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Relative Count Rate (%)

Motivation:

In the 2008-2010 minimum of solar activity, we saw a How do the SEP Events of Solar Cycle (SC) 24 differ from

higher flux of Galactic Cosmic Rays (GCRs) at Earth those of earlier Solar Cycles?
than ever seen before in the Space Age. Do the differences between SC 24 and earlier SCs have

implications for a manned mission to Mars?
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An Example: Effects of lonizing-Radiation on Spacecraft Systems

SEUs in the SSR on SOHO at L1

(Single-Event Upsets in the Solid-State Recorder on the Solar and Heliospheric Observatory at the First Lagrangian Point)

SOHO SSR SEU Rate: April 1996 - January 2015
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But this is not
the whole
picture....



An Example: Effects of lonizing-Radiation on Spacecraft Systems
SEUs in the SSR on SOHO at L1
(Single-Event Upsets in the Solid-State Recorder on the Solar and Heliospheric Observatory at the First Lagrangian Point)

SOHO SSR SEU Rate: April 1996 - January 2015
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Outline

= Brief Review of the SEP radiation hazard

= Comparison of SEP productivity Cycle 24 vs. Cycle 21, 22, and 23

= Speculation: What if Cycle 24 is the “new normal”?



Space Radiation Risk

Managing Space Radiation
Riskin the New Eraof -
Space Exploration

NRC Panel convened at the request of NASA.
Chaired by J.D. van Hoften; Tylka was a Panel member.
Report published in 2007.

My comments below reflect both this report and
progress since then.




A Brief Review of the SEP Radiation Hazard

= The SEP radiation hazard is “out of phase” with the GCR radiation hazard.
» SEP hazard is greatest when the GCR hazard is lowest, i.e., at solar maximum

» However, very large SEP events (even Ground-Level Events [GLEs] ) have been observed at solar
minimum (sunspot number <20)

= The SEP radiation is due primarily to protons.

» Unlike GCRs, where the primary rad-hazard concern comes from heavy-ions, which fragment in the
shielding to produce neutrons.

» SEPs also include ions heavier than protons:
= SEP heavy-ions are unimportant in term of dose (<10%).

= But heavy-ions may cause subtle biological effects whose risks are not adequately quantified by
dose.

= SEP heavy ions can be important for single-event effects in electronics.



A Brief Review of the SEP Radiation Hazard (cont.)

= Biology is the biggest uncertainty in assessing the SEP radiation hazard for astronauts:
= rads - cancer risk?
= Astronauts can be shielded from the episodic SEP radiation hazard by a ‘storm shelter’ (Next slide)
= Early warning of the approaching SEP hazard is needed.
= Time scale depends on the circumstance:
= within the spacecraft but not the shelter
= OnEVA
= Types of Early Warning ‘Models’
= Experience based: NOAA
= Physics-based: Objective of NASA Heliophysics Research

= Monitors: i.e., near-relativistic electrons: REIeASE at iSWA.gsfc.nasa.gov



Event-Integrated protons(>E)/cm*2

Radiation Exposure from the Largest SEP Events of the Space Age
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Comment on SEP Proton-Energy Thresholds

= Evaluating the SEP radiation hazard requires both the absolute normalization of the proton flux as well
as its energy spectrum.

= Historically, certain energy thresholds have been used to roughly characterize the severity of the SEP
hazard:

= >10 MeV: relevant to solar panels and sensors; NOAA uses this threshold to identify ‘events’.
= >30 MeV: relevant to biological effects and electronics (single-event effects (SEEs))
= >100 MeV: relevant to storm-shelter design

= But for shelter-design calculations, the spectrum is needed up to ~1000 MeV (Next slide)



Solar-Proton Energy Spectrum

Event-Integrated Integral Proton Fluence(>E) /cm”2

Designing a “Storm Shelter” for Astronauts
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Comparison of SEP productivity Cycle 24 vs. Cycles 20, 21, 22 and 23

25593 hours

IMP 4,5.7,& 8 GOES 6-13
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Number of Hours

>30 MeV SEP Production in the Years 2-7 of the Solar Cycle
(Hourly-averaged fluxes in p/cm?-sr-s)
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Number of Hours

>30 MeV SEP Production in the Years 2-7 of the Solar Cycle

(Hourly-averaged fluxes in p/cm?-sr-s)
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An interesting question: when, in the course of an event, do these hours with big fluxes occur? See back-up slides.

And what about the 2012 July 23 event observed by STEREO-A? See back-up slides.



Number of Hours

>30 MeV SEP Production in the Years 2-7 of the Solar Cycle

(Hourly-averaged fluxes in p/cm?-sr-s)
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In Cycle 24, the slope of the flux distribution is also steeper than in Cycles 22 & 23.



Let’s look at this more quantitatively...

>30 MeV SEP Production in the Years 2-7 of the Solar Cycle
(Hourly-averaged fluxes in p/cm?-sr-s)
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Cycle 24 compared to Cycles 20 & 21
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At >30 MeV, the differences between Cycle 24 and Cycles 20
and 21 are less impressive than the differences with Cycles 22
and 23.

It will be important to see how the SEP events continue in the
next two years.

But what about higher energies?
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Event-Integrated Proton Fluence(>500 MeV)/cm*2-sr

10

10

10

10

10

10

>500 MeV Solar Protons at Earth: 1956-2014
frerrerrrr eI rxyr IR R EE T E L L

: ]
i : o |
o a .
é . % - . ¢ ® o
_ % ®e & ? r $. o
& & 4
- & oo & ® 89
o o te ¢ e .
3 . oS-
8
I i aTE Pl PRy PR 'S I
1960 1970 1980 1990 2000 2010

Time

e GLE
from neutron monitors

] o sub-GLE

from GOES/HEPAD
(for Cycle 24 only)



Event-Integrated Proton Fluence(>500 MeV)/cmA2-sr

>500 MeV Solar Protons at Earth: 1956 2014

u I F these very big GLEs have disappeared from the
Sun’s repertoire, the required storm-shelter shielding will

nJ L} I L]

T s waa be greatly reduced. (Note the big ‘IF’.)

BFO Exposures* Behind Aluminum Shielding
43 GLE Episodes: 1956-2006

'\ 30-day Limit’

1960

1970

1980

1990 2000 2010 g/lcm”2 Al

Time *Body self-shielding approximated as 8 g/cm*2 water



Speculation: What if Cycle 24 is the “new normal”?

Prediction is very difficult, especially if it’s
about the future.
Neils Bohr

It’s tough to make predictions, especially
about the future.
Yogi Berra



Sunspot Number (SSN) serves as a general measure of solar

activity, for which we have a long historical record.

But a BIG CAVEAT:

SSN is not a good predictor of SEP production
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* Cycle 24 is not yet over, but SSN is declining from a maximum of 82 in April 2014.

e Let’s examine previous Cycles with maximum SSN < 100.
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Cycle 24 is not over yet, but SSN is declining from a maximum of ~82 in April 2014.

Let’s examine previous Cycles with maximum SSN < 100.
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Summary

SEP radiation hazard is important for both human and robotic explorers.
= Astronauts will need: (1) early warning and (2) an adequate storm-shelter.
= The largest uncertainty in the long-term cancer risk is due to biology.

Compared to Solar Cycles 22 & 23, the SEP radiation hazard is reduced in Solar Cycle 24, at least over
the first 7 years of the cycles:

= The probability of encountering any given flux level is less.
*= The largest fluxes of previous Solar Cycles (top ~0.2%) are absent.
= These statements are true at all energies relevant to space-system design.

Differences with Solar Cycles 20 and 21 are most apparent at very high-energies (>500 MeV), as
evidenced by Solar Cycle 24’s relative dearth of GLEs.



Summary (continued)

- I F Cycle 24 presages a new type of solar behavior, not seen before in the Space Age and that will

continue for decades, the relative importance of the SEP radiation hazard will be reduced. (Note
the ‘big IF'.)

u I F the Sun is no longer producing the very large Ground-Level Events (GLEs) seen in 1956-2006,

the required storm-shelter shielding will be greatly reduced.

= These reductions in the SEP-radiation hazard, combined with the increase in the GCR-radiation
hazard, might make solar maximum a better time-frame for long-duration human missions.



Backups
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= These factors — weakened magnetic
= Compared to SC 23, there are field and fewer suprathermals -

E fewer potential suprathermal together may explain why SEP

\ seed particles available in SC 24. production is down.

L Other ideas: Gopalswamy et al.
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Hourly-Averaged Protons/cm2-sr-s
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Number of Hours

>10 MeV SEP Production in the Years 2-7 of the Solar Cycle

(Hourly-averaged fluxes in p/cm?2-sr-s)
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Number of Hours

>100 MeV SEP Production in the Years 2-7 of the Solar Cycle
(Hourly-averaged fluxes in p/cm?2-sr-s)
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Hourly-Averaged Protons/cm2-sr-s

Examples of “Big Hours”:

>30 MeV Intensity exceeds Cycle 24 Upper Limit
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5 IMP7 >30 MeV protons: August 1972

GOES >30 MeV protons: October 1989

S - U R S T [ o T [T TR T R Ch P T S P
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GOES can measure fluxes that are more than 10x greater than the maximum seen in Cycle 24. The Cycle 24
maximum is unlikely to be an instrumental artifact.
These ‘severe hours’ occur during events which are often used as “worst-case” SEP environments for design studies.
In some cases (like July 2000), the Cycle 24 upper limit is exceeded in less than 3 hours.
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Hourly-Averaged Protons/cm2-sr-s

Hourly-Averaged Protons/cm2-sr-s

More Examples of “Big Hours”: >30 MeV Intensity exceeds Cycle 24 Upper Limit
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Hourly-Averaged Protons/cm2-sr-s

Highest >30 MeV Intensities seen in Solar Cycle 24

2012 March 6 - 13
[ SRS frrrrrrt frrrrrrr [rrrrrrr [rrrrrrr [rrrrrrr frrrrrrt i

GOES >30 MeV protons

N
10° B s
-1 M W
10 B N
10-2 =
lllllll Illlllll'llllllllllllllllllIllllIIIlllllIlIIIlll
6 7 8 9 10 1M 12 13
12Mar
Time

(GCR background has been subtracted.)

Could this be instrumental
saturation? Very Unlikely:

ACE/SIS intensities agree to
within 30%

GOES design has
demonstrated the ability to
handle rates that are higher
by at least a factor of 30.

ACE/GOES discrepancy to be
investigated.



Monthly Proton Fluence(>30 MeV)/cm#2-sr

Monthly >30 MeV Proton Fluence vs. Smoothed Sunspot Number
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Year 1
Year 2
Year 3
Year 4
Year 5
Year 6
Year 7
Sum
Year 8
Year 9
Year 10
Year 11
Year 12
Total

Dates
May 76-Apr 78
May 77-Apr 78
May 78-Apr 79
May 79-Apr 80
May 80-Apr 81
May 81-Apr 82
May 82-Apr 83

May 83-Apr 84

May 84-Apr 85

May 85-Feb 86
n/a

n/a

Numbers of SEP Events* in Solar Cycles 21 - 24

- Cycle 21 Cycle 22 Cycle 23 Cycle 24

# Events
5

5
8
6
4
8

12
48

61

Dates
Mar 86-Feb 87
Mar 87-Feb 88
Mar 88-Feb 89
Mar 89-Feb 90
Mar 90-Feb 91
Mar 91-Feb 92
Mar 92-Feb 93

Mar 93-Feb 94
Mar 94-Feb 95
Mar 95-Feb 96
Mar 96-Apr 96

n/a

# Events
2
2
9
22
14
16
5
70

SO L = W

75

Dates
May 96-Apr 97
May 97-Apr 98
May 98-Apr 99
May 99-Apr 00
May 00-Apr 01
May 01-Apr 02
May 02-Apr 03

May 03-Apr 04
May 04-Apr 05
May 05-Apr 06
May 06-Apr 07
May 07-Dec 07

# Events
0
3
9
5
18
24
10

69
10

6
6
2
0

92

Dates
Jan 08-Dec 08
Jan 09-Dec 09
Jan 10-Dec 10
Jan 11-Dec 11
Jan 12-Dec 12
Jan 13-Dec 13
Jan 14-Dec 15

Jan 15- Mar 15

# Events
0

0
1
7

13

34
0

?

*An event starts with three consecutive 5-minute intervals with flux of >10 MeV protons exceeding 10 p/cm?-sr-s and
ends when with this flux is < 10 p/cm?-sr-s. Some GOES “events” therefore comprise multiple events.



The SEP event of 2001 October 22 was the last for which we have spectral measurements from both IMP8 and GOES. We
derived the Band-function spectrum using only IMP8 data. We then compared that Band-fit to the GOES measurements.

2001 October 22 1700 UT - October 26 1200 UT GOES discrepancy with Band Fit derived from IMP8
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Note: GOES data points NOT used in making the Band fit.

Nearly all of the GOES datapoints agree

The distribution of deviations of IMP8 datapoints _ , e
with the IMP8 Band fit to within + 20%.

from the fit has rms of 16.4%.



Another example, this time from near the start of GOES observations. This event is one of the earliest events of the GOES
era in which IMP8 also had good data recovery. The event was too small, however, to be detected by HEPAD.

D
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The distribution of deviations of IMP8 datapoints
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Note: GOES data points NOT used in making the Band fit.

from the fit has rms of 7.6%.

Percentage Difference: (GOES-Fit)) GOES

GOES discrepancy with Band Fit derived from IMP8
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Except for the >1 MeV datapoint (unimportant for
radiation effects), the GOES agrees with the IMP8 Band
fit to within + 20%.
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