur in the rating curve
that would be detected only by actual field measurements
is shown in figure 3. In this figure, two direct streamflow
measurements made during flooding in 2008 (numbers 353
and 354, fig. 3) on the Platte River near Kearney, Nebraska,
resulted in a more than 1-foot (ft) correction of the rating
curve at the upper end (above a stage of 5.9 ft) of the rating. At
a streamflow of 15,000 cubic feet per second (ft¥/s), the stage
on the rating curve changed by 1.2 feet, from approximately
7.0 to 8.2.

The importance of accurate rating curves is demonstrated
by examination of the potential impact of an incorrect rating
curve on the flood-forecasting operations of the NWS. The
NWS uses USGS rating curves as part of their forecasting
process to estimate the forecasted stream stage from their
computer-model prediction of forecasted streamflow. Based on
the example in figure 3, if the original rating curve had been
used, a NWS computer-model prediction of 15,000 ft*/s would
have resulted in the NWS predicting a corresponding stage of
7.0 ft. In actuality, as the new rating indicates, the stage would
have been approximately 8.2 ft. In the absence of the USGS
rating curve calibration efforts, an under-prediction of approx-
imately 1.2 ft would have occurred, with potentially serious
implications for life and property.

To meet critical needs for real-time streamflow data, the
USGS mobilizes all available field personnel in areas of flood-
ing to make direct streamflow measurements and maintain
streamgages in operational readiness. The rapid response of
USGS field personnel provides reliable and accurate stage and
streamflow data in near real time to the many entities that rely
on these data while minimizing interruptions in the dissemi-
nation of data that would hamper flood-response operations.
During the June 2008 flooding, the USGS made 449 direct
streamflow measurements throughout the Midwest to ensure
the accuracy of the rating curves.

USGS hydrographer determining the outside stage for the Skillet
Fork near Wayne City, lllinois (USGS streamgage 03380500).
Photograph by Robert Holmes, USGS.
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Figure 2. U.S. Geological Survey hydrographer measuring streamflow on the Platte River near Sharps
Station, Missouri (USGS streamgage 06821190), with an acoustic Doppler current profiler (ADCP) mounted
to a tethered boat to collect velocity and depth readings that are sent by radio link to a laptop computer
inside the field vehicle. The gage house for this site can be seen in the background. Photograph by Chris

Rowden, USGS.
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of on-site direct streamflow measurements made in May 2008.
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2008 Flooding: Causes, Chronology, and
Magnitude

An understanding of the causes of flooding requires
some knowledge of hydrology and the hydrologic cycle. The
hydrologic cycle is described by Hjelmfelt and Cassidy (1975)
as follows:

“Water occurs in many places and in many phases
on, in, and over the earth. The transformation from
one phase to another and the motion from one loca-
tion to another constitutes the hydrologic cycle,
which is a closed system having no beginning nor
end.”

The hydrology of a region as large as the Midwest is
complex because of the heterogeneity of the variables control-
ling the movement of water in the hydrologic cycle: precipita-
tion (source, type, rate, and amount), vegetation, temperature,
soil, geology, topography, stream gradient, and man-made
structures. In addition, the flood hydrology of small basins is
different than that of large basins, with different characteristic
causes of flooding. Flooding in small basins often is caused
by localized intense precipitation of short duration (minutes
to hours). Flooding in large basins often is caused by large
amounts of sustained precipitation over a long duration (days
to weeks) and broad geographic area.

The 2008 flooding in the Midwest occurred on small and
large streams. The area of flooding was widespread and, at
various times, included parts of Arkansas, Illinois, Indiana,
Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska,

Oklahoma, South Dakota, and Wisconsin. Separate flooding
events occurred in January, February, March, April,
May, June, July, and September of 2008.

Antecedent Conditions for the 2008 Midwest
Flooding

The genesis of most major widespread flooding is not
one particular storm or precipitation event. Most flooding is
the result of frequent and consistently abundant precipita-
tion occurring over the same geographic area for an extended
period. As the soil becomes increasingly saturated and the
receiving streams reach bankfull stage, additional precipita-
tion results in flooding. Much of the area in the Midwest that
was affected by flooding in 2008 began in the early winter of
2007 with streamflows in the normal to above-normal ranges
(fig. 4). Above-average snowfalls occurred in the northern
one-half of the Midwest during the winter of 2007-2008, and
the snow accumulated into large snowpacks. In some parts of
central Wisconsin, the snowpacks contained the equivalent
of 10 to 12 inches (in.) of water (National Weather Service,
2009). Although the melting of the snowpacks was not a direct
cause of catastrophic flooding, the melting contributed to the
flooding by saturating the soils and filling the streams to near
bankfull conditions in numerous locations.

The first flood-inducing precipitation event began on
January 7, 2008 (fig. 5). This was the first of many rainfall
events that occurred during the next several months across
areas of the Midwest, and this event caused major flooding in
parts of east-central Illinois and northern, western, and south-
western Indiana. Although this event did not result in severe
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Figure 4. Streamflow conditions at U.S. Geological Survey streamgages across the United States on November 30, 2007
(U.S. Geological Survey, 2007).

Flooding on the West Fork Cedar River at Finchford,

lowa. Photograph by Don Becker, USGS.
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Figure 5. Observed precipitation across the United States for the previous 24 hours at 7:00 a.m. Central Standard Time on

January 8, 2008. (National Weather Service, 2008a).

USGS hydrographer measuring
the streamflow flowing across
U.S. Highway 30 near Cedar
Rapids, lowa. Photograph by
Scott Strader, USGS.



A. Cedar Rapids, lowa
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B. Platteville, Wisconsin
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Figure 6. Cumulative precipitation totals from June 1, 2007, to July 31, 2008, in relation to historic average cumulative
precipitation for selected sites in the Midwest. (National Climatic Data Center, 2008).

flooding outside of Indiana, the widespread rainfall contrib-
uted to increased soil-moisture levels and streamflows in other
areas of the Midwest. Consistent above-normal precipita-

tion during 2007-2008 occurred in much of the Midwest, as
evidenced when comparing the June 2007 to July 2008 cumu-
lative precipitation with historic average cumulative precipi-
tation for four selected precipitation gages in the Midwest
(figs. 64-D).

Chronology and Magnitude of Flooding: January
through September 2008

The 2008 Midwest floods were caused by persistent and
excessive precipitation amounts on saturated soils. Record
6-month precipitation totals were set at 106 Midwest loca-
tions during January through June 2008 (Midwest Regional
Climate Center, 2008). The 6-month total precipitation was
composed of numerous discrete storm sequences that induced
multiple flooding events in different geographic locations.
Peak-of-record streamflows were set at 147 USGS Midwest-
ern streamgages during 2008. The USGS streamgages that
had peak streamflows with an AEP of less than 10 percent are
listed in tables 1-7 (at the back of this report), with each table
representing a unique flooding period during 2008. Selected

streamgages that reported peak streamflow with AEPs greater
than 10 percent also appear in the tables for comparison with
other record flood periods [for example, Mississippi River at
St. Louis, Missouri, and Wabash River at Terre Haute, Indiana
(table 5)]. Each USGS streamgage listed in these tables
contains a map “site number” that allows cross reference from
the table to the respective map figure for that flood period. To
minimize figure clutter, only the major rivers (for example,
[llinois, Mississippi, Missouri, Ohio, and Wabash Rivers)
and selected small rivers mentioned in the report text for that
particular flood period are shown on the figures. The tables
include 2008 peak-stage and streamflow data, previous peak-
of-record flood data, the estimated AEP for the 2008 peak
streamflow, and estimates of the magnitude of the streamflow
corresponding to the 4-percent, 2-percent, 1-percent, and
0.2-percent AEP. For each figure corresponding to a particu-
lar flood period, the size of the symbol for each streamgage
represents the estimated AEP that corresponds to the magni-
tude of the observed peak streamflow — the less probable (less
frequent) the peak streamflow, the larger the symbol.

The first major flooding occurred just after the new
year began as the result of precipitation during January 7-9,
2008. Examination of daily NWS Next Generation Weather
Radar (NEXRAD) observations indicated as much as 6.7 in.
of precipitation occurred during these 3 days (fig. 7) on
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frozen, often bare, ground, which resulted in major flooding
in Illinois, Indiana, and Michigan. Peak-of-record streamflow
occurred at USGS streamgages on the Tippecanoe River at
Ora and Delphi, Indiana (USGS streamgages 03331500 and
03333050, respectively, table 1).

Precipitation that began on February 3, 2008, and contin-
ued through much of February 7 (fig. 8) resulted in an accu-
mulation of up to 6.3 in. and flooding in Illinois and Indiana.
The Iroquois River had a peak-of-record streamflow at the
Foresman, Indiana, streamgage (USGS streamgage 05524500)
that surpassed the 1958 record (table 2). The February flood-
ing occurred in many of the same areas that had flooding
during the previous month, with the Tippecanoe River being a
prime example of recurrent flooding. The USGS streamgage
near Ora, Indiana (USGS streamgage 03331500), had a peak

130° 115° 110°

streamflow of 9,200 ft*/s on February 8 (table 2), which was
within 90 ft*/s of the January 10 peak streamflow of 9,290 ft*/s
(table 1). Although the severe flooding during February was
limited to Illinois and Indiana, by the end of February 2008,
the additional precipitation across the Midwest resulted in
streamflows that were above normal at numerous USGS
streamgages in Arkansas, Illinois, Indiana, lowa, Kansas,
Michigan, Minnesota, Missouri, Nebraska, Oklahoma, South
Dakota, and Wisconsin (fig. 9).

Substantial rainfall that contributed amounts as much
as 12.8 in. occurred during March 16-20, 2008, in a band
through Arkansas, Illinois, Indiana, Missouri, and Oklahoma
(fig. 10). Most of the rivers in the five-State flood area peaked
by March 19, although some of the large basins peaked as
late as March 24 (for example, White River near Georgetown,
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Streamflow conditions at U.S. Geological Survey streamgages on February 28, 2008 (U.S. Geological Survey, 2007).



Arkansas (USGS streamgage 07076750), table 3). Peak-
of-record streamflows occurred on the Spring, White, and
Black Rivers in Arkansas; the Castor and James Rivers in
Missouri; the South Fork Saline River and Crab Orchard
Creek in southern Illinois; and the Blue River and Big Creek
in southern Indiana (table 3). Streamflow peaks on the
Gasconade River in Missouri were near the flood of record
(for example, Gasconade River near Rich Fountain, Missouri
(USGS streamgage 06934000), table 3). The town of Harris-
burg, Illinois, which is surrounded by a levee to protect it from
backwater from the Ohio River approximately 30 miles (mi)
away, was inundated by flooding from more than 11.5 in. of
rain in less than 48 hours on March 18 and 19, 2008. Local

7‘7:7' | _ r"‘rfj F
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drainage, interior to the levee system, proved to be too much
for the pumping system and resulted in more than 44 busi-
nesses and 30 homes being flooded. The flooding resulted
in an estimated $16.8 million in damages (Fodor, 2009). In
Arkansas, one remarkable scene of destruction was captured
on video by USGS hydrologic technician Steven B. Franks,
(U.S. Geological Survey, 2010) as he witnessed a house that
had been washed into the White River floating downstream
and colliding with a bridge at the White River at Calico Rock,
Arkansas (USGS streamgage 07060500).

Additional flooding occurred in early April 2008 in many
of the same areas of Arkansas, Missouri, and Oklahoma as in
March. As much as 9.6 in. of rain fell during April 7-11, 2008,
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Figure 10. Cumulative precipitation totals for March 16-20, 2008, and locations of U.S. Geological Survey streamgages in
Arkansas, lllinois, Indiana, Missouri, and Oklahoma with peak streamflows that had an annual exceedance probability less

than 10 percent.
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which produced flooding along numerous rivers (fig. 114)
and peak-of-record streamflow on North Sylamore Creek
in Arkansas that exceeded the 1982 record peak streamflow
(USGS streamgage 07060710, table 4).

An isolated system in late April produced flooding
from up to 6.3 in. of precipitation that fell in eastern lowa
during April 22-26, 2008 (fig. 11B). Substantial flooding
was limited mostly to streams with drainage areas less than
400 square miles (mi?), such as Black Hawk Creek at Hudson,
Iowa (USGS streamgage 05463500), where a peak-of-record
streamflow occurred on April 25, 2008 (table 4). Although the

late-April precipitation produced only isolated flooding on
smaller drainages, it provided additional moisture for contin-
ued soil saturation in lowa.

Substantial rainfalls occurred during May and June
throughout much of the Midwest, resulting in some of the
worst flooding during 2008. Examination of daily NEXRAD
rainfall observations for the Midwest area that included
[llinois, Indiana, Towa, Michigan, Missouri, and Wisconsin
indicated that from May 21 to June 14, 2008, precipitation
amounts greater than 0.5 in. occurred daily somewhere within
the six-State area (National Weather Service, 2008a). Total
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Figure 11.

Cumulative precipitation totals for A, April 7-11, 2008, and locations of U.S. Geological Survey streamgages in

Arkansas, Missouri, and Oklahoma with peak streamflows that had an annual exceedance probability less than 10 percent; and
B, cumulative precipitation totals for April 21-25, 2008, and locations of U.S. Geological Survey streamgages in lowa with peak
streamflows that had an annual exceedance probability less than 10 percent.



precipitation for this 25-day period was more than 20 in.

in several locations (fig. 12). The rainfall amounts for this
period are considered extreme by the NWS, which deter-
mined the annual exceedance probabilities to be between

0.1 to 0.2 percent for the observed rainfall in parts of lowa,
east-central Illinois, and south-central Indiana and less than
0.1 percent for isolated areas in Iowa (fig. 13) (Geoffrey M.
Bonnin, National Oceanic and Atmospheric Administration,
National Weather Service, Office of Hydrologic Development,
written commun., 2008). New June total precipitation records
were set at 66 sites in the Midwest (Midwestern Regional

Base from U.S. Geological Survey digital data, 1:2,000,000, 2006
Universal Transverse Mercator projection, zone 15
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Climate Center, 2008). The record precipitation produced
77 peak-of-record streamflows at USGS streamgages during
June, particularly in Towa (39 peak-of-record streamflows)
and Wisconsin (19 peak-of-record streamflows). The USGS
streamgage at Cedar Rapids, lowa (USGS streamgage
05464500), recorded a peak streamflow of 140,000 ft*/s on
June 13 that was 92 percent greater than the previous peak-
of-record streamflow (73,000 ft¥/s) set in 1961, and the peak
stage of 31.12 ft was 11 ft above the previous peak-of-record
stage of 20.00 ft set in 1929 (table 5). Other peak-of-record
streamflows were observed at USGS streamgages in Illinois,
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Figure 11.

Cumulative precipitation totals for A, April 7-11, 2008, and locations of U.S. Geological Survey streamgages in

Arkansas, Missouri, and Oklahoma with peak streamflows that had an annual exceedance probability less than 10 percent; and
B, cumulative precipitation totals for April 21-25, 2008, and locations of U.S. Geological Survey streamgages in lowa with peak
streamflows that had an annual exceedance probability less than 10 percent—Continued



16 Flooding in the United States Midwest, 2008

Western part of map

e

40°

38°

36°

| 8 Ln sl

Base from U.S. Geological Survey digital data, 1:2,000,000, 2006
Universal Transverse Mercator projection, zone 15

15|0 20|0 MILES

EXPLANATION

Precipitation, in inches—Interval 1,2,  Flood annual exceedance probability (AEP),
and 4 inches in percent—Number is site identifier (table 5)

o—To

T T T T
50 100 150 200 KILOMETERS

0-1 Fs5-6 | 14-16 e No data ‘ 1.0-2.0
Co1-2 [ 6-8 EW16-20
[02-3 mEms-10 20-22 ® (Greater than 10 @
3-4 | 10-12 @ 40-10
P4-s 1214 @ 2040 @ im0
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Indiana, Michigan, Nebraska, Oklahoma, and South Dakota.
Some locations in Indiana received a third or fourth round of
flooding (fig. 14).

July proved to be no drier in southern Iowa and northern
Missouri, which had two periods of substantial precipitation
and subsequent flooding. Slightly more than 8 in. of precipi-
tation occurred in south-central lowa during July 5-8, 2008
(fig. 15A), causing peak streamflows on some small and
mid-size streams on the order of 2-percent AEP, including
the Chariton River near Moulton, ITowa (USGS streamgage
06904010, table 6). More abundant precipitation, as much as

17 in., over a much wider area between July 17 and July 28,
2008 (fig. 15B) fell on lowa and Missouri. The later July
precipitation produced new peak-of-record streamflows

at USGS streamgages on the Salt and Chariton Rivers in
Missouri (table 6).

Hurricanes Gustav and Ike initiated substantial precipita-
tion events in September. The remnants of Hurricane Gustav
passed over the Midwest during September 1-5, 2008, by
tracking through Arkansas, Missouri, Illinois, and Michigan.
Arkansas received the brunt of the precipitation as more
than 12 in. of rainfall occurred during this period (fig. 164).
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Figure 13. Annual exceedance probability for the rainfall total from May 23, 2008, to June 12, 2008 (revised from Geoffrey M.
Bonnin, NOAA, National Weather Service, Office of Hydrologic Development, written commun., 2008)



Although no peak-of-record streamflows occurred at USGS
streamgages, the peak streamflow at Dutch Creek at Waltreak,
Arkansas, and Saline River at Benton, Arkansas (USGS
streamgages 07260000 and 07363000, table 7), were near the
1-percent AEP.

During September 1315, 2008, the remnants of Hurri-
cane Ike passed through Oklahoma, Arkansas, Missouri,
[llinois, Indiana, and Michigan along a similar track as Hurri-
cane Gustav earlier in the month. The passage of the remnants
of Hurricane Ike was preceded by a continental-type storm
event during September 11-13, 2008, that produced more
than 12 in. of rainfall in parts of Kansas, which received little
of the Hurricane Ike-induced rainfall that followed. Substan-
tial precipitation from a combination of the continental-type
storm and the remnants of Hurricane Ike occurred in Arkansas,
Illinois, Indiana, lowa, Michigan, Missouri, and Oklahoma
(fig. 16B). Numerous peak-of-record streamflows occurred,
particularly in the urban areas of St. Louis, Missouri, and
Chicago, Illinois (table 7). The River Des Peres in St. Louis
flooded, with the loss of two lives and the City of St. Louis
temporarily condemning 275 properties in the aftermath of the
flood (Gillerman, 2008). One resident reported that this was
the sixth time their home had been flooded since 1988 (Giller-
man, 2008).

Flooding in Waterloo, lowa.
Photograph by Don Becker, USGS.
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A. Wabash River at Riverton, Indiana
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Figure 14. Streamflow for Wabash River at Riverton, Indiana
and White River at Petersburg, Indiana.
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streamflows that had an annual exceedance probability less than 10 percent.
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Figure 15. Cumulative precipitation totals for A, July 5-8, 2008, and locations of U.S. Geological Survey streamgages
in lowa with peak streamflows that had an annual exceedance probability less than 10 percent; and B, cumulative
precipitation totals for July 17-28, 2008,and locations of U.S. Geological Survey streamgages in lowa and Missouri with
peak streamflows that had an annual exceedance probability less than 10 percent—Continued
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Figure 16. Cumulative precipitation totals for A, September 1-5, 2008, the path of the remnants of Hurricane Gustav, and locations of
U.S. Geological Survey streamgages in Arkansas with peak streamflow that had an annual exceedance probability less than 10 percent;
and B, cumulative precipitation totals for September 11-15, 2008, the path of the remnants of Hurricane lke, and locations of U.S.
Geological Survey streamgages in lllinois, Indiana, lowa, Kansas, Michigan, Missouri, and Oklahoma with peak streamflows that had an

annual exceedance probability less than 10 percent.
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Figure 16. Cumulative precipitation totals for A, September 1-5, 2008, the path of the remnants of Hurricane Gustav,

and locations of U.S. Geological Survey streamgages in Arkansas with peak streamflow that had an annual exceedance
probability less than 10 percent; and B, cumulative precipitation totals for September 11-15, 2008, the path of the remnants
of Hurricane lke, and locations of U.S. Geological Survey streamgages in lllinois, Indiana, lowa, Kansas, Michigan, Missouri,
and Oklahoma with peak streamflows that had an annual exceedance probability less than 10 percent—Continued
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2008 Flooding: Comparison with
Historic Floods

Placing the magnitude of a flood into context is desirable
for comparison with previous floods. Ranking the observed
2008 peak streamflows at USGS streamgages against previous
streamflow peaks of record indicates the relative magnitude
of the 2008 floods (tables 1-7). In many locations, the 2008
streamflow peaks were the largest to occur in many decades.
For example, the June 2008 flood on the Cedar River at Cedar
Rapids, Iowa, (USGS streamgage 05464500, table 5) is the
largest streamflow ever recorded at this site and exceeds the
previous peak-of-record stage by more than 11 ft. During
2008, 147 USGS streamgages recorded new peak-of-record
streamflows, with 77 peak-of-record streamflows set during
the June floods alone.

To gain perspective of the magnitude of 2008 peak
streamflows compared with previous annual peak streamflows,
the annual streamflow peaks through time were plotted from
data recorded at six USGS streamgages across the Midwest
(fig. 17). Also included in these plots is the estimated value
of the 1-percent AEP flood quantile at these six sites. The
benchmark for major flooding on many of the major tributar-
ies and much of the main stem of the upper Mississippi River
(above Cairo, Illinois) is the 1993 flood; however, for some
of the tributaries, and certainly for the rivers in Arkansas,
Indiana, Illinois, Michigan, Nebraska, Oklahoma, and South
Dakota, floods other than 1993 flood serve as the bench-
marks for record flooding as evidenced in figure 17. The
2008 flood hydrographs for selected USGS streamgages in
the Midwest are presented in figure 18 with previous record
flood hydrographs to enable comparisons. Although the June
2008 floods were record setting on some of the Mississippi
River tributaries in lowa, Wisconsin, Illinois, and Missouri,
[for example, Cedar River at Cedar Rapids, lowa (fig. 184)
and Towa River at lowa City, lowa (fig. 18B)], the Mississippi
River main stem did not have record-setting streamflows at
the USGS streamgages. The Mississippi River at Keokuk,
Iowa (fig. 18C) peak streamflow in June 2008 ranked second
in 131 years of systematic streamflow records, just 8,000 ft*/s
shy of the 1993 record peak streamflow of 446,000 ft*/s.
Contrast the near peak-of-record streamflow at Keokuk,

Iowa (ranked 2nd in 131 years of record), with the 2008 peak
streamflow 184 mi downstream on the Mississippi River at

St. Louis, Missouri. The 2008 peak streamflow ranked only
25th in the 147 years of systematic streamflow records, well
below the 1993 record peak streamflow (fig. 18D). The 2008
streamflow on the Mississippi River at St. Louis was lower
primarily because of the smaller streamflow contribution from
the Missouri River in 2008, which contributed streamflow of
as much as 750,000 ft*/s in 1993 (Parrett and others, 1993)
compared with a maximum streamflow during June 2008 of

302,000 ft¥/s at the USGS streamgage at St. Charles, Missouri
(table 5).

2008 Flooding: Annual Exceedance
Probability

Although ranking floods helps to illustrate the relative
magnitude of the floods, it has limited use for evaluating the
future risk of flooding. Determining the AEP requires flood-
probability analysis, which involves determining the param-
eters needed to estimate a probability distribution from a set
of observed peak streamflow data. The probability distribution
relates probability to the magnitude of a certain size flood
being equaled or exceeded.

Selection of the probability distribution and the process
for fitting the parameters of the distribution may vary depend-
ing on the underlying characteristics of the data. For consis-
tency, Federal agencies that estimate flood frequencies follow
standard guidelines, known as Bulletin 178 (Interagency
Advisory Committee on Water Data, 1982), which recom-
mend the use of the log-Pearson type 111 (LPIII) distribution
and the “method of moments” for estimating the distribution
parameters (mean, standard deviation, and skewness of the
data). The analysis is based on annual peak streamflow data.
For USGS streamgages, the data are available from the USGS
National Water Information System database (U.S. Geological
Survey, 2008).

In previous flood reports (for example, Chin and others,
1975; Parrett and others, 1993; Holmes and Kupka, 1997),
flood probabilities were expressed as flood frequencies by
listing the T-year recurrence interval for a particular flood
quantile (for example, the “100-year flood”). Use of the
T-year recurrence interval to describe flood probability is
now discouraged by the USGS because it tends to confuse
the general public. A T-year recurrence interval is sometimes
interpreted to imply that there is a set time interval between
floods of a specific magnitude when, in fact, floods are
random processes that are best understood using probabilis-
tic terms. The use of an AEP percentage for a flood is now
recommended because of the clear communication, by the
terminology, that the peak streamflow is being characterized
by its probability or chance of occurrence. The reader can
easily convert from the AEP to the T-year recurrence interval
by simply taking the reciprocal of the AEP. For example, a
1-percent AEP flood corresponds to the streamflow magnitude
that is equaled or exceeded by a probability (expressed as a
decimal) of 0.01 in any given year. The reciprocal of 0.01 is
100, thus the T-year recurrence interval for the 1-percent AEP
flood is the 100-year flood. Equivalence of selected AEP and
recurrence intervals are as follows:
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Figure 17. Annual peak streamflows for the period of record up to 2008 and the 1-percent annual exceedance probability at selected
U.S. Geological Survey streamgages in the Midwest.
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A. Cedar River at Cedar Rapids, lowa, USGS streamgage 05464500
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Figure 18. Streamflow for selected U.S. Geological Survey streamgages for the 2008 flood period and previous major
floods, and the 10-percent annual exceedance probability for each site.
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The reliability of an AEP flood quantile from Bulletin
17B methods may be expressed as a “variance of prediction”
and is computed by using the asymptotic formula given by
Cohn and others (2001), with the addition of the mean-squared
error of generalized skew (Griffis and others, 2004). The vari-
ance of prediction varies as a function of the length of record,
the fitted flood-probability distribution parameters (mean,
standard deviation, and weighted skew), and the accuracy of
the method used to determine the regional skew component
of the weighted skew. The variance of prediction gener-
ally decreases with length of record and the fit of the LPIII
distribution.

Besides estimating AEP flood quantiles by Bulletin 17B
methods, another way to obtain an AEP flood quantile estimate
is by using regional regression equations (RRE). RRE are
developed by using regression techniques that relate the flood-
probability data at many streamgages in a particular region
to the basin characteristics of the streams being monitored by
the streamgages (Jennings and others, 1994). For any loca-
tion along a stream (gaged or ungaged), a user can enter the
basin characteristics (drainage area, basin slope, and so on) as
independent variables into the equations and compute various
streamflow characteristics, such as the 1-percent AEP flood
quantile. The variance of prediction from the regional regres-
sion is a function of the RRE and the values of the indepen-
dent variables used to develop the streamflow estimate from
the RRE. The variance generally increases with departure
of the actual values from the mean values of the indepen-
dent variables. The USGS uses software programs, such as
GLSNET (Generalized Least Squares NETwork analysis;
Tasker and Stedinger, 1989), to compute the model error
variance.

The optimal estimate of the AEP flood quantile for a
gaged site is determined by weighting the AEP flood quantile
estimate determined from the Bulletin 17B methods with the
AEP flood quantile estimate determined from the RRE. The
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weights are inversely proportional to the variances of predic-
tion, yielding the weighted estimator:

(Var[RRE)* LogQ,, , +Var[LPII|* LogQ, 1y, )
(Var[RRE]+Var|LPIII))

LogQ,opr = M

where
Opopr 18 the optimal estimate of AEP flood quantile

for a particular probability of flooding
(p) (Interagency Advisory Committee on
Water Data, 1982, Appendix 8);

is the variance of the RRE estimate of
the AEP flood quantile for a particular
probability of flooding (p);

is the Bulletin 17B method estimate of
the AEP flood quantile for a particular
probability of flooding (p);

is the variance of the Bulletin 17B estimate
of the AEP flood quantile for a particular
probability of flooding (p); and

is the RRE estimate of the AEP flood quantile
for a particular probability of flooding (p).

Var[RRE]

QP, LPIIT

Var[LPIII|

QP,RRE

Previous USGS reports have expressed the accuracy
of RREs in terms of equivalent years of record and used
these estimates with the length of record at the streamgage
to combine RRE and LPIIT AEP flood quantile estimates (for
example, Hodge and Tasker, 1995; Soong and others, 2004;
Ries and Dillow, 2006). The length of record, however, can
fail to account for the true variance of LPIII flood-probability
estimates. For example, the length of record fails to account
for any improvement in the information provided by the
regional skew. Furthermore, flood-probability distributions
computed from two different streamgaging records of the same
length may not be of equal reliability because of differences in
underlying variances of the streamflow records for each site.
For example, a small drainage basin may have dynamic, more
highly varied records and may be more difficult to accurately
measure the streamflow than a large drainage basin; hence, the
LPIII distributions in a small drainage basin could be expected
to have larger variances than in a large drainage basin. More
importantly, the equivalent years-of-record concept, although
relatively easy to grasp, misconstrues the relation between the
AEP flood quantile estimates and the variances. Using esti-
mated variances provides a more natural characterization of
the underlying uncertainty of the various streamflow estimates.

The optimal (weighted) estimates of the AEP flood
quantiles corresponding to the 4-percent, 2-percent, 1-percent,
and 0.2-percent AEP, along with their respective 95-percent
confidence limits, for most of the streams in the Midwest
that were flooded during the January to September 2008
time frame, are given in tables 1-7. Presenting this informa-
tion for the streams in this report allows the reader to better
assess the uncertainty of the AEP for each stream in the tables.
During January through September 2008, peak streamflows at
26 USGS streamgages had a less than 0.2-percent AEP, and

peak streamflows at 67 USGS streamgages had an AEP in the
range of 0.2 to 1 percent.

Effects of the 2008 Flooding on Annual
Exceedance Probability Estimates

The calculation of AEP flood quantiles by the guide-
lines published in Bulletin 17B is dependent on annual
peak streamflow data from USGS streamgages. As more
data become available, the AEP flood quantile estimates are
affected. As a result, the AEP flood quantiles for the various
AEP values (for example, 50-percent, 2-percent, and 1-percent
AEP) change through time at each site. The effects of chang-
ing the length of the annual peak streamflow record on AEP
flood quantiles are shown for selected sites in figure 19, which
