About the Project
NIST
36 Integrals with Coalescing SaddlesProperties

§36.10 Differential Equations

Contents

§36.10(i) Equations for ΨK(x)

In terms of the normal form (36.2.1) the ΨK(x) satisfy the operator equation

36.10.1 ΦK(-ix1;x)ΨK(x)=0,

or explicitly,

36.10.2 K+1ΨK(x)x1K+1+m=1K(-i)m-K-2(mxmK+2)m-1ΨK(x)x1m-1=0.

Special Cases

K=1, fold: (36.10.1) becomes Airy’s equation (§9.2(i))

36.10.3 2Ψ1x2-x3Ψ1=0.

K=2, cusp:

36.10.4 3Ψ2x3-12yΨ2x-i4xΨ2=0.

K=3, swallowtail:

36.10.5 4Ψ3x4-35z2Ψ3x2-2i5yΨ3x+15xΨ3=0.

§36.10(ii) Partial Derivatives with Respect to the xn

36.10.6 lnΨKxmln=in(l-m)mnΨKxlmn,
1mK, 1lK.

Special Cases

K=1, fold: (36.10.6) is an identity.

§36.10(iii) Operator Equations

In terms of the normal forms (36.2.2) and (36.2.3), the Ψ(U)(x) satisfy the following operator equations

36.10.11 Φs(U)(-ix,-iy;x)Ψ(U)(x) =0,
Φt(U)(-ix,-iy;x)Ψ(U)(x) =0,

where

36.10.12 Φs(U)(s,t;x) =sΦ(U)(s,t;x),
Φt(U)(s,t;x) =tΦ(U)(s,t;x).

Explicitly,

36.10.13 62Ψ(E)xy-2izΨ(E)y+yΨ(E)=0,
36.10.14 3(2Ψ(E)x2-2Ψ(E)y2)+2izΨ(E)x-xΨ(E)=0.
36.10.15 32Ψ(H)x2+izΨ(H)y-xΨ(H)=0,
36.10.16 32Ψ(H)y2+izΨ(H)x-yΨ(H)=0.

§36.10(iv) Partial z-Derivatives