Marcellus Monitoring: Small Streams

Alliance for Aquatic Resource Monitoring
Dickinson College
Carlisle, PA

ALLARM Background

Empower communities with scientific tools to monitor, protect, and restore PA streams.

Educate. Engage. Empower.

Volunteer Monitoring

- Citizens involved in data collection
- US: 1890 2011

NJ Watershed Watch Network

TEXAS STREAM TEAM

PA Volunteer Stream Monitoring

Rich history – 1980s

Marcellus Monitoring

- A. Citizen surveillance
- B. Baseline monitoring
- C. Continuous monitoring

Great network of partners

Shale Basins in the US

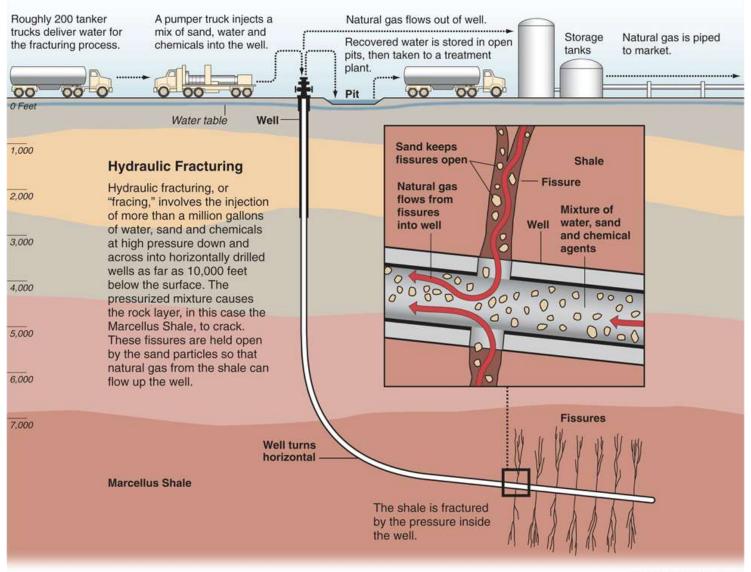
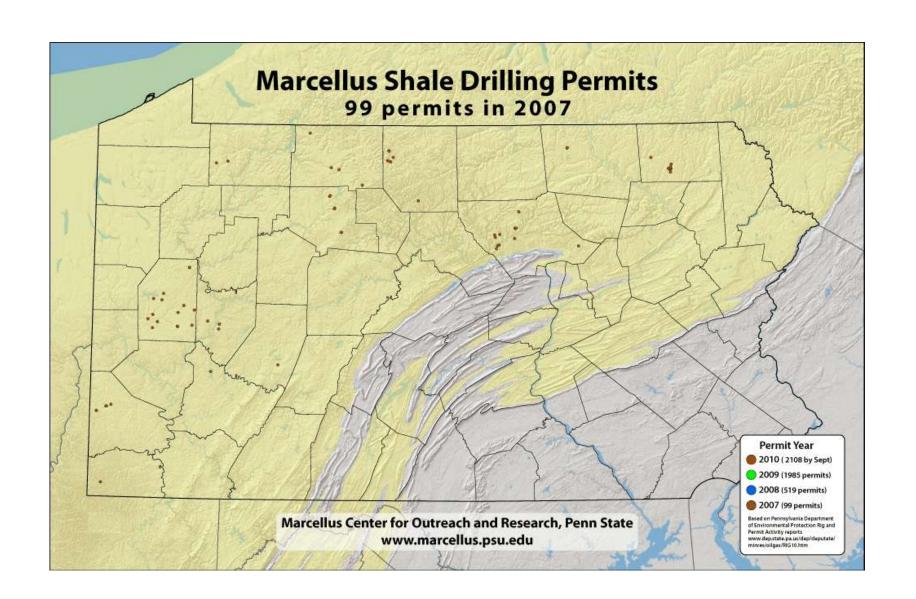
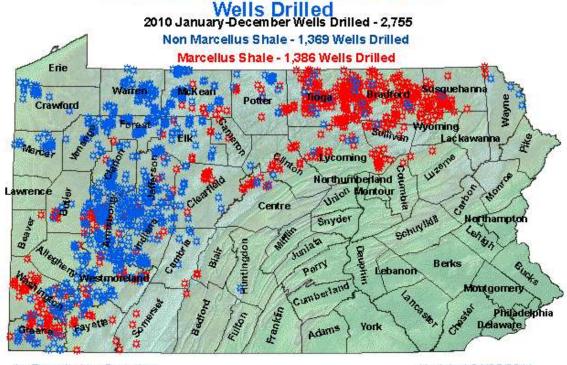

Niobrara Cody Mowry Gammon Hilliard-**New Albany** Excello-Mulky Baxter-Mancos Antrim Mancos Utica Marcellus Devonian Hermosa Chattanooga Lewis Bend Conasauga Pierre Floyd-Fayetteville Barnett & Haynesville/ Neal Woodford Woodford Bossier Pearsall Woodford/ Barnett Caney

EXHIBIT ES-1: UNITED STATES SHALE BASINS


EXHIBIT 11: COMPARISON OF DATA FOR THE GAS SHALES IN THE UNITED STATES							
Gas Shale Basin	Barnett	Fayetteville	Haynesville	Marcellus	Woodford	Antrim	New Albany
Estimated Basin Area, square miles	5,000	9,000	9,000	95,000	11,000	12,000	43,500
Depth, ft	6, 500 - 8,500 ⁸²	1,000 - 7,000 ⁸³	10,500 - 13,500 ⁸⁴	4,000 - 8,500 ⁸⁵	6,000 - 11,000 ⁸⁶	600 - 2,200 ⁸⁷	500 - 2,000 ⁸⁸
Net Thickness, ft	100 - 600 ⁸⁹	20 - 200 ⁹⁰	200 ⁹¹ - 300 ⁹²	50 - 200 ⁹³	120 - 220 ⁹⁴	70 - 120 ⁹⁵	50 - 100 ⁹⁶
Depth to Base of Treatable Water [#] , ft	~1200	~500 ⁹⁷	~400	~850	~400	~300	~400
Rock Column Thickness between Top of Pay and Bottom of Treatable Water, ft	5,300 - 7,300	500 - 6,500	10,100 - 13,100	2,125 - 7650	5,600 - 10,600	300 - 1,900	100 - 1,600
Total Organic Carbon, %	4.5 ⁹⁸	4.0 - 9.8 ⁹⁹	0.5 - 4.0 ¹⁰⁰	3 - 12 ¹⁰¹	1 - 14 102	1 - 20 ¹⁰³	1 - 25 ¹⁰⁴
Total Porosity, %	4 - 5 ¹⁰⁵	2 - 8 ¹⁰⁶	8 - 9 ¹⁰⁷	10 ¹⁰⁸	3 - 9 ¹⁰⁹	9110	10 - 14 ¹¹¹
Gas Content, scf/ton	300 - 350 ¹¹²	60 - 220 ¹¹³	100 - 330 ¹¹⁴	60 - 100 ¹¹⁵	200 - 300 ¹¹⁶	40 - 100 ¹¹⁷	40 - 80 ¹¹⁸
Water Production, Barrels water/day	N/A	N/A	N/A	N/A	N/A	5 - 500 ¹¹⁹	5 - 500 ¹²⁰
Well spacing, acres	60 - 160 ¹²¹	80 - 160	40 - 560 ¹²²	40 - 160 ¹²³	640 ¹²⁴	40 - 160 ¹²⁵	80 ¹²⁶
Original Gas-In- Place, tcf ¹²⁷	327	52	717	1,500	23	76	160
Technically Recoverable Resources, tcf ¹²⁸	44	41.6	251	262	11.4	20	19.2

From: US Dept of Energy, Modern Shale Gas Development in the US: A Primer, 2009

Hydraulic Fracturing ("Fracking")



Marcellus Shale Drilling Permits

Current Gas Drilling

Department of Environmental Protection Bureau of Oil and Gas Management

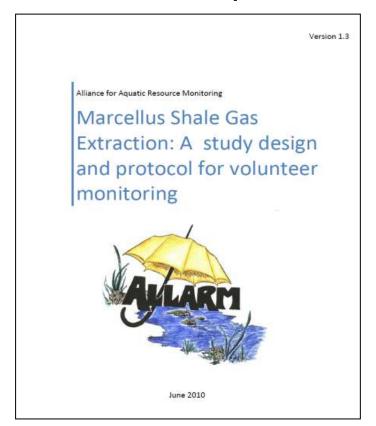
As Reported by Operators

Updated 01/05/2011

Marcellus Shale Drilling Stats:

- 2005–2010: 6,082 Marcellus Shale permits issued (2,596 wells drilled)
- 2008: 5% of all oil/gas wells drilled were in Marcellus Shale Formation (195/4,192)
- 2009: 30% of all oil/gas wells drilled were in Marcellus Shale Formation (768/2,543)
- 2010: 50% of all oil/gas wells drilled were in Marcellus Shale Formation (1,386/2,755)

Drilling Sites



Marcellus Shale Drilling Site Stats:

- Drilling pads typically 3-5 acres, each pad containing 5-6 horizontal wells
- 2-9 million gallons of water used per well (depending on depth and number of times fracked)
- 200-1400 truck trips to supply water per well
- Drilling pads must be >200 feet from structures, >100 feet from streams and wetlands

Volunteer Monitoring

- Feasibility
- Affordability
- Scientifically robust

www.dickinson.edu/ALLARM

Why Are You Monitoring?

- Early detection and prevention of contamination
- Document stream quality long term impacts
- 3. Community education

What Will You Monitor?

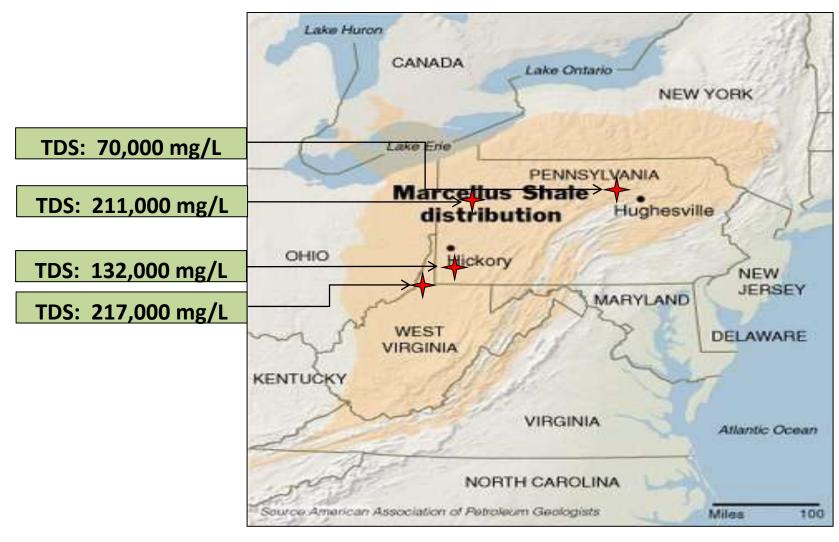
1. Chemical Monitoring:

Indicator and signature chemicals

Parameter	Median concentrations in flowback samples (mg/L)	PA water quality criteria (mg/L)	PA drinking water criteria (mg/L)	Potential health & environmental effects
Total Dissolved Solids	93,200	500	500	Variable; includes many chemicals
Barium	661	10	2	Increase in blood pressure
Strontium	821	0.050	none	Musculoskeletal toxicant

2. Visual Assessment:

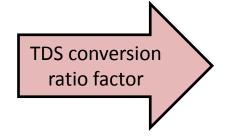
Land disturbances
Spills and discharges
Water withdrawals
Gas migration/leakages


http://www.rocketcourier.com/pictures/rivergas.jpg

3. Flow Monitoring:

Relationship to TDS

Flowback Water Concentrations


Source: Amy Bergdale, USEPA

Conductivity and Total Dissolved Solids

- Conductivity measures the ability of water to pass an electrical current
- Total Dissolved Solids (TDS) measures the amount of ions dissolved in the water

(PA standard - 500 mg/L)

Voltage is applied between two probes to measure conductivity in microSiemens/centimeter (µS/cm)

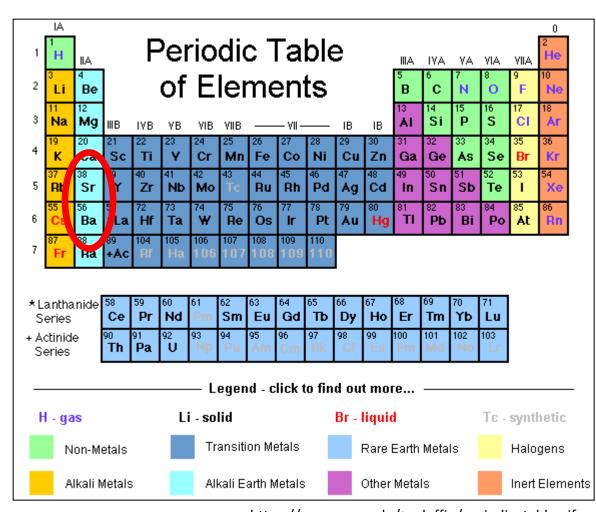
TDS value (mg/L)

Meter Trials

Dickinson students help test conductivity/TDS meters to determine which meter is most accurate, precise, and easy to use.

Conductivity/Total Dissolved Solids Meter Testing

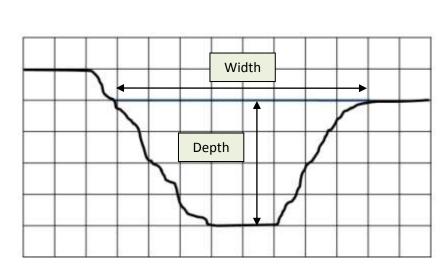
Thank you for participating in this meter testing session sponsored by the Alliance for Aquatic Resource Monitoring (ALLARM). Please answer the questions on page 1 about each water quality meter.

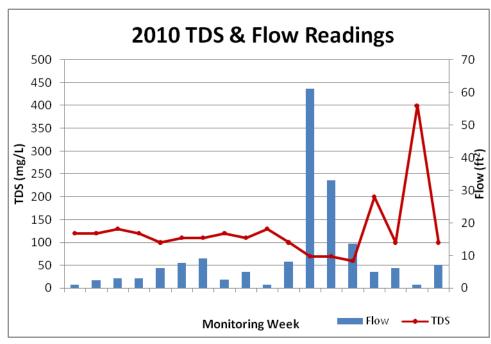

Additional questions are found on page 2 – please provide as much feedback as possible!

Meter A: LaMott	e Tracer Pocke	Tester			
Results	Solution	Α.	Solution	В	Solution C
Conductiv	rity				
TDS		-			
Did the reading st	tabilize?)	/ES	NO		
How difficult was [1 = very o			um 4 = easy; 5 = v	very easy]	
1	2	3	4	5	
How difficult was [1 = very o			s? um 4 = easy; 5 = v	very easy]	
1	2	3	4	5	

Meter B: Oakton Multi-Parameter PCSTestr 35							
Results	Solution A	Solution A.		В	Solution C		
Conductivity	onductivity			-			
TDS				_			
Did the reading stabil	lize? YES	NO					
How difficult was it to calibrate the meter? [1 = very difficult; 2 = difficult; 3 = medium 4 = easy; 5 = very easy]							
1	2	3	4	5			
How difficult was it to understand the directions? [1 = very difficult; 2 = difficult; 3 = medium 4 = easy; 5 = very easy]							
1	2	3	4	5			

Barium and Strontium


- Naturallyoccurring metals found deep underground
- Indicate
 contamination
 from Marcellus
 Shale activities
 (signature
 chemicals)



https://www.msu.edu/~zeluffjo/periodic table.gif

Flow Monitoring

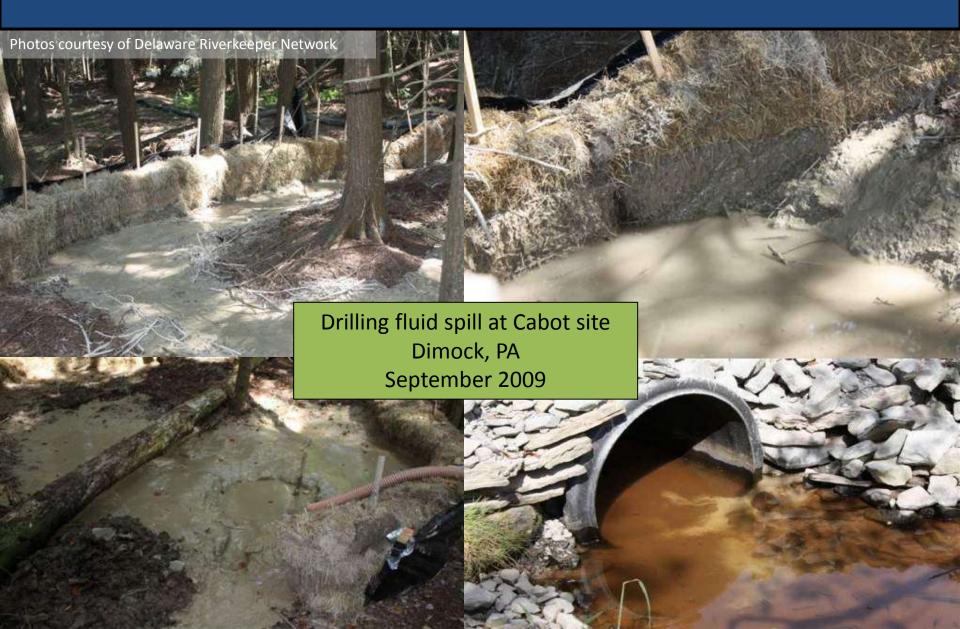
Cross-sectional area – understand relationship between amount of water in stream and TDS

Visual Assessment

- Earth Disturbances
- Gas Migration/Leakages
- Spills and Discharges

Marcellus Shale Well Sites in Dimock, PA; 2010

Earth Disturbances: Drill Pad, Storage Pond, & Staging Areas



Outlets of sediment control structures are NOT stabilized

Outlets of sediment control structures are stabilized

Spills & Discharges

Where Will You Monitor?

<u>Considerations</u>: How will volunteers determine where drilling is occurring?

Volunteers have a wealth of information about their local surroundings

Determining Well Locations

Step 1:

Find where drilling permits have been issued (lat/long)

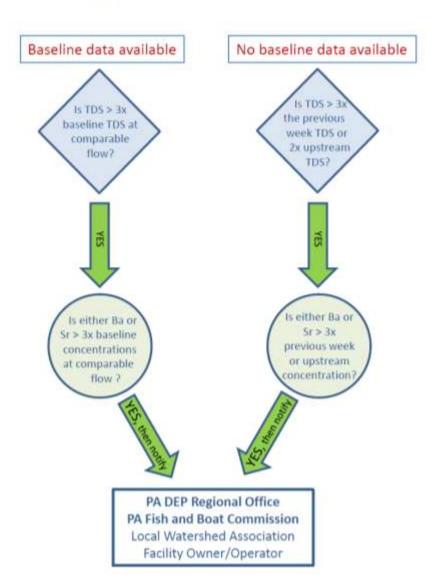
- eNOTICE/eFacts/eMap PA
- DEP reports

Step 2:

Find issued drilling permit locations on map

- Google Maps
- Topographic map

Step 3:


Choose monitoring site based on important features

- Well locations
- Stream access

Data Use: Decision Trees

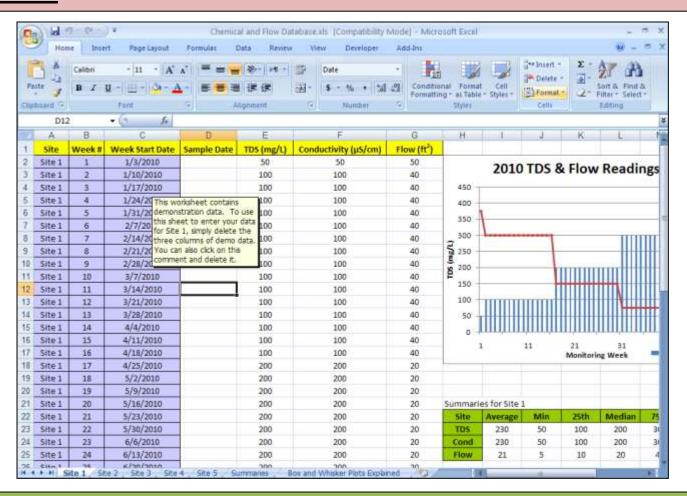
CHEMICAL MONITORING DECISION TREE

Chemical
Monitoring
*
Visual
Assessment
*
Flow

Report
monitoring
information
when values
exceed criteria
in decision
trees

Quality Assurance/Quality Control

Considerations: What is feasible for volunteers?



Standard QA/QC Practices:

- Training requirements
- Care/calibration of equipment
- Replicates
- Documentation of procedures
- Split sample analysis

Data Management

Considerations: What tools and methods are available to volunteers?

ALLARM created easy to use templates for volunteers to store their chemical, flow, and visual assessment data.

Building a Monitoring Force

- 600 people trained since the start of 2010
- ALLARM, DRN, PACTU,& Waterdogs

Questions?

Alliance for Aquatic Resource Monitoring (ALLARM)
Dickinson College
P.O. Box 1773
Carlisle, PA 17013
717.245.1565
allarm@dickinson.edu
www.dickinson.edu/allarm

Marcellus Shale Monitoring Manual