

EXPLORE SOLAR SYSTEM&BEYOND

Astrophysics Sounding Rocket Missions Update

Thomas Hams POC for Sounding Rockets in APD and PS for Balloon Program Astrophysics Division, Science Mission Directorate

Astrophysics Advisory Committee October 19, 2020

Suborbital Programs Low-Cost Rapid Access to Space

In addition to yielding science results, suborbital investigations are also critical in maturing new technologies for future space missions and developing NASA future workforce.

PI led effort,

- PI is in full control of the mission from proposal, instrument development, launch, data analysis, to publication.
- NASA is in control of the platform and launch operations

Suborbital payloads are Microcosm of large-scale Missions

 Students fully engaged in entire mission lifecycle within grad school tenure Define Science Questions Science Requirements Flowdown to Technical Requirements Design and Fabrication Testing, Integration, and Calibration Experiment/Payload Staging, Launch, Recovery, Data Analysis and Presentation

Acceptance of Appropriate Risk and Risk Mitigation

 Value lies in building the instrument and the carrying out the mission Suborbital program is operated under NPR 7120.8 New Science is defined. Technology Readiness is raised to Flight Level (TRL-7). Risk of failure is accepted in low cost environment. Lessons are learned. Systems are exercised prior to deployment on more advanced missions Proof of Science and Technical Concepts

Sounding Rocket Program Office

Heliophysics Division manages the Sounding Rocket Program for all NASA.

The Sounding Rocket Program Office at WFF (Code 810) provides implementation:

Led by Giovanni Rosanova

Day-to-day operation of the Sounding Rocket Program

- Management/Oversee of the Contractor (NSROC III)
- Safety and Mission Assurance (Range, Termination, recovery)

SRPO manages technologies/capabilities development

- Higher Data Rate Telemetry
- Water Recovery
- Higher Performance Vehicles 650-700 seconds above 150 km
- Sub-Payload Technology
- Component and sub-system miniaturization and modernization

SRPO provides reimbursable rocket launch services outside of their core missions, which is SMD science, education, and SRP technology development.

- ~10 flights/year SMD Science (Heliospheric, Solar, Astro, Planetary)
- ~3-4 flight/year SRPO Education + Technology Development
- ~1-4 flight/year Reimbursable flights outside of the Core Mission above

I'm the Sounding Rocket Program Point of Contact within Astrophysics; Valerie Connaughton and Michael R Garcia are the Technical Officers for the High Energy and UV/Visible Portfolios, respectively.

Sounding Rocket Launch Locations

Astrophysics Sounding Rocket Manifest

MISSION 02-04	EXPERIMENTER	PROJECT	RANGE	DATE (ET)	DISCIPLINE				
36.323 UG	FRANCE	CHESS	WSMR	2017-06-27 00:10:00 S S S S	UV/OPTICAL				
36.311 UG	GREEN	DEUCE	WSMR	2017-10-30 05:00:00 S F – F	UV/OPTICAL				
36.329 UH	GALEAZZI	DXL	PFRR	2018-01-19 07:17:00 S S S F	HIGH ENERGY				
36.330 UH	MCENTAFFER	WRX-R	KWAJ	2018-04-04 06:40:00 S S S S	HIGH ENERGY				
36.333 UG	FRANCE	CHESS	KWAJ	2018-04-16 5:16:47 S S S S	UV/OPTICAL				
36.245 UH	FIGUEROA	MICRO-X	WSMR	2018-07-23 02:00:00 S F S F	HIGH ENERGY				
36.331 UG	GREEN	DEUCE	WSMR	2018-12-18 02:46:00 S S S S	UV/OPTICAL				
36.346 UG	FRANCE	SISTINE	WSMR	2019-08-11 02:07:00 S S S S	UV/OPTICAL				
36.343 GG	NUTH	DUST-1	WSMR	2019-10-07 11:00:00 S S S S	LAB ASTRO				
36.352 UG	MCCANDLISS	FORTIS	WSMR	2019-10-28 00:30:00 S S S S	UV/OPTICAL				
36.365 GG	NUTH	DUST-2	WSMR	2020-09-08 14:00:00 S S S S	LAB ASTRO				
36.368 UH	GREEN	DEUCE	WSMR	2020-11-02	UV/OPTICAL				
36.281 UG	ZEMCOV	CIBER-2	WSMR	2021-02-15	UV/OPTICAL				
36.347 UH	MCCAMMON	XQC	AUS	2021-06-28	HIGH ENERGY				
36.367 UH	MCENTAFFER	tREXS	WSMR	2021-07-01	HIGH ENERGY				
36.339 UG	FRANCE	SISTINE	AUS	2021-07-04	UV/OPTICAL				
36.350 UG	GREEN	DEUCE	AUS	2021-07-14	UV/OPTICAL				
36.355 UH	FIGUEROA	MICRO-X	WSMR	2021-11-01	HIGH ENERGY				
36.363 UH	GALEAZZI	DXL-3	WFF	2021-12-06	HIGH ENERGY				
36.298 UH	MCENTAFFER	OGRE	PFRR	2022-10-24	HIGH ENERGY				

DUST Mission

<u>Determining Unknown yet Significant Traits is a Laboratory Astrophysics investigation</u> studying dust grain formation. The Sounding Rocket flight provides the microgravity study environment for this sample return mission.

Led by PI Joseph Nuth, GSFC in collaboration with Hokkaido University.

The gas-solid phase change is unstable at first due to the surface energy of the clusters which must grow large enough to be dominated by internal energy before they grow into dust grains.

Theory assumes that every SiO colliding with an unstable cluster sticks and that every SiO that strikes a stable cluster also sticks and contributes to the growing dust grain.

In practice these processes are much less efficient by several orders of magnitude.

Objectives of the DUST Payloads

- Use the Interferometer experiments (see next slide) to measure the temperature and pressure at which SiO, Fe-SiO and Mg-SiO nucleate.
- Use the IR Spectrometer experiments to measure the spectrum of freshly condensed amorphous silica, iron silicate and magnesium silicate dust.
- Based on Interferometer data and using Classical Nucleation Theory, calculate the efficiency of cluster growth for unstable clusters.
- Based on the partial pressure of condensates, gas temperature, time and measured particle size distribution, calculate the dust growth efficiency.
- Based on the number density of nucleated dust grains, available time and size of dust aggregates, calculate the aggregation efficiency.
- Determine the effect of background gas [Ar, Ar+O2, Ar+H2] on nucleation, growth, aggregation and particle morphology.

The DUST Payload

IR spectrometer x2 ₂ ≥ 28 kg, Ø405 mm, 335 mm in height

Interface circuit system 15 kg Ø405 mm 215 mm in height

Interferometer x4

17 kg ø405 mm 125 mm in height

Total: 138 kg Height: 1400 mm Diameter: 405 mm without skin and cables

IFC2 FeSiO Nucleation

(1) Visual imageof the hotfilament anddust nucleation.

Time series of visual images along the white line (1).

TEM Images of IFC2 FeSiO

TEM Images

Chemical Compositions

Electron Diffraction Patterns

TEM – Transition Electron Microscope

DUST Analysis

The DUST-1 payload arrived in Hokkaido in late December 2019.

TEM analysis of particles began January 2020.

A Science Team meeting in February 2020 resulted in this poster for the LPSC.

COVID shut down Hokkaido University.

Upon being allowed back in the laboratory the JAXA team worked to refurbish the payload in order to support launch of DUST-2.

DUST-2 successfully launched on 7 September 2020, was recovered and was shipped back to JAXA on September 15, 2020.

Once in Japan, full data analysis will begin.

Equatorial Launch Australia (ELA)

Timing of the APD Australia Campaign

Sounding Rocket Program Office (SRPO) is working with the commercial Equatorial Launch Australia (ELA) site. The plan is to have three (3) payloads launched in the June/July of 2021, which is the maximum number of science teams that can see their targets in a narrow 3-week window.

MW Center:	McCammon
NGC796:	McCandliss
A Cen B:	France, Green
Vela SNR:	McEntaffler
(PI in high lighted above	can see prime science target in the June/July time frame)

SRPO anticipates to have an Australia Sounding Rocket campaign every 3 years.

Recently a second commercial launch site further south is presently being explored of potential future use APD Sounding Rocket.

Backup Slides

Suborbital Platforms Overview

Sounding Rockets

- Exoatmospheric > 100 km
- Flight duration of up to 20 min at altitude
 Payload Masses typically 500 kg
- Mature payload sub-systems provided by the SRP (Skins, Doors, TM, Pointing, Guidance, Recovery)
- Fine pointed standard capability < 1"
- Science Disciplines: X-ray, EUV, UV, IR
- Recoverable/re-flyable

Balloons Payloads

- Float altitude 34 km (super pressure) to 39 km (conventional)
 Float time of avg 21 days (conventional) and 60-100 days (super pressure)
- Payload Masses up to 1000 kg (super pressure) to 3600 kg (conventional)
- Experimenter provides gondola
- Fine pointing ~1" is available (WASP)
- Science Disciplines: Particle Astrophysics, γ -ray, hard X-ray, 2100 ± 100 Å window far-IR, sub-mm
- Recoverable/re-flyable

Balloon Program

Balloon Program COVID Impact Timeline

Wanaka, NZ

~ 02/21/20 COSI science team deploys

03/14/20 BPO decision to cancel the Wanaka 2020 Campaign and redeploy teams.

Palestine, TX

04/08/20 BPO decision to move the payload (PIPER) from Palestine to the Ft. Sumner Campaign.

Fort Sumner, NM

For all but one payload (PIPER), the PI have withdrawn from Ft Sumner campaign.

07/09/20 BPO decision to cancel the Ft. Sumner campaign (Nevada the recovery side for Ft. Sumner balloon launches was at the peak of their COVID outbreak).

McMurdo, Antarctica

06/21/20 NSF informed NASA the due to COVID-19 they can not support a 20/21 LBD campaign.

FY20 Balloon Program Manifest

Mission	Discipline	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Fort Sumner, New Mexico	Fall '19												
Toon/JPL-Remote/Bailey/VATech/GLO	Upper Atmosphere	Success											
Kogut/GSFC/PIPER	IR-Submillimeter	Suc	cess										
Young/SwRI/THAI-SPICE (Hand Launch)	UV/Visible	🍐 Sı	iccess										
Tang/JPL/RECKTANGLE (Hand Launch)	IR-Submillimeter	Success											
Livesey/JPL/SWITCH (Hand Launch)	IIP/Upper Atmosphere	♦ S	Successful Ground Test										
McMurdo, Antarctica	Winter '19												
Rauch/WUSTL/SuperTIGER	Cosmic Ray/Particle			Success									
Devlin/UPENN/BLASTPOL	Gamma Ray/X-Ray				Launch Success with Anomaly / Science Compor				Componer	t Failure			
Salter/CSBF/TRAVALB	Test Flight			First Flight Aborted due to Balloon Anomaly, Second Launch Succe							ı Success		
Wanaka, New Zealand	Spring '20	Campaign cancelled by Program following coronavirus outbreak.											
SPB Test/Boggs/UCSD/COSI	Test Flight/COSI (PB)			Delayed	l by Program due to COVID-19								
Salter/CSBF/TRAVALA	Test Flight				Cancelled by Program 🚫 🚫								
Palestine, Texas	Campaign cancelled by Program due to CSBF closure due to COVID-19.												
Kogut/GSFC/BOBCAT	IR-Submillimeter				Delayed by Program due to COVID-19								
Kogut/GSFC/PIPER	IR-Submillimeter						Delayed by Program due to COVID-19						
Fort Sumner, New Mexico	Fall '20	Campaign cancelled by Program due to COVID-19.											
Field/CSBF/CSBF Test Flight-I/II	Test Flight				Delayed by BPO due to COVID-19 ≬ ≬							$\diamond \diamond$	
Kogut/GSFC/BOBCAT-II/III	IR-Submillimeter	BOBCAT-II delayed by BPO and BOBCAT-III delayed by Principal Investigator due to COVID-19								19 👌 💧			
Kogut/GSFC/PIPER	IR-Submillimeter				Delayed by BPO due to COVID-19								
Tang/JPL/WHATSUP (Hand Launch)	Planetary Sciences				Delayed by Principal Investigator due to COVID-							0VID-19 🕻	
Bailey/VATech/GLO	Upper Atmosphere				Delayed by Principal Investigator due to COVID-19							9 🚫	
Bloser/LANL/LTT (Hand Launch)	Gamma Ray				Delayed by Principal Investigator due to COVID-19							•	
Chakrabarti/UMASS/PICTURE-C	UV/Visible						Dela	yed by P	rincipal I	nvestiga	tor due to	COVID	19 🔷
Martin/CalTech/FIREBall-2	UV/Visible			Delayed by Principal Investigator due to COV				to COV	ID-19 🔷				
Young/SwRI/THAI-SPICE	UV/Visible						Delayed b	y Princip	n 19 <i>Invest</i>	tigator di	ie to CO	VID-19 🔇	

FY21 Balloon Program Manifest

Mission	Discipline	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Wanaka, New Zealand	Spring '21												
Hall / BPO / SPB Test / Boggs / UCSD / COSI	Test Flight / COSI (PB)												
Fort Sumner, New Mexico	Spring '21												
Chakrabarti / UMASS / PICTURE-C	UV/Visible												
Kogut / GSFC / BOBCAT-21A/B	IR-Submillimeter								\diamond				
Kogut / GSFC / PIPER-21A	IR-Submillimeter												
Salter / CSBF / CSBF Test Flight	Test Flight												
Esrange, Sweden	Summer '21	Campaign to be held if New Zealand LDB campaign is cancelled due to COVID.											
Hall / BPO / SPB Test SN 07	Test Flight								\mathbf{Q}				
Roth / BPO / 60 MCF Test / Sample / MU / BOOMS	Test Flight / BOOMS (PB)												
Palestine, Texas	Summer '21			-	-							-	
Tang / JPL / WHATSUP	Solar System (H/L)									0			
Salter / CSBF / CSBF Test Flight	Test Flight												
Salter / CSBF / Test Flight / Jackson / UCSD / ASHI	Test Flight / ASHI (PB)												
Fort Sumner, New Mexico	Fall '21												
Salter / CSBF / CSBF Test Flight	Test Flight											$ $ \otimes .	
Stachnik / JPL / JPL-SLS	Upper Atmosphere											\Diamond	<u>.</u>
Kogut / GSFC / BOBCAT-21C/D	IR-Submillimeter												. 🔇
Martin / CalTech / FIREBall-2	UV / Visible												Q .
Toon / JPL / JPL-Remote	Upper Atmosphere												<u> </u>
Nowicki / LANL / LANL Test Flight	Gamma-Ray (H/L)												\diamond
Kogut / GSFC / PIPER-21B	IR-Submillimeter												\diamond
Guzik / LSU / HASP	Education Outreach												0
Boering / UCB / MATTADOR TF	Upper Atmosphere												`\
Young / SwRI / THAI-SPICE	UV / Visible												

Qualification of the Super-Pressure Balloon

Pre-COVID-19 plan was to conduct two qualification flights of the super-pressure balloon (SPB) design before GUSTO launches on an SPB from Antarctica in December 2021

• Spring 2020 and Spring 2021 from Wanaka NZ

The Spring 2020 balloon campaign was cancelled in March 2020 due to COVID-19 restrictions

Current plan is to conduct one qualification flight of the SPB

- Spring 2021 from Wanaka NZ, if possible within COVID-19 restrictions
- Summer 2021 from Sweden, if New Zealand campaign cannot be conducted; the thermal environment of a Sweden launch, where the Sun is not setting on the balloon, is similar to the initial GUSTO SPB Antarctica launch environment

The use of a zero-pressure balloon (ZPB) for GUSTO is being studied as a backup

- Preliminary meteorological studies indicate that there is a high probability that GUSTO would attain its threshold requirements if launched on a ZPB
- ZPBs have less restrictive weather conditions for launch, so there are more launch opportunities in Antarctica for a ZPB than a SPB

Sounding Rocket Program

DUST, PI Nuth

Determining Unknown yet Significant Traits DUST & DUST II Microgravity Sounding Rocket Payloads

A collaborative research project between NASA and JAXA through Goddard Space Flight Center and Hokkaido University DUST launched from White Sands Missile Range on 8 October 2019 DUST II launched from WSMR on 7 September 2020

Dust Formation: Going from Theory to Practice

surface

contribution

The gas-solid phase change is unstable at first due to the surface energy of the clusters which must grow large enough to be dominated by internal energy before they grow into dust grains.

(a)

(b)

∆G*

<u>Theory</u> assumes that every SiO colliding with an unstable cluster sticks and that every SiO that strikes a stable cluster also sticks and contributes to the growing dust grain. <u>In practice</u> these processes are much less efficient by several orders of magnitude.

Objectives of the DUST & DUST II Payloads

- Use the Interferometer experiments (see next slide) to measure the temperature and pressure at which SiO, Fe-SiO and Mg-SiO nucleate.
- Use the IR Spectrometer experiments to measure the spectrum of freshly condensed amorphous silica, iron silicate and magnesium silicate dust.
- Based on Interferometer data and using Classical Nucleation Theory, calculate the efficiency of cluster growth for unstable clusters.
- Based on the partial pressure of condensates, gas temperature, time and measured particle size distribution, calculate the dust growth efficiency.
- Based on the number density of nucleated dust grains, available time and size of dust aggregates, calculate the aggregation efficiency.
- Determine the effect of background gas [Ar, Ar+O₂, Ar+H₂] on nucleation, growth, aggregation and particle morphology.

Schematic Diagram of the DUST Payload

IR spectrometer x2

~28 kg, 405 mm , 335 mm in height

B-B(1:2) C-C(1:2)

Interface circuit system 15 kg 405 mm¢ 215 mm in height

Interferometer x4

17 kg 405 mm¢ 125 mm in height

Stacking of the payload system

5 mm plate

Total: 138 kg Height: 1400 mm Diameter: 405 mmo without skin and cables

10 mm plate

Black Brant IX, 36.343: IFC2 FeSiO Nucleation

Black Brant IX 36-343: IFC2 FeSiO Nucleation

(1) Visual image of the hot filament and dust nucleation

Enlarged

T+299.24 35.7 mm

Time series of visual images along the white line (1)

Expanded time series of visual images along the white line in (1) showing dust nucleation

Black Brant IX, 36.343: IFC2 FeSiO Nucleation

Time-series images of the interference fringes. Horizontal and vertical axes correspond to the time and position from the evaporation source, respectively. The horizontal dotted lines show the evaporation source. The vertical broken white lines show the time of nucleation.

Black Brant IX, 36.343: IFC2 FeSiO Nucleation

Nucleation temperature and partial pressure of Fe-SiO vapor (left) and temperature profile around the evaporation source (right) obtained from the deviation of the interference fringes. The temperature profiles from bottom to top correspond to 0.5, 0.9, 1.3, 1.5, 1.7, 1.9, 2.1 and 2.4 s after the start of heating.

Black Brant IX: TEM images of IFC2 FeSiO

There are two different kinds of particles.

30 – 100 nm: Separation of Fe-silicate from amorphous silica

TEM Images

Chemical Compositions

- 100 nm Fe Si O
- ~10 nm: Amorphous iron-silicate

4A

Analysis of this data has just begun.

- The DUST payload arrived in Hokkaido in late December 2019.
- TEM analysis of particles began January 2020.
- A Science Team meeting in February 2020 resulted in this poster for the LPSC.
- COVID shut down Hokkaido University.
- Upon being allowed back in the laboratory the JAXA team worked to refurbish the payload in order to support launch of DUST II.
- DUST II successfully launched on 7 September 2020, was recovered and was shipped back to JAXA on September 15, 2020.
- Once in Japan, full data analysis will begin.

Microgravity Nucleation of Iron and Magnesium Silicates

Joseph A. Nuth III¹ (F-mail: joseph.a.nuth@nasa.gov), Yuki Kimura², Yuko Inatomi³, Frank T. Ferguson⁴

Introduction

Experimental studies of refractory nucleation (e.g., condensation of metals, metal oxides or silicates) in terrestrial laboratories but applied to astrophysical environments have been criticized due to the potential for convection or other gravitational effects to distort the results. Indeed, high temperatures required for evaporation of iron, SiO or even magnesium metal (2750K) do cause significant convective currents that confine the vapors to fast moving cylinders above crucibles that are surrounded by even more rapidly moving background gases (such as H-He, Ar, etc.). The situation is more complex for two or more refractory vapors. Modeling mixing in such systems is difficult, making the true composition of the gas phase uncertain.

We report here the results of a series of nucleation experiments for iron silicates, magnesium silicates and silica obtained during a sounding rocket flight on October 7, 2019. The rocket launched from the White Sands Missile Range, Preliminary data examination shows that the particle sizes and morphology appear identical to materials from

Experimental Description

Magnesium silicate, iron silicate and silica coatings were deposited onto tantalum wires via the sol-gel process. The tantalum wires were heated to -2000K in atmospheres consisting of 38,000 Pa Ar plus 2000 Pa O2 or in 40,000 Pa of pure Ar at gravitational accelerations of less than 104 g. Refractory vapors diffused through the background gas, condensing in a ring around the filament (Figure 1). The temperature and time of nucleation are recorded by a double wavelength Machinterferometer using red and green lasers. A schematic diagram of the experimental chamber is shown in Figure 2. From the experimental data, we know both the concentration of the condensable vapor and its temperature [2]. We also know the total gas pressure and the time of nucleation. After payload recovery, the sizes and ompositions of the particles collected during the experiment (see Figure 3) were measured via TEM at Hokkaido University.

gure 2. Schematic drawing of the double wavelength Mach-Zehnder type interferometer. The 70 mm long evaporation source is parallel to the ptical path in the chamber. The particle collector is "under" the

the cover during the experiment opens new TEM grids. The uncovered

Figure 1. An image of the dust ring around the hot

silicates. The image was obtained at 128.53 s after

Figure 4. The smallest particles collected from the

5A

experiment typically represent the original condensates as they do not show evidence for fusion of two or more

Figure 5. This is an example of a set of much larger, compound parti

The image in 5A shows a compound particle (circled). An iron grain (left)

coalesced with a silica grain (right) that has absorbed several small iron

particles, 58 shows the iron-rich nature of the compound grain. Peaks C

ows the compositional distribution of the partially fused dus

and Cu are from carbon substrate and cupper TEM grid, respectively. 5C

launch at a total pressure of 49362 Pa

antalum filament following nucleation of magnesiur

Particle Morphologies

Figure 4 shows a TEM image of an FeSiO smoke. Most grains in this image are between 10 - 20 nm in diameter, are arraigned in the typical string of pearls" morphology and represent the original condensates Figure 5 shows evidence for both coagulation and grain fusion. Each of the morphologies in Figures 4 & 5 are seen in ground-based experiments

The smallest particles show amorphous signatures in their electron diffraction patterns and their elemental maps made using a STEM shows uniform atomic composition (Si/Fe ~2), which corresponds to that of the evaporation source. Larger compound particles are heterogeneous in both composition and crystallinity, yet their atomic composition is also similar (Si/Fe -2) to that of the evaporation source, suggesting that most particles formed from a vapor of uniform composition

The larger compound particles in Fig. 5 show crystalline signatures in their electron diffraction patterns. Strong contrast indicates more iron than silicon: weaker contrast indicates much less iron.

Formation of Compound FeSiO Particles

Different particle morphologies in Figure 5 are the result of secondb process after nucleation from the vapor phase. The larger compound particles were initially totally molten. During cooling, an iron-rich phase rystallized from the supercooled melt while the silicon-rich pha remained amorphous. There are two possible formation scenarios for this initial particle: melting due to heating by the hot evaporation source or natural separation due to the volume differences of the particles arger particles cool more slowly due to a smaller surface volume rati In addition, larger particles have a greater probability of internal, liquid to solid nucleation, which is linearly dependent on volume. Analysis of the size distribution should yield the formation route; a double peak supports the first scenario while a monotonic size distribution support b monond

Figure 6. A. The image on the left shows particles condensed from an SIO vapor in pure Ar. Note the very uniform particle size distribution, "head to tail" aggregation and significant level of grain fusion while still retaining distinct individual particles. B. The image on the right shows particles condensed from Mg + SiO vapor in an Ar + O₂ background gas. While MgSiO grains condensed in pure Ar (see C) look like the FeSiO grains in Figure 4, addition of Q₂ appears to increase the surface tension or decrease the meltin point (or both?) causing aggregates to form large "blobs." Although aggregates do not form spherical particles, boundaries between silica grain on the edges are blurred or erased. C. The image below shows particles condensed from Mg + SiO vapor in pure Ar. These grains resemble the FeSiO condensates formed in Ar + O. [l'igure 4]. Scale bars in A & B are 100 nm, but is 200 nm in C.

Astrophysics Research and Analysis Program under WBS 399131.02.06.04.72, and support from the NSROC program at both Walloos Island in Virginia and at the White Sands Missile Range in New Mexico, YK gratefully acknowledges the support by a Grant-In-Ald for Scientific Research (S) from KAKENH (15H05731) and ISAS Small Science Programs of JAXA.

Figure 3. An image of the dust collector in each experiment. Moving grid (bottom, left) collects grains throughout the experiment.

DEUCE/INFUSE, PI Green

The DEUCE and INFUSE Sounding **Rocket Program** at the University of Colorado Boulder

Principal Investigator: James Green

This program is funded from April 1, 2019 – March 31, 2023 and is a continuation on decades of UV sounding rocket programs at CU Boulder. This is a separate program from the program led by Dr. Kevin France at CU Boulder.

DEUCE and INFUSE

The program has two separate payloads:

The Dual Channel Extreme Ultraviolet Continuum Payload (DEUCE) and The Integral Field Ultraviolet Spectroscopic Experiment (INFUSE)

DEUCE is complete, has flown twice (in 2017 and 2018) and is scheduled to launch in November 2020 from WSMR and in July 2021 from Australia.

INFUSE is in development with a target launch date of early 2023.

James Green Principal Investigator

Nick Erickson

n Emily Witt Alex Haughton Graduate Students

Zavna Sheikh Matt Lehman* Anika Levy Undergraduate Students (*graduated during program)

The DEUCE/INFUSE Team

Brian Fleming Kevin France Colorado Co-Investigators

Dmitry Vorobiev Scientific Collaborator

Dana Chafetz (ME) Jack Williams (EE) Alex Sico (Tech) Mike Kaiser (tech) Engineers/Technicians

lonizing photons from hot stars must escape from their galaxies in order to ionize hydrogen in the intergalactic medium. Current models assume that only the hottest stars (O stars) can provide the flux needed to maintain the ionization. However, these models also predict that their ionizing radiation will rarely escape from their galaxies.

One possible solution is that longer-lived, but slightly cooler B stars might provide the necessary flux, after the O stars clear a pathway to the intergalactic medium

To test this model, we need to observe one or more B stars and measure their ionizing output. However, ionizing radiation is readily absorbed by the interstellar medium of our own galaxy, and there are only 2 B stars (and no O stars) for which this measurement can be made: Epsilon and Beta **Canis Majoris**

DEUCE Technology Development

DUECE utilizes a novel large format MCP detector (200mm X 200 mm) utilizing ALD (Atomic Layer Deposition) boro-silicate plates. The detector performed as expected on both flights. This is the technology commonly assumed to be incorporated in future UV large missions, e.g. flagship and/or probe.

We are also looking to incorporate an etched silicon diffraction grating for the Australia flight.

DEUCE Launches

Fall 2017: Mission failure due to failure in attitude control system. Target was not acquired, and no scientific data was obtained.

Fall 2018: Mission Success, spectrum of Epsilon CMa obtained. (see next slide)

Fall 2020: Planned observation of Beta CMa.

Summer 2021 (Australia): planned observation of Alpha Centauri to assess the EUV radiation environment of any potential habitable planet in the system.

Epsilon CMa, now complete in the ionizing UV

Important Transition and Coronal region lines – important for habitability models!

INFUSE Science and Technology

INFUSE will be the first integral field spectrograph in the vacuum ultraviolet. Such capability is essential to support the science objectives on the next generation of UV missions.

INFUSE will observe the Cygnus loop, a nearby supernova remnant, to study the impact of massive stars on their galactic environments by quantifying the shock-velocity distribution of the remnant. Such a study is infeasible with point source or long slit UV spectroscopy (e.g. COS/STIS)

INFUSE IMAGE SLICING pupil_array The slicer cube is a stack of flat, slit-shaped primary mirror mirrors, each angled to reflect slicer side view to a different pupil mirror The INFUSE image slicer dissects a two-dimensional image into a series of reflec-tive slits, each of which produces a spectrogram at an independent location on the detector. pupil mirrors fig. 8

45

to grating

slicer cube

CIBER-2, PI Zemcov

The Cosmic Infrared Background Experiment (CIBER-2)

RIT

Co-I Jamie Bock Yun-Ting Cheng Viktor Hristov Dr. Phil Korngut Richard Feder-Staehle

PI Michael Zemcov

Dr. Priya Bangale

Chi Nguyen

Mike Ortiz

Co-l <u>Asantha</u> Cooray Derek Wilson-Diaz

Over the past decade, the CIBER program has produced 6 PhD theses, 4 MS theses, and involved over two dozen undergraduate students.

Active Members

Students in **Bold**, Postdocs in *Italic*

R A L For set

Co-l Shuji Matsuura Ryo Hashimoto Arisa Kida Dr. Kei Sano Hiroko Suzuki Koji Takimoto

Co-I Kohji Tsumura

Co-I <u>Dae Hee</u> Lee Dr. Won <u>Kee</u> Park CIBER 2

CIBER Science and Instrumentation Papers

	Published					
CIBER-2	Nguyen <i>et al.</i> 2018, <i>SPIE</i> , 10698, 4	Instrument	CIBER-2 Integration Update			
	Park et al. 2018, SPIE, 10698, 49	Instrument	CIBER-2 Warm Electronics & Data Storage			
	Shirahata et al. 2016, SPIE, 9904, 4	Instrument	CIBER-2 Optics			
	Lanz et al. 2014, SPIE, 9143, 3	Instrument	CIBER-2 Design			
	In Preparation					
	Korngut et al.	Scientific	ZL Intensity estimates from Fraunhofer absorption lines.			
	Cheng et al.	Scientific	A 4th flight cross-correlation analysis.			
	Published	-				
	Matsuura et al. 2017, ApJ, 839, 7	Scientific	The EM spectrum of the near-IR EBL from absolute measurements.			
	Kim et al. 2016, ApJ, 153, 84	Scientific	Spectral (0.8-1.6 µm) catalog of bright stars in standard cosmology fields.			
	Arai et al. 2015, ApJ 806, 69	Scientific	First optical to IR spectral measurement of DGL in the diffuse IGM.			
4	Zemcov et al. 2014, Science 346, 732	Scientific	The origin of near-IR extragalactic background light anisotropy.			
ER	Korngut et al. 2013, ApJS, 207, 34	Instrument	Narrow Band Spectrometer design and flight performance.			
CB	Tsumura <i>et al.</i> 2013, ApJS, 207, 33	Instrument	Low Resolution Spectrometer design and flight performance.			
	Bock et al. 2013, ApJS, 207, 32	Instrument	Imager design and flight performance.			
	Zemcov et al. 2013, ApJS, 207, 31	Instrument	Payload design and flight performance.			
	Lee et al. 2010, JASS, 27, 401	Instrument	CIBER detector properties.			
	Tsumura <i>et al.</i> 2010, ApJ, 719, 394	Scientific	First detection of 0.9 μ m silicate absorption in the ZL spectrum.			
	Zemcov et al. 2010, SPIE, 7735, 1	Instrument	First flight performance.			
	Lee et al. 2007, PKAS, 22, 169	Instrument	CIBER instrument calibration.			
	Bock et al. 2006, NAR, 50, 215	Instrument	CIBER experiment description paper.			
	Cooray et al. 2004, ApJ, 606, 611	Scientific	First star signature in infrared EBL anisotropy, science concept paper.			

etc. conferences, workshops,

C 1 B E R 2

CIBER-2 Science

- Fluctuations in the near-IR background measured at 1.1 and 1.6 µm are unexpectedly bright (Zemcov et al 2014).
- This signal is strongly correlated with *Spitzer*-IRAC measurements.
- These measurements call for some new, significant component of the cosmic near-IR energy budget.
- But what do the fluctuations do at shorter wavelengths?

CIBER-2 improves on CIBER-1 with 6 bands and ~5x greater AΩ to maximizes sensitivity to angular scales of interest.

Aperture	28.5						cm
Pixel Size	4			arcsec			
FOV	1.61°x2.2° for imager bands, 0.4° for LVF						degrees
Array	3x 2048 ² H2RG						
χ	600	800 ┥ •	1030	1280	1550	1850	μm
v I _v (sky)	525	450	400	380	320	224	nW m ⁻² sr ⁻¹
δν Ι _ν (1 σ /pix)	38	45	34	31	25	23	nW m ⁻² sr ⁻¹
δ F _v (3 σ)	21.5	21.1	21.0	21.0	21.0	20.9	Vega mag

CIBER-2 Recent History and Schedule

	Task	Location	Schedule
	Experiment System Integration	Caltech	01/2019 - 05/2019
	Payload Integration	WFF	06/2019 - 07/2019
	Institutional Handoff	$Caltech \to RIT$	08/2019
	Pre-flight Calibration and Test	RIT	09/2019 -12/2019
Cancelled	Flight Qualification (Passed)	WFF	01/2020 - 02/2020
Due to	Flight_Deployment		03/2020 - 04/2020
Pandemic	Currently Scheduled Launch	WSMR	04:10 MST 2/15/2021

We plan for ~4 flights of CIBER-2 over the next 5 years.

CIBER Informs the Development of <u>SPHERE</u>^x

Designed to Explore

The Origin of the Universe
The Origin and History of Galaxies
The Origin of Water in Planetary Systems

The First All-Sky Near-IR Spectral Survey A Rich LegacyArchive for the Astronomy Community with 100s of Millions of Stars and Galaxies

Low-Risk Implementation
 Single Observing Mode
 No Moving Parts
 Large Technical & Scientific Margins

XQC, PI McCammon

Studying Diffuse Hot Gas in the Universe

Dan McCammon Physics Dept., University of Wisconsin

High Energy PI meeting — 20 Nov 2019

Physics Dept. — University of Wisconsin

<u>Most</u> of the normal matter in the Universe is at temperatures *T* ≥ 10⁶ K →it (mostly) only shows up in X-rays ISM – CGM – IGM

Bad: Cools very slowly, so faint and hard to observe.
Good: At most common temperatures, emission is all in lines — lots of plasma diagnostics.
Problem: Extended source can't use gratings for emission spectroscopy. Need high resolution detectors.

High Energy PI meeting -20 Nov 2019

W

WRXR, tREXS, OGRE, PI McEntaffer

The McEntaffer Group (early 2020)

Acknowledgements

• Collaborators:

- Pennsylvania State University
 - Ted Schultz, James Tutt, Fabien Grise, Jake McCoy, Drew Miles, Ben Donovan, Ningxiao Zhang, Ross McCurdy; Dave Burrows, Abe Falcone, Mitch Wages, Sam Hull, Evan Bray, Tanmoy Chattopadhyay, the Nanofabrication Lab of the Materials Research Institute
- NASA Goddard Space Flight Center
 - Will Zhang, Ryan McClelland, Kai-Wing Chan, Timo Saha, Raul Riveros, Michael Biskach
- Czech Technical University
 - Ladislav Pina, Adolf Inneman, Vladimir Daniel, Tomas Baca
- The Open University
 - Andrew Holland, Matthew Soman, Matthew Lewis
- University of Iowa Casey DeRoo
- University of Colorado, Boulder Kevin France, Brian Fleming, Nick Kruczek
- Johns Hopkins University Stephan McCandliss
- Southwest Research Institute Matt Beasley
- XCAM Karen Holland
- Dynamic Imaging Analytics Neil Murray
- NASA Sounding Rocket Program Office and Orbital contract NSROC
- Funding:
 - NASA grants: 80NSSC18K0282, NNX17AD87G, NNX17AD19G, NNX17AF98G, NNX12AF23G, NNX17AC88G

Water Recovery X-ray (WRX) Rocket

<u>A Technology Development payload (launched 4/4/18)</u>

- First use of an X-ray hybrid CMOS detector^{*}, similar to those proposed for Lynx
- First flight of aligned array of large-format, low-profile, high-performance X-ray reflection gratings^{*} produced via nanofabrication
- Designed to test water-recovery tech for upcoming OGRE mission
- First recovered payload at Kwajalein Missile Range
- First astronomical payload at Kwaj (9.4° N Lat)
- First sealed NASA payload section
- Detected astrophysical X-rays, although at low significance

*Both critical NASA technologies co-funded by SAT/APRA

The WRXR team

- Main payload team
 - Dr. Randall L. McEntaffer (PI), Dr. James Tutt (Asst. Research Prof.), Mr. Ted Schultz (Lead Engineer), Mr. Drew Miles (Lead Grad Student), Mr. Benjamin Donovan (Junior Grad Student), Mr. Christopher Hillman (Undergrad Asst.), Bailey Myers (Undergrad Asst.), Mr. Daniel <u>Yastishock</u> (Undergrad. Eng.)
- Nanofabrication team
 - Dr. Chad Eichfeld (Nanofab Lab Director), Dr. Fabien Grisé (Group Nanofab Lead), Mr. Jake McCoy (Grad Student), Ningxiao Zhang (Grad Student)
- WRXR HCD team
 - Dr. Abe Falcone (Detector Lead), Dr. David Burrows (Detector Co-Lead), Dr. Tyler Anderson (Electrical Engineer), Dr. Tanmoy Chattopadhyay (Postdoc), Mr. Mitchell Wages (Research Tech.), Mr. Samuel Hull (Grad Student Detector Lead), Mr. Evan Bray (Junior Grad Student), Ms. Maria <u>McQuaide</u> (Undergrad Engineer)
- Publications
 - Miles, D. M., et al., "Water Recovery X-ray Rocket grating spectrometer," JATIS, 5(4), 044006, 2019.
 - Wages, M., et al., "Flight camera package design, calibration, and performance for the Water Recovery X-ray Rocket mission," Proc. SPIE, 11118, 111180D, 2019.
 - Tutt, J. H., McEntaffer, R. L., Miles, D. M., Donovan, B. D., & Hillman, C., "Grating Alignment for the Water Recovery X-ray Rocket (WRXR)," Journal of Astronomical Instrumentation, 8(3), 1950009, 2019.

Science payload – Water Recovery X-ray Rocket (WRX)

the Rocket for Extended X-ray Spectroscopy (tREXS)

- Launch Q3/Q4 2021 from WSMR
- Spectrally resolve the soft X-ray background
 - High galactic latitude enhancements
 - Draco (REXS-1) and Eridanus (REXS-2)
 - Drive toward resolving OVII triplet
 - Line-sensitive not broadband
 - Do trends in the soft x-ray background hold true at smaller spatial scales with good spectral resolution?
 - Spatial confusion abounds...

tREXS status

- tREXS has passed the Requirements Definition Meeting and is approaching Design Review
- Currently on schedule for a launch in the second half of 2021

Off-plane Grating Rocket Experiment (OGRE)

Launch window opens in Nov 2022 from Poker Flats Research Range

Science Goals:

- High resolution spectrum of Capella (G8 III and G1 III giant star binary)
- Line emission dominated by Fe XVII, Fe XVIII, and OVIII
- R > 2000, 8-42 Å; peaks at R ~ 3000
- A_{eff} > 20 cm², 8-42 Å; >75 cm², 9.5-26 Å
- F = 3.5 m

Angstroms

Simulated OGRE observation of Capella. Inset: bottom – Chandra observation of Capella; top – OGRE observation of the same energy range showing less line blending and tighter diagnostic constraints.

OGRE Technology Development

 OGRE is a mini-Lynx: polished Si optics + high-performance reflection gratings + EMCCDs for high resolution grating spectroscopy

Si mirrors from GSFC

Grating modules from PSU

EMCCD camera from XCAM/OU (UK)

OGRE status

- OGRE mirrors and gratings currently undergoing fabrication
 - Initial mirrors and gratings have tested within OGRE specs
- Design currently concentrating on grating to optic interface and alignment
- Flight camera in production with delivery early next year

McEntaffer group rocket publications

Rogers, T., McEntaffer, R. L., McCoy, J., Miles, D., Schultz, T., & Tutt, J., "Induced X-ray Fluorescence as a Source of Background Signal for High-Voltage Space-Based Detectors," Experimental Astronomy, https://doi.org/10.1007/s10686-019-09649-5, 2020.

Miles, D. M., Hull, S. V., Schultz, T. B., Tutt, J. H., Wages, M., Donovan, B. D., McEntaffer, R. L., Falcone, A. D., Anderson, T., Bray, E., Burrows, D. N., Chattopadhyay, T., Eichfeld, C. M., Empson, N., Grisé, F., Hillman, C. R., McCoy, J. A., McQuaide, M., Myers, B. J., Steiner, T., Verschuuren, M. A., Yastishock, D., & Zhang, N., "Water Recovery X-ray Rocket grating spectrometer," Journal of Astronomical Telescopes Instruments and Systems, 5, 044006, 11 pages, 2019.

Tutt, J. H., McEntaffer, R. L., Miles, D. M., Donovan, B. D., and Hillman, C., "Grating Alignment for the Water Recovery X-ray Rocket (WRXR)," Journal of Astronomical Instrumentation," 8, 1950009, 15 pages, 2019.

Miles, D. M., McEntaffer, R. L., Tutt, J. H., Anderson, T., Weiss, M., Baker, L., Weston, J., O'Meara, B., McCurdy, R. C., Myers, B., & Grisé, F. "An introduction to the Rockets for Extended-source X-ray Spectroscopy," Proceedings of the SPIE, 11118, 111180B, 8 pages, 2019.

Donovan, B. D., McEntaffer, R. L., Tutt, J. H., O'Meara, B. C., Grisé, F., Allgood, K. A., Biskach, M. P., Chan, K-W, Hlinka, M., Kearney, J. D., Mazzarella, J. R., McClelland, R. S., Numata, A., Riveros, R. E., Saha, T. T., Solly, P. M., Zhang, W. W., Holland, A. D., Lewis, M. R., Soman, M. R., & Holland, K., "A Comprehensive Line Spread Function Error Budget for the Off-Plane Grating Rocket Experiment," Proceedings of the SPIE, 11119, 1111912, 17 pages, 2019.

Donovan, B. D., McEntaffer, R. L., Tutt, J. H., O'Meara, B. C., Grisé, F., Allgood, K. A., Biskach, M. P., Chan, K-W, Hlinka, M., Kearney, J. D., Mazzarella, J. R., McClelland, R. S., Numata, A., Riveros, R. E., Saha, T. T., Solly, P. M., Zhang, W. W., Holland, A. D., Lewis, M. R., Soman, M. R., & Holland, K., "An updated optical design of the off-plane grating rocket experiment," Proceedings of the SPIE, f1119, 1111912;147pages, 2019.

Tutt, J. H., Miles, D. M., McEntaffer, R. L., Anderson, T., Weiss, M., & O'Meara, B. C., "The focal plane camera for (REXS," Proceedings of the SPIE, 11118, 111180C, 12 pages, 2019.

Wages, M., Hull, S. V., Falcone, A. F., Anderson, T. B., McQuaide, M., Bray, E., Chattopadhyay, T., Burrows, D. N., Burtic, L., Miles, D. M., Tutt, J. H., Schultz, T. B., Donovan, B. D., Hillman, C. R., & Yastishock, D., "Flight Camera Package Design, Calibration, and Performance for the Water Recovery X-ray Rocket Mission," Proceedings of the SPIE, 11118, 1111800, 17 pages, 2019.

O'Meara, B. C., Donovan, B. D., Tutt, J. H., McEntaffer, R. L., Schultz, T., Allgood, K. A., Biskach, M. P., Chan, K-W, Kearney, J. D., Mazzarella, J. R., Riveros, R. E., Saha, T. T., Hlinka, M., Numata, A., Solly, P. M., Zhang, W. W., Soman, M. R., Holland, A. D., Lewis, M. R., Holland, K., & Murray, N. J. "The opto-mechanical design for the Off-plane Grating Rocket Experiment (OGRE)," Proceedings of the SPIE, 11100, 7110006, 11 pages, 2019.

Baca, T., Turecek, D., McEntaffer, R., & Filgas, R., "Rospix: modular software tool for automated data acquisitions of Timepix detectors on Robot Operating System," Journal of Instrumentation, 13, C11008, 1-6, 2018.

Miles, D. M., McEntaffer, R. L., Donovan, B. D., Tutt, J. H., Steiner, T., Hillman, C. R., McCoy, J. A., & Zhang, N., "Grating design for the Water Recovery X-ray Rocket," Proceedings of the SPIE, 10699, 106996K-1-8, 2018.

Tutt, J. H., McEntaffer, R. L., Donovan, B., Schultz, T. B., Biskach, M. P., Chan, K.-W., Kearney, J. D., Mazzarella, J. R., McClelland, R. S., Riveros, R. E., Saha, T. T., Hlinka, M., Zhang, W. W., Soman, M. R., Holland, A. D., Lewis, M. R., Holland, K., & Murray, N. J., "The Off-plane Grating Rocket Experiment (OGRE) system overview," Proceedings of the SPIE, 10699, 106996H-1-8, 2018.

Donovan, B. D., McEntaffer, R. L., Tutt, J. H., Schultz, T. B., Biskach, M. P., Chan, K.-W., Kearney, J. D., Mazzarella, J. R., McClelland, R. S., Riveros, R. E., Saha, T. T., Hlinka, M., Zhang, W. W., Soman, M. R., Holland, A. D., Lewis, M. R., Holland, K., & Murray, N. J., "Optical design of the Off-plane Grating Rocket Experiment," Proceedings of the SPIE, 10699, 106993U-1-8, 2018.

Lewis, M, M Soman, A Holland, D Lumb, James H. Tutt, Randall Lee McEntaffer, Ted Schultz, and Karen Holland, "The simulated spectrum of the OGRE X-ray EM-CCD camera system," Journal of Instrumentation, 12, C12020, 1-11, 2017.

Rogers, Thomas, Randall Lee McEntaffer (Co-Author), Ted Schultz, Jake McCoy, Drew Miles, and James H. Tutt, "Gaseous electron multiplier gain characteristics using low-pressure Ar/CO2," Experimental Astronomy, 43 (2), ISBN/ISSN #/Case #/DOI #: 10.1007/s10686-017-9531-8, 2017.

Miles, D., McEntaffer, R. L., Schultz, T. B., Donovan, B. D., Tutt, J. H., Yastishock, D., Steiner, T., Hillman, C. R., McCoy, J. A., Wages, M., Hull, S., Falcone, A., Burrows, D. N., Chattopadhyay, T., Anderson, T., & McCouaide, M., "An introduction to the water recovery x-ray rocket," Proceedings of the SPIE, 10397, 103970R-1-8, 2017

Daniel, V., Inneman, A., Pina, L., Zadrazil, V., Baca, T., Stehlikova, V., Nentvish, O., Urban, M., Marsikova, V., McEntaffer, R. L., Tutt, J. H., Schultz, T., "X-ray Lobster Eye all-sky monitor for rocket experiment," Proceedings of the SPIE, 10235, 1023503-1-7, 2017.

Baca, T., Platkevic, M., Jakubek, J., Inneman, A., Stehlikova, V., Urban, M., Nentvich, O., Blazek, M., McEntaffer, R., & Daniel, V, "Miniaturized X-ray telescope for VZLUSAT-1 nanosatellite with Timepix detector," Journal of Instrumentation, 11, C10007, 9 pages, 2016.

McCoy, J., Schultz, T., Tutt, J., Rogers, T., Miles, D., & McEntaffer, R. L., "A Primer for Telemetry Interfacing in Accordance with NASA Standards Using Low Cost FPGAs," Journal of Astronomical Instrumentation, 5, 1640002, 15 pages, 2016.

Lewis, M. R. F., Soman, M. R., Holland, A. D., Murray, N. J., Hall, D., Weatherill, D. P., Tutt, J. H., McEntaffer, R. L., DeRoo, C. T., Schultz, T. B., and Holland, K., "Development of the x-ray camera for the OGRE sub-orbital rocket," Proceedings of the SPIE, 9915, 991506, 9 pages, 2016.

Rogers, T., Schultz, T., McCoy, J., Miles, D., Tutt, J., McEntaffer, R., "First results from the OGRESS sounding rocket payload," Proceedings of the SPIE, 9601, 960104, 12 pages, 2015.

McCoy, J., Schultz, T., Tutt, J., Rogers, T., Miles, D., McEntaffer, R., "A primer for telemetry interfacing in accordance with NASA standards using low cost FPGAs," Proceedings of the SPIE, 9601, 960106, 12 pages, 2015.

Tutt, J. H., McEntaffer, R. L., DeRoo, C. T., Schultz, T., Rogers, T., Murray, N., Holland, A., Weatherill, D., Holland, K., Colebrook, D., Farn, D., "Technological developments of the OGRE focal plane array," Proceedings of the SPIE, 9601, 960105, 11 pages, 2015.

Tutt, J. H., McEntaffer, R. L., DeRoo, C., Schultz, T., Miles, D. M., Zhang, W., Murray, N. J., Holland, A. D., Cash, W., Rogers, T., O'Dell, S., Gaskin, J., Kolodziejczak, J., Evagora, A. M., Holland, K., & Colebrook, D., "Developments in the EM-CCD camera for OGRE," Proceedings of the SPIE, 9154, 91540E, 7 pages, 2014.

DeRoo, C., McEntaffer, R. L., Schultz, T., Zhang, W. W., Murray, N. J., O'Dell, S. L., & Cash, W., "Pushing the boundaries of x-ray grating spectroscopy in a suborbital rocket," Proceedings of the SPIE, 8861, 88611B, 11 pages, 2013.

Tutt, J. H., Holland, A. D., Murray, N. J., Hall, D. J., Endicott, J., McEntaffer, R. L., "The use of CCDs and EM-CCDs for future soft x-ray spectrometers," Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, Proceedings of the SPIE, 8443, 84430K, 10 pages, 2012.

CHESS, SISTINE, PI France

University of Colorado CHESS and SISTINE Rocket Payloads

Kevin France – University of Colorado APAC Slides – 23 Sept 2020
CHESS and SISTINE Rocket Payloads

- High-resolution spectroscopy of the local interstellar medium (CHESS)
 High-energy radiation environments in exoplanet habitable zones (SISTINE)
 - Hardware Development:
 - 1. UV/visible optical coatings
 - 2. UV Detectors
 - 3. Diffraction Grating Technology
 - Student, postdoctoral, and PI Training

The CHESS Payload 36.285, 36.297, 36.323, 36.333

Colorado High-resolution Echelle Stellar Spectrograph

COOL

ISM

HOT

ISM

CHESS uses hot (OB) stars as background sources to measure the composition, ionization state, and velocity structure in the local interstellar environment.

CHESS Technology Development: UV Gratings

Hoadley et al. 2014, 2016, 2020 France et al. 2016 Kruczek et al. 2017, 2018, 2019

CHESS instrument in Colorado lab

CHESS Echelle gratings:

E-beam lithograph, in collaboration with Penn State University

CHESS Echelle (PSU e-beam etching):

- Factor of ~2-3 higher groove efficiency than state-of-theart UV echelle gratings
- Incorporated into LUVOIR / LUMOS baseline; motivated dedicated SAT program (PI – Fleming)

CHESS Science Results

 H_2 rotational temperatures (T_{01}) systematically lower than previous results: blending of higher-J lines with R(1) absorption lines.

 \rightarrow Temperature of the diffuse ISM ~20 – 30% lower than canonical 77 K

CHESS Flight Data

Kruczek+ 2019

Kruczek+ 2019 Hoadley+ 2020

UV Coatings and Large-format Detectors for LUVOIR – Flight Demonstration on the SISTINE Rocket Payload

SISTINE Pathfinder Spectrograph:

--Instrument design leveraging additional reflection to control aberrations over field (high spectral and angular resolution)

Analogous design trades adopted on LUVOIR/LUMOS baseline design

Large format, photon-counting UV detectors.

Baselined for LUVOIR/LUMOS

UV Coatings and Large-format Detectors for LUVOIR – Flight Demonstration on the SISTINE Rocket Payload

SISTINE Pathfinder Spectrograph: --Al+eLiF coatings on shaped mirrors, up to 0.5m

--first time these coatings, baselined for LUVOIR, have been deposited on large (> 2") and shaped optics, tested as a full instrument

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

UV Coatings and Large-format Detectors for LUVOIR – Flight Demonstration on the SISTINE Rocket Payload

SISTINE Pathfinder Spectrograph: --<u>Al+eLiF</u> coatings on shaped mirrors, up to 0.5m

--first time these coatings, baselined for LUVOIR, have been deposited on large (> 2") and shaped optics

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

SISTINE Science Mission

36.339 UG / SISTINE-2 Summer 2021

A joint rocket campaign to obtain EUV+FUV radiation fields of representative exoplanet host stars at wavelength inaccessible to HST and X-ray observatories.

Object	Spectral Type	d (pc)	E(B-V)
α Cen A	G2V	1.33	0.71
α Cen B	K1V	1.26	0.88

•The UV radiation fields of exoplanet's host stars control the atmospheric heating/stability and photochemical structure of their atmospheres – including atmospheric retention and formation of 'biosignatures' (e.g., O₂, O₃, CO₂, CH₄)

Student Training in the Colorado Suborbital Program Pls:

Profs. Kevin France, Brian Fleming, Jim Green (PIs of CUTE, SPRITE cubesats, HST-COS, and numerous rocket missions)

Ph.D. and M.S. Students:

Arika Egan

Dr. Keri Hoadley

Crı

<u>Research</u> <u>Scientists</u>:

Dr. Ambily Suresh

Dr. Dmitry Vorobiev

Fernando Cruz-Aguirre

Nico Nell (AE)

Junior Engineers: Ted Schulz, Stefan Ulrich, Nick DeCicco

Emily Witt

Dr. Nick Kruczek

Student & Postdoctoral Training

FORTIS, PI McCandliss

Next Generation FORTIS*

*Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy PI: Stephan McCandliss, JHU

• **Objectives:**

- Demonstrate the scientific utility and feasibility of multi-object spectroscopy over wide angular fields in the far-UV.
- -First Science Investigation:
 - o Spectroscopy of Hot Star Clusters in galaxy M33
 - How does matter circulate from Disk to CGM?
- Other Investigations
 - o Blue Stragglers in Globular Clusters
 - o Low Metallicity Star Formation in Magellanic Bridge
 - o Shocks in SNe Remnants
 - Comets as Targets of Opportunity

• Key Challenges/Innovations:

- Pulsed Actuated Next Gen Microshutter Arrays(NGMSA)
- Low scatter 3D-printed baffles to trap geo-Lyman α
- Longlife, High QE, Large Area Borosilicate MCP's
- Autonomous Target Acquisitions

• Sci and Tech Relevant to LUVOIR, HabEX, CETUS:

Technical Innovations

Borosilicate MCPs – Developed with Sensor Sciences

Pulsed Next Gen MSA – Developed in Partnership with GSFC

3D Printed Baffles – Stratasys

Rocket Team

Brian Welch – Grad Student (4th yr)

Alex Carter – Grad Student (Masters Program)

Russell Pelton – Systems Engineer

Isu Ravi – Grad Student (3rd yr)

Mackenzie Carlson – Grad Student (1st yr) • GSFC

Matt Greenhouse – PI

Alexander Kutyrev – CoI

Mary J. Li – Col

Kyowan Kim – Test Engineer

S. Harvey Moseley – Former PI

36.352UG Launched on 27 October 2019 Mission to Observe M33

Results

Mission achieved technical success

- Opened array and acquired image of M33
- Successful executed autonomous targeting algorithm, transitioned from all opened to brightest target per row after 46 second integration

o First successful deployment of Next Gen Microshutter Array!!!

- Subtle "mirror" error in targeting code frustrated spectral acquisition
- Scattered geo-Ly α light still an issue
 - Tests ongoing to reconfigure FORTIS from on-axis to off-axis design
- Reconfiguration and Redeployment stalled by COVID

5

Micro-X, PI Figueroa

Micro-X The High-resolution Microcalorimeter X-ray Imaging Rocket 36.355 Figueroa

Enectalí Figueroa-Feliciano Northwestern

Microcalorimeters: IFUs for the X-ray band

- For high resolution spectra of diffuse and extended sources we need a non-dispersive spectrometer.
- Cryogenic Microcalorimeters are single-photoncounting imaging spectrometers with resolving powers of 500-3000 in the X-ray band.
- Absorber and thermometer are connected to a thermal bath through a weak thermal link.
- Theoretical resolution is a function of T and E_{max}
- Need cryogenic temperatures to reach target resolution!
- Si Thermistors:
 - XQC: 1995-present
 - XRISM: (2021)
- Transition-Edge Sensors (TES):
 - Micro-X: 2018
 - Athena: (2030s); Lynx (2030s)

The Micro-X Sounding Rocket

4N

Micro-X Specifications

The	Micro-X	Instrument

Science Observation Time (time above 160 km)	~300 sec
Bandpass	0.2 – 2.5 keV (but will see some bright lines at higher energy)
Field of View	11.8 arcmin
X-Ray Optics	Conical approximated Wolter optics Collecting area ~ 300 cm ² @ 1 keV Focal Length: 2.1 m 2.4' Point Spread Function
Microcalorimeter Array	128 pixels read out by 2 parallel TDM SQUID MUX (2 x 8 columns x 16 rows) Pixel pitch: 600 um = 59 arcsec/pixel 5 - 10 eV energy resolution @ 1 keV

Micro-X Main Science Target - Puppis A

Bright Eastern Knot Observation

- Launch Scheduled for March 19, 2020
- Measure the velocities and line structures of the various emission lines to obtain information about the dynamics and turbulence of the shock and surrounding plasma.
- Perform plasma diagnostics to obtain ion thermodynamic states for individual elements.
- Study the shock physics and look for potential connections to cosmic ray acceleration.

Puppis A Micro-X Simulation

Conclusions

- The maiden flight of Micro-X 36.245 saw the first operation of TES and MUX readout in space. The initial results have been published, a longer instrument paper is in the works.
- The rocket pointing error means this first flight was effectively an engineering flight
 - Issues only observable in flight have been identified, and improvements have been implemented
- 36.355 will launch in November 2021 and target Puppis A.

DXL & DXG, PI Galeazzi

The DXL & DXG programs

Two sounding rocket programs lead by the University of Miami

<u>**Collaborators:**</u> NASA/GSFC, John Hopkins University, University of Wisconsin, University of Michigan, University of Kansas, LATMOS/IPSL (France), NASA/MSFC, Boston University

Young personnel trained by the mission: one PostDoc (now a scientist at MSFC), 4 graduate students trained directly on the projects (three graduated, one still at Miami), two additional PostDocs and three graduate students worked on the project on data analysis and calibration, >10 undergraduate students, >10 high school students

<u>Technology highlights:</u> Micropore optics (lobster eye optics) were flown for the first time as piggyback experiments onboard of DXL in 2012

<u>Science highlights:</u> The existence of the Local Hot Bubble was confirmed by the DXL mission. The contribution from Solar Wind Charge <u>eXchange</u> to the Diffuse X-ray Emission was measured.

Diffuse X-rays from the Local galaxy (DXL)

- Sounding rocket mission for the study of the Local Hot Bubble and SWCX
- 4 co-aligned X-ray proportional counters
- >1,000 cm² effective area, 7.5 deg FOV
- C, B, and Be filters
- High response from 40 eV to 10 keV
- I-D images generated by rolling the payload
- Launched from WSMR, NM on 12/12/2012 and 12/6/2015 and from PFFF, AK on 1/16/2018
- Flight #4, December 2021 from WFF

DXL Science highlights

- DXL is the only mission with large grasp in the 1/4 keV band
- Confirmed the existence of the Local Hot Bubble and F 4 studied its properties
- Measured the contribution from SWCX to the Diffuse X-ray emission in the 1/4 keV and 3/4 keV band
- Measured the SWCX cross section with He

UNI

One more flight scheduled in 2021 to measure the SWCX cross section with H

Diffuse X-rays from the Galaxy (DXG)

MicroPore Optics (Lobster Eye Optics) coupled to large area CCD detectors

- 5x5 deg² field of View (FoV)
- better than 10 armin angular resolution
- effective area >150 cm² at 1 keV
- optimized for the energy range from 100 eV to 10 keV.

UNIVERSITY OF MIAMI

DXG FOV AND EFFECTIVE AREA

DXG's 5 deg FOV, the Green Boxes represent XMM-Newton FOV for comparison

DXG has been approved in 2017 for instrument development (together with the last DXL flight).

- The optics have been characterized and calibrated
- The optical bench has been designed
- > The focal plane array has been designed

UNIVERSITY A proposal for a 2-flight campaign will be submitted in December.

DXG Science

Program Spinoffs

- CuPID (flown as piggyback in 2015) will launch as a Heliophysics Cubesat in 2021
- LEXI (flown as a piggyback in 2012) will be sent to the surface of the moon as part of the Artemis program in 2022
- STORM has been approved for Phase A for the Heliophysics Explorer Program
- AMULET (All-sky Multimessenger Lobster Eye Telescope a standalone version of DXG) is being proposed for the Pioneers program to detect EM counterparts to GW events and for identify fast transients
- SIBEX (Shock Interaction/Breakout EXplorer) is being proposed to next Astrophysics Explorer call to study supernova show breakout

