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Artificial Intelligence is just fancy Statistics





Artificial Intelligence : A Few Definitions

Machines Learning (ML): A branch of artificial intelligence in which a   
computer progressively improves its performance on a specific task by 
“learning” from data, without being explicitly programmed.

• Closely related to computational statistics, which focuses on prediction 
and optimization.

Data Mining: Discovering patterns in large data sets using techniques at 
the intersection of machine learning, statistics, and data management.

Deep Learning (DL):  An extension of Machine Learning that uses the 
mathematical concept of a neural network (NN) to loosely simulate 
information processing and adaptation patterns seen in biological nervous 
systems.

• Many problems which have been traditionally tackled with pensive 
coding have been overwhelmingly superseded by neural nets that 
outperform the humans that trained them.

• Exponential investment (patents, publications, funding) has fueled 
rapid advances in DL capabilities to make predictions, to identify 
anomalies, and even create new content that mimics what it has 
previously seen.

IMAGENET Annual Competition to accurately classify over 

10 million hand-annotated images

Statistical ML and hand-coded 

computer vision solutions

Deep Learning takes over

Super-human accuracy
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Artificial Intelligence (AI)

A computer which mimics cognitive functions typically associated with human intelligence. 

Examples :  goal seeking strategy formulation, complex image recognition, "learning", inference, and 

creative problem solving.



Statistical Machine Learning vs. Deep Learning

Deep Learning will discover these feature abstractions for itself.

Machine Learning needs help to extract features for statistical modeling.

Multiple ML models for each component of the Solar-Terrestrial Environment

Image courtesy NASA/JPL

Deep Learning can often discover features to learn from the entire system

Data Scale: When properly 

architected, the efficacy of 

DL systems continue to 

improve with more data, 

long after statistical 

models have plateaued.

Feature Discovery: Machine Learning often requires a 

human expert to create “feature extractors” that enable 

the statistical models to learn effectively, but Deep 

Learning finds these high-level features for itself (often 

with surprisingly creative results)

Interpretation: Machine Learning systems provide “visibility” into 

their statistical foundations, allowing their results to be  interpreted 

and explained. Deep Learning systems are more of a “black box”, 

although this is improving… and in some cases this is not an 

impediment (e.g. AI-enhanced science discovery)

Whole System: Machine Learning typically requires that complex 

systems be “chunked” into trainable components that are then 

manually recombined. Deep Learning can often “short circuit” 

that process and successfully model complex systems from end-

to-end



WHY NASA FDL?

AI is evolving quickly. The revolution was started by the application of neural nets to large quantities of pre-
labeled data (known as ‘supervised’ deep learning) in 2012. These methods are now mainstream. 

The state-of-the-art is now looking towards sparse or unlabeled data (known as ‘unsupervised’ deep learning or 
machine learning) and how to explain the uncertainty of the results. This is known as ‘explainability’ and a key 
part of determining the veracity and usefulness of any AI.

Although deep learning is being democratized, producing excellence (i.e explainable, bias free and trustworthy 
results) is increasingly difficult, requiring multi-faceted and sophisticated teams and a deep understanding of 
how to use the newest techniques. This is where FDL sees its unique value and opportunity for space 
science and exploration.  

2012 NOW 

Supervised Pre-labeled data (by humans)
- becoming democratized, simple workflows, clean datasets. ML is ‘black box’

Unsupervised Sparse or unlabeled data

Bayesian and Probabilistic Deep Learning
Quantifying uncertainty - leadership in explainability

Data fusion Rapid increase of data size, compute cost and workflow 
complexity requires AI management capacity 

2015 

“Deep Learning Big Bang” FDL Initiated



Executive overview

FDL is an applied Artificial Intelligence Research initiative that uses interdisciplinary teams at the Phd 
and Postdoc level to solve challenging problems for space exploration and positive impact to humankind. 

▪ FDL was conceived by the Office of the Chief Technologist at NASA HQ in 2015, 
with two primary objectives:

◦ Understanding how AI and Machine Learning could be leveraged to advance 
basic research questions of importance to NASA and accelerate discovery and 
understanding, and or improve research efficiency and efficacy.

◦ Exploring opportunities represented by public/private partnership where 
companies with technology and expertise in AI/ML domains could see the benefit in 
supporting NASA research programs and priorities and leveraging NASA data for societal 
benefit. 



HISTORY

• NASA FDL is four years old

• FDL has as developed a proven formula for producing 
excellence in applied AI research over very rapid 
timescales - with a focus on ‘AI explainability’ to match 
the quality expectations of the space industry.   

• FDL has produced 15 peer reviewed journal papers 
and been accepted to 30+ scientific conferences and 
multiple articles in the science press. FDL results have 
already been deployed on NASA programs.  

• The FDL brand is well respected in the research 
community with 450+ researcher applications in 2019. 
(Acceptance rate is now parity with MIT.)

• NASA FDL is currently based at NASA ARC and hosted 
and administered by the SETI Institute.

• The formula has attracted the attention of partner 
space agencies, ESA, CSA, LSA, with more to come.

• Other NASA centers are showing interest too, 
particularly GSFC, MSFC, JSC and Glenn. 

THE NASA FRONTIER 

DEVELOPMENT LAB (FDL) IS A 

PUBLIC / PRIVATE APPLIED AI

RESEARCH PARTNERSHIP

BETWEEN NASA, THE SETI 

INSTITUTE AND LEADERS IN 

COMMERCIAL AI, PRIVATE 

SPACE, ACADEMIA AND 

PARTNER SPACE AGENCIES. 



MODEL (1):  A public / private partnership 

FDL has a dedicated and passionate 
partner community aligned behind a 
common vision for AI for science and 
space exploration for all humankind.    

The SETI Institute facilitates public / private 
partnership by acting as a hub between Space 
Agency, Academic and commercial partners. 

HOW THE PARTNERSHIP IS STRUCTURED: 

Sub-contractor Trillium Technologies Inc, 
manages most of the commercial, academic and 
space agency partners and the FDL faculty and 
runs and co-ordinates FDL throughout the year.   



MODEL (3) PROCESS INNOVATION 

FDL tackles knowledge gaps in space science by pairing machine learning experts with heliophysics, 
astrophysics, astrobiology, planetary science and earth science researchers for an intensive eight week 
research sprint, held in the summer break of the academic year - although the journey from Challenge 
Definition through to finished result (Tech Memo and trained algorithm and data products) takes 12 
months.

Interdisciplinary four-person teams of PhD and postdoc level researchers address tightly defined science 
challenges that are informed by knowledge of “what’s possible in ML”. Mentors who are subject matter 
experts, provide support to the teams and drive research quality. External and partner experts, special guests, 
and visits to partner labs contribute to the understating of the problem and provide a community of expertise 
that drives excellence. 

FDL’s format encourages rapid iteration and prototyping to create outputs with meaningful application to the 
space program, with substantial compute resources provided by FDL’s commercial partners* - who have 
expressed ongoing commitment. This combination of curated challenges, close mentorship, community of 
expertise and an emphasis on rapid prototyping has ensured a high success rate for FDL. 

As such, FDL has demonstrated how structured interdisciplinary problem solving, radical collaboration 
methods and partnering with commercial organizations with relevant expertise can be useful to NASA’s science 
and technology goals. 

HOW FDL WORKS:  

*$1.5 M USD in donated compute (2016-2019)



PROGRAM IMPACT: DEMONSTRATED CAPACITY 

FDL is building crucial AI keystone capability for NASA

Discovery with
multi-dimensional

data

Workflow 
optimization 

Forecasting 
and Prediction 

Decision 
Intelligence 

Autonomous
systems 

Anomaly 
Detection
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RESEARCH 
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Virtual 
Instruments 

FDL has explored a broad range of AI applications for the space program.  

Classification 
at scale 





Loss of sensor in SDO/EVE left an observational gap in the most energetic part of 
the EUV spectrum



● Need: Measurement of solar spectral irradiance is needed for 
satellite orbit boost planning. Currently, this can be difficult 

because the MEGS-A module on SDO stopped functioning in 

2014. 

● Goal: The SDO AIA EUV imager co-observed with MEGS-A 

from 2011 to 2014 -- Can we use this data overlap to train a deep 

learning model to “virtually resurrect” the MEGS-A instrument and 

fill the observational gap left by the MEGS-A failure, thereby 

improving spectral irradiance prediction?

● Methodology: Develop a machine learning model using 

2011/2014 data, test the accuracy using 2012/2013 data. After 

training and testing over 1000 machine learning configurations, the 

best implementation was found to be a Residual neural net model 

augmented with a Multi-Layer Perceptron.

● Findings: The neural net model significantly improved upon 

physics based models, reducing mean error from 7.46% to 

2.83%. This improved accuracy may constitute a scientifically 

useful virtualization of MEGS-A.

FDL 2018 Case Study

SYNTHESIZE SDO MEGS-A TO DATA

Plot of Predicted  
vs.Observed

Physics-based model

Improved AI
model

Failed in 2014
AI model reduced mean error of spectral irradiance prediction to 2.83% 

NASA 
Solar 

Dynamics 
Observatory 

(SDO)



● Need: GNSS/GPS systems are a critical 

component of our global technology infrastructure. We 

must improve our ability to predict how space weather 

will degrade GNSS accuracy.

● Goal: Use high-latitude ionospheric and 

geomagnetic data in conjunction with solar data (OMNI 

database) to predict GNSS signal scintillations. 

● Methodology: Curate over 350GB of data (2015-

2018) to extract over 100 features for model training. 

Compare a baseline Support Vector Machine (SVM) 

model with a Multi-layer perceptron (MLP) neural net 

implementation. 

● Findings: The neural net model significantly 

improved predictions over the prior SVM baseline 

model by 70%

FDL 2018 Case Study
FORECASTING GNSS/GPS DISRUPTIONS



EXPANDING THE CAPABILITIES OF NASA’S 
SOLAR DYNAMICS OBSERVATORY

Challenge:

● By using a prepared “AI-ready” SDO dataset, this 
challenge aims to transform multiple EUV channels data 
into extreme ultraviolet (EUV) images. 

This will help the reduced instrumentation strategy that 
will be central to the success of future SmallSat 
missions. 

Using the same dataset, this challenge will also identify 
spatial patterns on the Sun to determine the calibration 
factor that would correct for SDO EUV instrument 
degradation, which would help to avoid the cost of 
regular suborbital launches to obtain calibration data.



EXPANDING THE CAPABILITIES OF NASA’S 
SOLAR DYNAMICS OBSERVATORY

NEED > CHALLENGE RESULTS

STATUS > FUTURE WORK

● The team devised a Convolutional Neural Network (CNN) that takes
multi-channel EUV images as input, and outputs per-channel
degradation factors. The CNN solution outperforms a baseline
method which uses pixel intensity histogram analysis.

● The team trained a Deep Neural Network (DNN) with a U-net
architecture to synthetically generate AIA 211 Å channel images from
three other (94, 171, 193 Å) EUV images. The synthetically generated
image has good correspondence with ground truth images over three
orders of magnitude dynamic range.

● These techniques demonstrate how we can enhance the scientific
return of space missions (especially deep space missions like
STEREO), and paves the way for an autonomous space weather
constellation.

1. UV and EUV instruments in orbit suffer time-dependent degradation
which reduces instrument sensitivity. Accurate calibration for EUV
instruments currently depend on sounding rockets (e.g. for SDO/EVE, and
SDO/AIA), which are costly and infrequent. Furthermore, such calibration
experiments are not practical for missions in deep space (e.g. STEREO
satellites). Using the SDO data, we propose to exploit spatial patterns in
multi-wavelength observations to arrive at a auto-calibration of (E)UV
imaging instruments.

2. The capabilities of Heliophysics missions are limited by the cost of
launch, of instrument development and of telemetry. We propose the
development of a virtual telescope that can generate desired science
data products using fewer measurements (e.g. fewer EUV channels) as a
possible solution to mitigate these challenges.

2019 Auto-cal+ Virtual Telescope

• The team "plug-and-play" pipeline that allows feeding input from the
SDO dataset as well as plugging in either the auto-calibration or the
virtual telescope experiments via a configuration file. The source
code, as well as documents on how to use the code and
explanations will be made available on GitLab after the first
publication.

• The team is transitioning from the IBM Cloud platform to the Google
Cloud platform to refine model development and deployment.

• Two abstracts have been submitted to the Machine Learning for
Physical Sciences Workshop at NeurIPS 2019.

DATA / METHOD

Back to 
AI Portfolio

The machine learning-ready SDO dataset prepared by Galvez et al.
(ApJ 2019) was used for both challenges. The dataset consists of a
subset of the original SDO data dating from 2010 to 2018, is comprised
of 7 EUV channels + 2 UV channels + HMI vector magnetograms.



EXPANDING THE CAPABILITIES OF NASA’S 
SOLAR DYNAMICS OBSERVATORY

Results overview:

● The team devised a way for solar extreme UV 
telescopes to self-calibrate, improving our 
capability to monitor space weather. 

● Furthermore, the team created a synthetic 
telescope to image the Sun’s corona. 

● These techniques enhance the scientific return 
of space missions, and paves the way for an 
autonomous space weather constellation.



ENHANCED PREDICTABILITY OF 
GNSS DISTURBANCES

Challenge:

● Solar output can range from low-velocity solar 
wind to episodic eruptions like CMEs that have 
the potential to negatively impact 
communication/ navigation systems and other 
critical elements of our techno-social 
infrastructure. 

● An unresolved question is whether certain solar 
outputs will be ‘geoeffective’ – meaning 
effective in generating disruptive effects in the 
solar-terrestrial system.



ENHANCED PREDICTABILITY OF 
GNSS DISTURBANCES

Results overview:

● The team used a novel machine learning 
approach of bringing together auroral imagery 
and solar-magnetosphere-ionosphere 
observations to improve the predictability of 
GPS/GNSS signal disruptions. 

● By using ML techniques to understand auroral 
structures, they achieved 15% improvement 
over the state of the art and instantaneous 
results. 



SUPER-RESOLUTION MAPS OF THE 
SOLAR MAGNETIC FIELD COVERING 40 
YEARS OF SPACE WEATHER EVENTS

Challenge:

● Predicting geo-effective space-weather events 
is challenged by the time-limited coverage of 
SDO data (2010-present). 

● This challenge proposes to address this 
problem by using deep learning solutions to 
upscale lower resolution images from earlier 
missions, thereby allowing for a second neural 
net to normalize and combine a much longer 
temporally-composited data product from 
multiple solar observation missions.



SUPER-RESOLUTION MAPS OF THE 
SOLAR MAGNETIC FIELD COVERING 40 
YEARS OF SPACE WEATHER EVENTS

Results overview:

● Used state of the art deep neural networks to 
calibrate and super-resolve historical maps of 
the solar magnetic field.  

● This addresses a problem that the heliophysics 
community has been unable to solve in 50 
years and enables the study of both space 
weather and space climate evolution.



2019 Cloud Classification

2018 Informal Settlements

2018 Disaster Response

2019 Flood Mapping

2019 Edge Inference: Floods

2019 Auto Calibration

2018 SDO UV Irradiance

2019 Virtual Telescopes2018 Ionospheric Scintillations

2019 GNSS Disturbances

2017 Predict KP Index

2017 Atmospheric Retrieval from Spectra

2017 C-Class Solar Flares

2017 Exoplanet Detection

2017 Biosignatures

2017 Crater Identification

2019 Lunar Resource Mapping (Metals)

2018 Rover Localization

2018 Autonomous Route Planning

2016 Meteorite Hunting Drone

= with ESA

2019 Super Res. Mag. Fields

2016 Long-period Comet Detection

2016 Asteroid Deflection Selector

2017 NEO  Shape Modeling

PLANETARY DEFENSE

EARTH SCIENCE 

HELIOPHYSICS

EARTH SCIENCE - DISASTERS 

HELIOPHYSICS - SPACE WEATHER 

ASTROBIOLOGY 
ARTEMIS + BEYOND

ARTEMIS + MARS

HELIOPHYSICS - SPACE WEATHER 

2016 - 2019



2019 Cloud Classification

PROGRAM IMPACT: DEMONSTRATED CAPACITY 

EXPAND HUMAN KNOWLEDGE THROUGH NEW SCIENTIFIC DISCOVERIES 
Understand the Sun, Earth, Solar System, and Universe. SMD / HEOMD

2019 Flood Prediction

2019 Edge Inference: Floods

2019 Auto Calibration

2018 Disaster Response

2016 Meteorite Hunting Drone

2016 Comet Detection

2017 Crater Identification

2018 Rover Localization

2018 Autonomous Route 
Planning

2019 Lunar Resource 
Mapping (Metals)

2017 Exoplanet Detection

2016 Asteroid Deflection 
Selector

2017 NEO  Shape Modeling

2017 Biosignatures

2017 Atmospheric Retrieval 
from Spectra

2018 SDO UV Irradiance

2017 KP Index

2019 GNSS Disturbances

2017 KP Index

2018 Ionospheric Scintillations

2019 Virtual Telescopes

2017 C-Class Solar Flares

2019 Super Res. Mag. Fields

FDL 
RESEARCH 

RESULT 

2019 GNSS Disturbances

2019 Auto Calibration

2019 Super Res. Mag. Fields2017 Exoplanet Detection

2017 Atmospheric Retrieval 
from Spectra

2018 Rover Localization

2019 Lunar Resource 
Mapping (Metals)

2017 NEO  Shape Modeling

2016 Long-period Comet 
Detection

2019 Flood Mapping



FDL IN NUMBERS

+ 4 years, 6 research sprints (4 NASA, 2 ESA)

+ 4 Space Agency Partners / 12 Commercial 

+ 8 Big Thinks

+ 843 applicants (436 in 2019)

+ 11% acceptance rate (‘18 / ‘19)

+ 108 Researchers (Phd and Post-Doc) 

+ 138 mentors and guest experts

+ 633 Partner reviewer community, 25+ Universities

+ $1.5m compute (partner in-kind) 

+ 26 Research Projects, 15 Publications* / 30+ Scientific 

and AI conferences 

+ 50/50 US / International split (NASA FDL) 

* As of August 2019



Papers

A Machine-learning Data Set Prepared from the NASA Solar Dynamics Observatory Mission (Galvez et al. 2019), Astrophysical Journal Supplement Series

An Ensemble of Bayesian Neural Networks for Exoplanetary Atmospheric Retrieval, Astronomical Journal 

Scientific Domain Knowledge Improves Exoplanet Transit Classification with Deep Learning, Astrophysical Journal Letters

Rapid Classification of TESS Planet Candidates with Convolutional Neural Networks, Astronomy & Astrophysics 

A survey of southern hemisphere meteor showers, Planetary and Space Science Journal 2018

Artificial Intelligence Techniques applied to Automating Meteor Validation and Trajectory Quality Control to Direct the Search for Long Period Comets, International Meteor 
Conference 2017

A Deep Learning Virtual Instrument for Monitoring Extreme UV Solar Spectral Irradiance (Szenicer, Fouhey et al.), Science Advances (accepted)

The NASA FDL Exoplanet Challenge: Transit Classification with Convolutional Neural Networks, AbSciCon 2019

INARA: Intelligent exoplaNet Atmospheric RetrievAl A Machine Learning Retrieval Framework with a Data Set of 3 Million Simulated Exoplanet Atmospheric Spectra, 
AbSciCon 2019

EXO-ATMOS: A Scalable Grid of Hypothetical Planetary Atmospheres, AbSciCon 2019

NASA Frontier Development Lab 2018 Using machine learning to study E.T. biospheres, CiML at NeurIPS 2018

Bayesian Deep Learning for Exoplanet Atmospheric Retrieval Bayesian Deep Learning Workshop, NeurIPS 2018

Absolute Localization Through Orbital Maps and Surface Perspective Imagery: A Synthetic Lunar Dataset and Neural Network Approach, 2019 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS) Coming Soon

https://docs.google.com/document/d/1sXApoOJEbfR32p8gzBq2

Ks17osat-V2cbs_AI5L9Vms/edit#

FDL’s Code of Practice: 

https://iopscience.iop.org/article/10.3847/1538-4365/ab1005
https://iopscience.iop.org/article/10.3847/1538-3881/ab2390
https://iopscience.iop.org/article/10.3847/2041-8213/aaf23b
https://arxiv.org/abs/1902.08544
https://doi.org/10.1016/j.pss.2018.02.013
https://imc2017.imo.net/imc2017-proceedings.pdf
https://agu.confex.com/agu/abscicon19/meetingapp.cgi/Paper/481561
https://agu.confex.com/agu/abscicon19/meetingapp.cgi/Paper/481266
https://agu.confex.com/agu/abscicon19/meetingapp.cgi/Paper/480996
https://docs.google.com/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfHdvcmtzaG9wfGd4OjE2MWY5MWY3ZmRhOGZjYzY
https://arxiv.org/abs/1905.10659
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FDL 2020 DEVELOPMENT PHASE BEGINS

TECH MEMOS DELIVERED, CODE AND 

DATA PRODUCTS COMPLETE

- NeurIPS



WHAT FDL ENABLES FOR PARTNERS

1. MARKETING AND BRAND RECOGNITION 

Leadership association with AI application and big data, 

“for the good of humankind” - PARTICULARLY “FOR GOOD”

2. PHYSICAL CASE STUDIES 

Showcasing stretch use cases and engaging talking points (e.g. 

“we’re using AI to detect solar flares”)

3. POSITIONING IN SPACE COMMUNITY

Burgeoning ‘new space race’ / inspirational narratives as we 

look to Moon and Mars.

4. INTRODUCTIONS TO OTHER PARTNERS & NETWORKS

Sitting on FDL committees / steering group 

(e.g. AI technical committee)

5. B2B RELATIONSHIPS BETWEEN PARTNERS

Bilateral relationships between partners have been brokered

6. WHITE PAPERS AND ARTICLES.

Specific use cases written up.

7. CONFERENCES

Demos, Keynotes, booths

8. TALENT ACQUISITION

A number of FDL researchers have been offered roles post FDL

The FDL program lead by SETI in collaboration with NASA has 

become a powerful catalyst for innovation in the areas of Space 

Technology, Space Weather and Astronaut Health. With this 

partnership, researchers, developers, and data scientists have 

the opportunity to access IBM’s most advanced Cognitive 

System (Power AI) to revolutionize AI innovation and solve the 

challenges of tomorrow. Also via the partnership with the FDL 

program lead by SETI, IBM gains valuable insight into next 

generation AI requirements so that we can advance our AI 

services and offerings.  

Mac Devine (IBM Fellow) & Naeem Altaf (IBM 

Distinguished Engineer, CTO Space Tech)

MODEL (1) A public / private partnership 





NASA FRONTIER DEVELOPMENT 
LAB - FORMULA

Late-stage Phd / 

POST DOC in space sciences 

and data sciences 

Challenges which have a 

SPACE INDUSTRY 

STAKEHOLER 

strong narrative

and LOTS OF DATA

Commercial sector 

and academic partners

with DEEP AI and data 

capabilities or subject 

area interest. 

A culture

of ‘anything is

possible ‘

RESEARCH 
TALENT

CHALLENGE 
+ DATA

CAPITAL 
+ CAPACITY



https://vimeo.com/362856162

https://vimeo.com/362856096

https://vimeo.com/362856096

https://vimeo.com/362856162
https://vimeo.com/362856096
https://vimeo.com/362856096

