Related Links | Frequently Asked Questions | Community Feedback | Downloads | Sitemap
CCMC Home | CCMC Stakeholders | Our Team | Publications | Meetings and Workshops | Concept of Operations
Models At A Glance | ModelWeb Catalog and Archive
Request Procedures | Generate Input Data Files & Parameters | Movies on Request | About the Run Process | Publications Policy
Search run database | Request run output | Special events | Kameleon Software | Space Weather Explorer | Publications policy
Instant Model Run
Forecasting Support tools | iSWA | DONKI | Mission Support | Experimental Real Time Simulations | Operational Geospace Model Validations
Intl Forum | GEM Challenge | CEDAR ETI Challenge | GEM-CEDAR Challenge | SHINE Challenge | CME Arrival Time Scoreboard | Flare Scoreboard | SEP Scoreboard | IMF Bz Scoreboard
Educational materials &activities | Space Weather REDI Initiative | SW REDI Bootcamp | Student Research Contest | Tutorial at CEDAR | Forecaster Tools
Missions near Earth/in Earth-orbit | MMS | Van Allen Probes | THEMIS | MESSENGER | STEREO | Spitzer | MAVEN | MSL | Dawn | Kepler | EPOXI | Juno | CASSINI | Voyager | New Horizons | Sounding Rockets | International
Research Community Support | CCMC Workshops | NASA Robotic Mission Operator Workshops | LWS Support | Exo-CCMC | DREAM2 Support | HELCATS Support
iSWA | DONKI | Kameleon | StereoCat | EEGGL | CME Scoreboard | SEP Scoreboard | FLR Scoreboard | SEA5

Exoplanetary CCMC

Background and objectives

With the advent of the Kepler mission, the landscape of exoplanetary science has undergone significant changes. Recent discoveries have opened new opportunities to study new effects of extreme space weather introduced by G, K, and M dwarf stars and on exoplanets around them. With over 2000 confirmed exoplanets, now is the time to leverage interdisciplinary expertise from astrophysicists, Solar System scientists, Earth systems scientists, and heliophysicists for the development of community modeling and analysis tools, and for the application of these tools to the prediction and interpretation of spaceflight measurements of habitable environments in support of the search for life in and beyond the Solar System.

The Exoplanetary CCMC (Exo-CCMC) project supported by GSFC Code 600 seeks to initiate the establishment of collaborations across the Heliophysics Science, Earth Science, Planetary Science and Astrophysics Divisions to create a new unique branch of the CCMC. Exo-CCMC will incorporate the library of astrophysical, atmospheric and magnetospheric tools to support the needs of the broader astrophysical and planetary science communities in modeling pertaining to exoplanetary research. Exo-CCMC will enable, support and perform research utilizing the existing state-of-the-art stellar, planetary and heliospheric models extended into the parameter space applicable for exoplanetary research.

The Exo-CCMC will provide a unique capability to simulate user-specified scenarios for astrophysical, planetary and exoplanetary communities. The hosted models will aid in analyses of data from existing and upcoming NSF, NASA, and ESA astrophysics and exoplanetary missions.

Initial capacity

Modeling exoplanetary space weather requires adapting our current models of Solar System space weather to other planetary systems. This development requires tools that can adequately describe the scenarios for evolution of stars in the main sequence and their habitable zones. Detailed analyses also require characterization of the state of planetary magnetospheres in response to various conditions introduced by stellar winds and stellar coronal mass ejections. This problem becomes especially important for modeling planetary climates and habitability of exoplanets in response to severe space weather.

In the initial Exo-CCMC capacity established on this site, users are able to view and analyze simulations carried out with three different models: SWMF, PWOM and ALF3D. These simulations are used to demonstrate how models hosted at Exo-CCMC can be used to explore exoplanetary problems. Please follow the links to indivudual models below for more details and to access the simulation results.

Next Phase: 1D Simulations of Exoplanetary Atmospheres

With the upcoming launch of JWST and plans for future exoplanet-focused observatories such as WFIRST, there is significant interest in the community for a toolset to simulate photometric and spectroscopic observations of exoplanets to better understand the science return we can expect. The next phase of the Exo-CCMC will focus on implementing several different models for simulating observations of exoplanet atmospheres with the next generation of space telescopes.

The Planetary Spectrum Generator is an ease-of-use online tool that can ingest a broad range of spectroscopic information and employs modern models to synthesize accurate planetary fluxes. Such tool can be used to plan observations (e.g., proposals, mission planning), to interpret current and future exoplanetary data, to develop new instrument/telescope concepts, to calibrate spectroscopic data, and to identify sources of error and spectral confusion. See the link below to access the simulator.

The Exo-CCMC Science Team

Team Leads: Avi Mandell (NASA GSFC Code 693) and Antti Pulkkinen (NASA GSFC Code 674)
Team Deputies: William Danchi (NASA GSFC Code 667), Shawn Domagal-Goldman (NASA GSFC Code 699), and Tony Del Genio (NASA GSFC Code 611)
Team members: Maria Kuznetsova (NASA GSFC Code 674), Alex Glocer (NASA GSFC Code 673), Melvyn Goldstein (NASA GSFC Code 672), Arcadi Usmanov (University of Delaware and NASA GSFC Code 673), George Khazanov (NASA GSFC Code 673), Lutz Rastaetter (NASA GSFC Code 674), Vladimir Airapetian (The Catholic University of America and NASA GSFC Code 671), Geronimo Villanueva (NASA GSFC Code 693), Natasha Batalha (693), Giada Arney (699)

Simulations

Exoplanet Modeling and Analysis Center (EMAC)

Exo-CCMC is participating the Exoplanet Modeling and Analysis Center (EMAC) collaboration. To access EMAC, please click here.

National Aeronautics and Space Administration Air Force Materiel Command Air Force Office of Scientific Research Air Force Research Laboratory Air Force Weather Agency NOAA Space Environment Center National Science Foundation Office of Naval Research

| | Privacy, Security Notices

CCMC logo designed by artist Nana Bagdavadze