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Course Outline

Morning Session I (9:00 - 10:20 am)
I Introduction: Motivation and overview, potential advantages, key

differences with traditional methods (Ch 1, C&L and BCLM texts)
I Bayesian inference: prior determination, point and interval estimation,

hypothesis testing (Ch 2 C&L)

(Break)

Morning Session II (10:40 am - 12:00 pm)
I Bayesian computation: Markov chain Monte Carlo (MCMC) methods,

Gibbs sampling, Metropolis algorithm, extensions (Ch 3 C&L)
I Model criticism and selection: Bayesian robustness, model assessment,

and model selection via Bayes factors, predictive approaches, and
penalized likelihood methods including DIC (Ch 4 C&L)

(Lunch)
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Course Outline (cont’d)

Afternoon Session (1:00 - 2:30 pm)
I MCMC software options: WinBUGS and its variants: R2WinBUGS,

BRugs, extensions
I Computer Lab Session 1: Experimentation with R and WinBUGS for

elementary models (conjugate priors; simple failure rate)

(Break)

Afternoon Session II (2:50 - 4:00 pm)
I Computer Lab Session 2: Experimentation with WinBUGS for more

advanced models (linear, nonlinear, and logistic regression; random
effects; meta-analysis; missing data; etc.)

I Floor discussion; Q&A; Wrap-up
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Textbooks for this course

Strongly Recommended
I (“C&L”): Bayesian Methods for Data Analysis, 3rd ed., by B.P. Carlin

and T.A. Louis, Boca Raton, FL: Chapman and Hall/CRC Press, 2009.

Recommended:
I Your favorite math stat and linear models books
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Textbooks for this course

Other books of interest:
I Bayesian Data Analysis, 3rd ed., by A. Gelman, J.B. Carlin, H.S. Stern,

D.B. Dunson, A. Vehtari, and D.B. Rubin, Boca Raton, FL: Chapman
and Hall/CRC Press, 2013.

I Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan,
2nd ed., by John Kruschke, New York: Academic Press, 2014.

I The BUGS Book: A Practical Introduction to Bayesian Analysis, by D.
Lunn, C. Jackson, N. Best, A. Thomas, and D.J. Spiegelhalter, Boca
Raton: Chapman and Hall/CRC Press, 2012.

I Hierarchical Modeling and Analysis for Spatial Data, 2nd ed., by S.
Banerjee, B. Carlin, and A.E. Gelfand, Boca Raton, FL: Chapman and
Hall/CRC Press, 2014.

I Bayesian Adaptive Methods for Clinical Trials by S.M. Berry, B.P.
Carlin, J.J. Lee, and P. Müller, Boca Raton, FL: Chapman and
Hall/CRC Press, 2010.
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Ch 1: Overview
Biostatisticians in the drug and medical device
industries are increasingly faced with data that are:

highly multivariate, with many important predictors
and response variables
temporally correlated (longitudinal, survival studies)
costly and difficult to obtain, but often with historical
data on previous but similar drugs or devices

Recently, the FDA Center for Devices has encouraged
hierarchical Bayesian statistical approaches –

Methods are not terribly novel: Bayes (1763)!
But their practical application has only become
feasible in the last decade or so due to advances in
computing via Markov chain Monte Carlo (MCMC)
methods and related WinBUGS software
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Bayesian design of experiments
In traditional sample size formulae, one often plugs in a
“best guess" or “smallest clinically significant difference"
for θ ⇒ “Everyone is a Bayesian at the design stage."

In practice, frequentist and Bayesian outlooks arise:
Applicants may have a more Bayesian outlook:

to take advantage of historical data or expert
opinion (and possibly stop the trial sooner), or
to “peek" at the accumulating data without
affecting their ability to analyze it later

Regulatory agencies may appreciate this, but also
retain many elements of frequentist thinking:

to ensure that in the long run they will only rarely
approve a useless or harmful product

Applicants must thus design their trials accordingly!
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Some preliminary Q&A

What is the philosophical difference between classical
(“frequentist”) and Bayesian statistics?

To a frequentist, unknown model parameters are
fixed and unknown, and only estimable by
replications of data from some experiment.
A Bayesian thinks of parameters as random, and
thus having distributions (just like the data). We can
thus think about unknowns for which no reliable
frequentist experiment exists, e.g.

θ = proportion of US men with
untreated atrial fibrillation
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Some preliminary Q&A

How does it work?
A Bayesian writes down a prior guess for θ, p(θ),
then combines this with the information that the data
X provide to obtain the posterior distribution of θ,
p(θ|X). All statistical inferences (point and interval
estimates, hypothesis tests) then follow as
appropriate summaries of the posterior.
Note that

posterior information ≥ prior information ≥ 0 ,

with the second “≥” replaced by “=” only if the prior is
noninformative (which is often uniform, or “flat”).
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Some preliminary Q&A
Is the classical approach “wrong”?

While a “hardcore” Bayesian might say so, it is
probably more accurate to think of classical methods
as merely “limited in scope”!
The Bayesian approach expands the class of models
we can fit to our data, enabling us to handle:

any outcome (binary, count, continuous, censored)
repeated measures / hierarchical structure
complex correlations (longitudinal, spatial, or
cluster sample) / multivariate data
unbalanced or missing data

– and many other settings that are awkward or
infeasible from a classical point of view.

The approach also eases the interpretation of and
learning from those models once fit.
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Simple example of Bayesian thinking

From Business Week, online edition, July 31, 2001:
“Economists might note, to take a simple
example, that American turkey consumption
tends to increase in November. A Bayesian would
clarify this by observing that Thanksgiving occurs
in this month.”

Data: plot of turkey consumption by month

Prior:
location of Thanksgiving in the calendar
knowledge of Americans’ Thanksgiving eating habits

Posterior: Understanding of the pattern in the data!
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Bayes can account for structure
County-level breast cancer rates per 10,000 women:

79 87 83 80 78
90 89 92 99 95
96 100 ⋆ 110 115
101 109 105 108 112
96 104 92 101 96

With no direct data for ⋆, what estimate would you use?

Is 200 reasonable?

Probably not: all the other rates are around 100

Perhaps use the average of the “neighboring” values
(again, near 100)
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Accounting for structure (cont’d)
Now assume that data become available for county ⋆:
100 women at risk, 2 cancer cases. Thus

rate =
2

100
× 10, 000 = 200

Would you use this value as the estimate?

Probably not: The sample size is very small, so this
estimate will be unreliable. How about a compromise
between 200 and the rates in the neighboring counties?

Now repeat this thought experiment if the county ⋆ data
were 20/1000, 200/10000, ...

Bayes and empirical Bayes methods can incorporate
the structure in the data, weight the data and prior
information appropriately, and allow the data to
dominate as the sample size becomes large.
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Has Bayes Paid Real Dividends?
Yes! Here is an example of a dramatic savings in sample
size from my work:

Consider Safety Study B, in which we must show
freedom from severe drug-related adverse events (AEs)
at 3 months will have a 95% lower confidence bound at
least 85%.

Problem: Using traditional statistical methods, we
obtain an estimated sample size of over 100 – too large!

But: We have access to the following (1-month) data
from Safety Study A:

No AE AE total
count 110 7 117
(%) (94) (6)
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Bayes Pays Real Dividends
Since we expect similar results in two studies, use
Study A data for the prior ⇒ reduced sample size!

Model: Suppose N patients in Study B, and for each,

θ = Pr(patient does not experience the AE)

Let X = # Study B patients with no AE (“successes”).

If the prior is θ ∼ Beta(a = 110, b = 7) (the target prior),
Bayes delivers equal weighting of Studies A and B.

The company wound up opting for 50% downweighting
of the Study A data (in order to obtain suitable Type I
error behavior). This still delivered 79% power to
ensure a θ lower confidence bound of at least 87% with
just N=50 new Study B patients!
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Bayes Pays Real Dividends
Other dividends Bayes can offer:

Time and Money: Bayesian approaches are natural for
adaptive trials, where more promising treatments are
emphasized as the trial is running, and for seamless
Phase I-II or Phase II-III trials, reducing a compound’s
“travel time" from development to FDA approval.

Ethical: By reducing sample size, Bayesian trials
expose fewer patients to the inferior treatment
(regardless of which this turns out to be).

These dividends are already being realized at FDA!
CDRH has been an aggressive promoter of Bayesian
methods, especially via the 2010 Guidance Document,
www.fda.gov/cdrh/osb/guidance/1601.html

see also the new Bayesian clinical trials textbook by
Berry, Carlin, Lee, and Müller (CRC Press, 2010)!
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Bayesians have a problem withp-values
p = Pr(results as surprising as you got or more so).
The “or more so" part gets us in trouble with:

The Likelihood Principle: When making decisions,
only the observed data can play a role.

This can lead to bad decisions (esp. false positives)

Are p-values at least more objective, because they are
not influenced by any prior distribution?

No, because they are influenced crucially by the
design of the experiment, which determines the
reference space of events for the calculation.

Purely practical problems also plague p-values:
Ex: Unforeseen events: First 5 patients develop a
rash, and the trial is stopped by clinicians.
=⇒ this aspect of design wasn’t anticipated, so
strictly speaking, the p-value is not computable!
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Conditional (Bayesian) Perspective

Always condition on data which has actually occurred;
the long-run performance of a procedure is of (at most)
secondary interest. Fix a prior distribution p(θ), and use
Bayes’ Theorem (1763):

p(θ|x) ∝ p(x|θ)p(θ)
(“posterior ∝ likelihood × prior”)

Indeed, it often turns out that using the Bayesian
formalism with relatively vague priors produces
procedures which perform well using traditional
frequentist criteria (e.g., low mean squared error over
repeated sampling)!
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Bayesian Advantages in Inference
Ability to formally incorporate prior information

Probabilities of parameters; answers are more easily
interpretable (e.g., confidence intervals)

All analyses follow directly from the posterior; no
separate theories of estimation, testing, multiple
comparisons, etc. are needed

Role of randomization: minimizes the possibility of
selection bias, balances treatment groups over
covariates... but does not serve as the basis of
inference (which is model-based, not design-based)

Inferences are conditional on the actual data

Bayes procedures possess many optimality properties
(e.g. consistent, impose parsimony in model choice,
define the class of optimal frequentist procedures, ...)
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Ch 2: Basics of Bayesian Inference
Start with the discrete finite case: Suppose we have
some event of interest A and a collection of other
events Bj , j = 1, . . . , J that are mutually exclusive and
exhaustive (that is, exactly one of them must occur).

Given the event probabilities P (Bj) and the conditional
probabilities P (A|Bj), Bayes’ Rule states

P (Bj|A) =
P (A,Bj)

P (A)
=

P (A,Bj)∑J
j=1 P (A,Bj)

=
P (A|Bj)P (Bj)∑J
j=1 P (A|Bj)P (Bj)

,

where P (A,Bj) = P (A ∩Bj) indicates the joint event
where both A and Bj occur.
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Example in Discrete Finite Case
Example: Ultrasound tests for determining a baby’s gender.
When reading preliminary ultrasound results, errors are not
“symmetric" in the following sense: girls are virtually always
correctly identified as girls, but boys are sometimes
misidentified as girls.

Suppose a leading radiologist states that

P (test+ |G) = 1 and P (test+ |B) = .25 ,

where “test +" denotes that the ultrasound test predicts the
child is a girl. Thus, we have a 25% false positive rate for
girl, but no false negatives.

Question: Suppose a particular woman’s test comes back
positive for girl. Assuming 48% of babies are girls, what is
the probability she is actually carrying a girl?
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Example in Discrete Finite Case (cont’d)

Solution: Let “boy" and “girl" provide the J = 2 mutually
exclusive and exhaustive cases Bj, and let A being the
event of a positive test.

Then by Bayes’ Rule we have

P (G | test+) =
P (test+ |G)P (G)

P (test+ |G)P (G) + P (test+ |B)P (B)

=
(1)(.48)

(1)(.48) + (.25)(.52)
= .787 ,

or only a 78.7% chance the baby is, in fact, a girl.
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Bayes in the Continuous Case
Now start with a likelihood (or model) f(y|θ) for the
observed data y = (y1, . . . , yn) given the unknown
parameters θ = (θ1, . . . , θK), where the parameters are
continuous (meaning they can take an infinite number
of possible values)

Add a prior distribution π(θ|λ), where λ is a vector of
hyperparameters.

The posterior distribution for θ is given by

p(θ|y,λ) =
p(y,θ|λ)
p(y|λ) =

p(y,θ|λ)∑
θ p(y,θ|λ)

=
f(y|θ)π(θ|λ)∑
θ f(y|θ)π(θ|λ) =

f(y|θ)π(θ|λ)
m(y|λ) .

We refer to this continuous version of Bayes’ Rule as
Bayes’ Theorem.
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Bayes in the Continuous Case (cont’d)

Since λ will usually not be known, a second stage
(hyperprior) distribution h(λ) will be required, so that

p(θ|y) = p(y,θ)

p(y)
=

∑
λ f(y|θ)π(θ|λ)h(λ)∑
θ,λ f(y|θ)π(θ|λ)h(λ) .

Alternatively, we might replace λ in p(θ|y,λ) by an
estimate λ̂; this is called empirical Bayes analysis

For prediction of a future value yn+1, we would use the
predictive distribution,

p(yn+1|y) =
∑

θ

p(yn+1|θ)p(θ|y) ,

which is nothing but the posterior of yn+1.
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Illustration of Bayes’ Theorem
Suppose f(y|θ) = N(y|θ, σ2), θ ∈ ℜ and σ > 0 known

If we take π(θ|λ) = N(θ|µ, τ2) where λ = (µ, τ)′ is fixed
and known, then it is easy to show that

p(θ|y) = N

(
θ

σ2

σ2 + τ2
µ+

τ2

σ2 + τ2
y ,

σ2τ2

σ2 + τ2

)
.

Note that
The posterior mean E(θ|y) is a weighted average of
the prior mean µ and the data value y, with weights
depending on our relative uncertainty
the posterior precision (reciprocal of the variance) is
equal to 1/σ2 + 1/τ2, which is the sum of the
likelihood and prior precisions.

R and BUGS code for this: first two entries at
http://www.biostat.umn.edu/ ∼brad/data.html
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Illustration (continued)
As a concrete example, let µ = 2, τ = 1, ȳ = 6, and σ = 1:
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prior
posterior with n = 1
posterior with n = 10

When n = 1, prior and likelihood receive equal weight

When n = 10, the data dominate the prior

The posterior variance goes to zero as n → ∞
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Addendum: Notes on prior distributions

The prior here is conjugate: it leads to a posterior
distribution for θ that is available in closed form, and is a
member of the same distributional family as the prior.

Note that setting τ2 = ∞ corresponds to an arbitrarily
vague (or noninformative) prior. The posterior is then

p (θ|y) = N
(
θ|y, σ2/n

)
,

the same as the likelihood! The limit of the conjugate
(normal) prior here is a uniform (or “flat”) prior, and thus
the posterior is the renormalized likelihood.

The flat prior is appealing but improper here, since∑
θ p(θ) = +∞. However, the posterior is still well

defined, and so improper priors are often used!
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Quick preview: Hierarchical modeling
The hyperprior for η might itself depend on a collection
of unknown parameters λ, resulting in a generalization
of our three-stage model to one having a third-stage
prior h(η|λ) and a fourth-stage hyperprior g(λ)...

This enterprise of specifying a model over several levels
is called hierarchical modeling, which is often helpful
when the data are nested:

Example: Test scores Yijk for student k in classroom j of
school i:

Yijk|θij ∼ N(θij, σ
2)

θij|µi ∼ N(µi, τ
2)

µi|λ ∼ N(λ, κ2)

Adding p(λ) and possibly p(σ2, τ2, κ2) completes the
specification!
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Prediction
Returning to two-level models, we often write

p(θ|y) ∝ f(y|θ)p(θ) ,

since the likelihood may be multiplied by any constant
(or any function of y alone) without altering p(θ|y).
If yn+1 is a future observation, independent of y given θ,
then the predictive distribution for yn+1 is

p(yn+1|y) =
∑

θ

f(yn+1|θ)p(θ|y) ,

thanks to the conditional independence of yn+1 and y.

The naive frequentist would use f(yn+1|θ̂) here, which
is correct only for large n (i.e., when p(θ|y) is a point
mass at θ̂).
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Prior Distributions

Suppose we require a prior distribution for

θ = true proportion of U.S. men who are HIV-positive.

We cannot appeal to the usual long-term frequency
notion of probability – it is not possible to even imagine
“running the HIV epidemic over again” and reobserving
θ. Here θ is random only because it is unknown to us.

Bayesian analysis is predicated on such a belief in
subjective probability and its quantification in a prior
distribution p(θ). But:

How to create such a prior?
Are “objective” choices available?
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Elicited Priors
Histogram approach: Assign probability masses to the
“possible” values in such a way that their sum is 1, and
their relative contributions reflect the experimenter’s
prior beliefs as closely as possible.

BUT: Awkward for continuous or unbounded θ.

Matching a functional form: Assume that the prior
belongs to a parametric distributional family p(θ|η),
choosing η so that the result matches the elicitee’s true
prior beliefs as nearly as possible.

This approach limits the effort required of the
elicitee, and also overcomes the finite support
problem inherent in the histogram approach...
BUT: it may not be possible for the elicitee to
“shoehorn” his or her prior beliefs into any of the
standard parametric forms.
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Conjugate Priors

Defined as one that leads to a posterior distribution
belonging to the same distributional family as the prior.

Conjugate priors were historically prized for their
computational convenience, but the emergence of
modern computing methods and software (e.g.,
WinBUGS) has greatly reduced our need for them.

Still, they remain popular, due both to historical
precedent and a desire to make our modern computing
methods as fast as possible: in high-dimensional
problems, priors that are conditionally conjugate are
often available (and helpful).

a finite mixture of conjugate priors may be sufficiently
flexible (allowing multimodality, heavier tails, etc.) while
still enabling simplified posterior calculations.
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Noninformative Prior

– is one that does not favor one θ value over another

Examples:
Θ = {θ1, . . . , θn} ⇒ p(θi) = 1/n, i = 1, . . . , n

Θ = [a, b], −∞ < a < b < ∞
⇒ p(θ) = 1/(b− a), a < θ < b

Θ = (−∞,∞) ⇒ p(θ) = c, any c > 0

This is an improper prior (does not integrate to 1),
but its use can still be legitimate if∑

θ f(x|θ) = K < ∞, since then

p(θ|x) = f(x|θ) · c∑
θ f(x|θ) · c

=
f(x|θ)
K

,

so the posterior is just the renormalized likelihood!
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Bayesian Inference: Point Estimation

Easy! Simply choose an appropriate distributional
summary: posterior mean, median, or mode.

Mode is often easiest to compute (no integration), but is
often least representative of “middle”, especially for
one-tailed distributions.

Mean has the opposite property, tending to "chase"
heavy tails (just like the sample mean X̄)

Median is probably the best compromise overall, though
can be awkward to compute, since it is the solution
θmedian to

θmedian∑

θ=−∞

p(θ|x) = 1

2
.
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Example: The General Linear Model

Let Y be an n× 1 data vector, X an n× p matrix of
covariates, and adopt the likelihood and prior structure,

Y|β ∼ Nn (Xβ,Σ) and β ∼ Np (Aα, V )

Then the posterior distribution of β|Y is

β|Y ∼ N (Dd, D) , where

D−1 = XTΣ−1X + V −1 and d = XTΣ−1Y + V −1Aα.

V −1 = 0 delivers a “flat” prior; if Σ = σ2Ip, we get

β|Y ∼ N
(
β̂ , σ2(X ′X)−1

)
, where

β̂ = (X ′X)−1X ′y ⇐⇒ usual likelihood approach!
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Bayesian Inference: Interval Estimation
The Bayesian analogue of a frequentist CI is referred to
as a credible set: a 100× (1− α)% credible set for θ is a
subset C of Θ such that

1− α ≤ P (C|y) =
∑

θ∈C

p(θ|y) .

In continuous settings, we can obtain coverage exactly
1− α at minimum size via the highest posterior density
(HPD) credible set,

C = {θ ∈ Θ : p(θ|y) ≥ k(α)} ,

where k(α) is the largest constant such that

P (C|y) ≥ 1− α .
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Interval Estimation (cont’d)

Simpler alternative: the equal-tail set, which takes the
α/2- and (1− α/2)-quantiles of p(θ|y).
Specifically, consider qL and qU , the α/2- and
(1− α/2)-quantiles of p(θ|y):

qL∑

θ=−∞

p(θ|y) = α/2 and
∞∑

θ=qU

p(θ|y) = α/2 .

Then clearly P (qL < θ < qU |y) = 1− α; our confidence
that θ lies in (qL, qU ) is 100× (1− α)%. Thus this interval
is a 100× (1− α)% credible set (“Bayesian CI”) for θ.

This interval is relatively easy to compute, and enjoys a
direct interpretation (“The probability that θ lies in
(qL, qU ) is (1− α)”) that the frequentist interval does not.
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Interval Estimation: Example
Using a Gamma(2, 1) posterior distribution and k(α) = 0.1:
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Equal tail interval is a bit wider, but easier to compute (just
two gamma quantiles), and also transformation invariant.
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Ex: Y ∼ Bin(10, θ), θ ∼ U(0, 1), yobs = 7
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Bayesian hypothesis testing

Classical approach bases accept/reject decision on

p-value = P{T (Y) more “extreme” than T (yobs)|θ, H0} ,

where “extremeness” is in the direction of HA

Several troubles with this approach:
hypotheses must be nested
p-value can only offer evidence against the null
p-value is not the “probability that H0 is true” (but is
often erroneously interpreted this way)
As a result of the dependence on “more extreme”
T (Y) values, two experiments with different designs
but identical likelihoods could result in different
p-values, violating the Likelihood Principle!
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Bayesian hypothesis testing (cont’d)

Bayesian approach: Select the model with the largest
posterior probability, P (Mi|y) = p(y|Mi)p(Mi)/p(y),

where p(y|Mi) =
∑

θi

f(y|θi,Mi)πi(θi) .

For two models, the quantity commonly used to
summarize these results is the Bayes factor,

BF =
P (M1|y)/P (M2|y)
P (M1)/P (M2)

=
p(y | M1)

p(y | M2)
,

i.e., the likelihood ratio if both hypotheses are simple

Problem: If πi(θi) is improper, then p(y|Mi) necessarily
is as well =⇒ BF is not well-defined!...
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Bayesian hypothesis testing (cont’d)
When the BF is not well-defined, several alternatives:

Modify the definition of BF : partial Bayes factor,
fractional Bayes factor (text, p.54)

Switch to the conditional predictive distribution,

f(yi|y(i)) =
f(y)

f(y(i))
=

∑

θ

f(yi|θ,y(i))p(θ|y(i)) ,

which will be proper if p(θ|y(i)) is. Assess model fit via
plots or a suitable summary (say,

∏n
i=1 f(yi|y(i))).

Penalized likelihood criteria: the Akaike information
criterion (AIC), Bayesian information criterion (BIC), or
Deviance information criterion (DIC).

IOU on all this – Chapter 4!
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Example: Consumer preference data

Suppose 16 taste testers compare two types of ground
beef patty (one stored in a deep freeze, the other in a
less expensive freezer). The food chain is interested in
whether storage in the higher-quality freezer translates
into a "substantial improvement in taste."

Experiment: In a test kitchen, the patties are defrosted
and prepared by a single chef/statistician, who
randomizes the order in which the patties are served in
double-blind fashion.

Result: 13 of the 16 testers state a preference for the
more expensive patty.
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Example: Consumer preference data
Likelihood: Let

θ = prob. consumers prefer more expensive patty

Yi =

{
1 if tester i prefers more expensive patty
0 otherwise

Assuming independent testers and constant θ, then if
X =

∑16
i=1 Yi, we have X|θ ∼ Binomial(16, θ),

f(x|θ) =
(
16

x

)
θx(1− θ)16−x .

The beta distribution offers a conjugate family, since

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 .
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Three "minimally informative" priors
pr

io
r 

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

θ

Beta(.5,.5)  (Jeffreys prior)
Beta(1,1)    (uniform prior)
Beta(2,2)    (skeptical prior)

The posterior is then Beta(x+ α, 16− x+ β)...
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Three corresponding posteriors
po

st
er

io
r 

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

Beta(13.5,3.5)
Beta(14,4)
Beta(15,5)

Note ordering of posteriors; consistent with priors.

All three produce 95% equal-tail credible intervals that
exclude 0.5 ⇒ there is an improvement in taste.
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Posterior summaries
Prior Posterior quantile

distribution .025 .500 .975 P (θ > .6|x)
Beta(.5, .5) 0.579 0.806 0.944 0.964
Beta(1, 1) 0.566 0.788 0.932 0.954
Beta(2, 2) 0.544 0.758 0.909 0.930

Suppose we define “substantial improvement in taste”
as θ ≥ 0.6. Then under the uniform prior, the Bayes
factor in favor of M1 : θ ≥ 0.6 over M2 : θ < 0.6 is

BF =
0.954/0.046

0.4/0.6
= 31.1 ,

or fairly strong evidence (adjusted odds about 30:1) in
favor of a substantial improvement in taste.
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Bayesian computation
prehistory (1763 – 1960): Conjugate priors

1960’s: Numerical quadrature – Newton-Cotes
methods, Gaussian quadrature, etc.

1970’s: Expectation-Maximization (“EM”) algorithm –
iterative mode-finder

1980’s: Asymptotic methods – Laplace’s method,
saddlepoint approximations

1980’s: Noniterative Monte Carlo methods – Direct
posterior sampling and indirect methods (importance
sampling, rejection, etc.)

1990’s: Markov chain Monte Carlo (MCMC) – Gibbs
sampler, Metropolis-Hastings algorithm

⇒ MCMC methods broadly applicable, but require care in
parametrization and convergence diagnosis!
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Asymptotic methods
When n is large, f(x|θ) will be quite peaked relative to
p(θ), and so p(θ|x) will be approximately normal.

“Bayesian Central Limit Theorem”: Suppose

X1, . . . , Xn
iid∼ fi(xi|θ), and that the prior p(θ) and the

likelihood f(x|θ) are positive and twice differentiable

near θ̂
p
, the posterior mode of θ. Then for large n

p(θ|x) ·∼ N(θ̂
p
, [Ip(x)]−1) ,

where [Ip(x)]−1 is the “generalized” observed Fisher
information matrix for θ, i.e., minus the inverse Hessian
of the log posterior evaluated at the mode,

Ipij(x) = −
[

∂2

∂θi∂θj
log (f(x|θ)p(θ))

]

θ=
̂θ
p
.
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Example 3.1: Hamburger patties again
Comparison of this normal approximation to the exact
posterior, a Beta(14, 4) distribution (recall n = 16):

po
st

er
io

r 
de
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ity

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

exact (beta)
approximate (normal)

Similar modes, but very different tail behavior: 95% credible
sets are (.57, .93) for exact, but (.62, 1.0) for normal
approximation.
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Higher order approximations
The Bayesian CLT is a first order approximation, since

E(g(θ)) = g(θ̂) [1 +O (1/n)] .

Second order approximations (i.e., to order O(1/n2))
again requiring only mode and Hessian calculations are
available via Laplace’s Method (C&L, Sec. 3.2.2).

Advantages of Asymptotic Methods:
deterministic, noniterative algorithm
substitutes differentiation for integration
facilitates studies of Bayesian robustness

Disadvantages of Asymptotic Methods:
requires well-parametrized, unimodal posterior
θ must be of at most moderate dimension
n must be large, but is beyond our control
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Gibbs sampling
Suppose the joint distribution of θ = (θ1, . . . , θK) is
uniquely determined by the full conditional distributions,
{pi(θi|θj 6=i), i = 1, . . . ,K}.

Given an arbitrary set of starting values {θ(0)1 , . . . , θ
(0)
K },

Draw θ
(1)
1 ∼ p1(θ1|θ(0)2 , . . . , θ

(0)
K ),

Draw θ
(1)
2 ∼ p2(θ2|θ(1)1 , θ

(0)
3 , . . . , θ

(0)
K ),

...

Draw θ
(1)
K ∼ pK(θK |θ(1)1 , . . . , θ

(1)
K−1),

Under mild conditions,

(θ
(t)
1 , . . . , θ

(t)
K )

d→ (θ1, · · · , θK) ∼ p as t → ∞ .
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Gibbs sampling (cont’d)

For t sufficiently large (say, bigger than t0), {θ(t)}Tt=t0+1

is a (correlated) sample from the true posterior.

We might therefore use a sample mean to estimate the
posterior mean, i.e.,

Ê(θi|y) =
1

T − t0

T∑

t=t0+1

θ
(t)
i .

The time from t = 0 to t = t0 is commonly known as the
burn-in period; one can safely adapt (change) an
MCMC algorithm during this preconvergence period,
since these samples will be discarded anyway
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Gibbs sampling (cont’d)
In practice, we may actually run m parallel Gibbs
sampling chains, instead of only 1, for some modest m
(say, m = 5). Discarding the burn-in period, we obtain

Ê(θi|y) =
1

m(T − t0)

m∑

j=1

T∑

t=t0+1

θ
(t)
i,j ,

where now the j subscript indicates chain number.

A density estimate p̂(θi|y) may be obtained by

smoothing the histogram of the {θ(t)i,j }, or as

p̂(θi|y) =
1

m(T − t0)

m∑

j=1

T∑

t=t0+1

p(θi|θ(t)k 6=i,j , y)

≈
∫

p(θi|θk 6=i,y)p(θk 6=i|y)dθk 6=i
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Example 3.6 (2.7 revisited)
Consider the model

Yi|θi ind∼ Poisson(θisi), θi
ind∼ G(α, β),

β ∼ IG(c, d), i = 1, . . . , k,

where α, c, d, and the si are known. Thus

f(yi|θi) =
e−(θisi)(θisi)

yi

yi!
, yi ≥ 0, θi > 0,

g(θi|β) =
θα−1
i e−θi/β

Γ(α)βα
, α > 0, β > 0,

h(β) =
e−1/(βd)

Γ(c)dcβc+1
, c > 0, d > 0.

Note: g is conjugate for f , and h is conjugate for g
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Example 3.6 (2.7 revisited)

To implement the Gibbs sampler, we require the full
conditional distributions of β and the θi.

By Bayes’ Rule, each of these is proportional to the
complete Bayesian model specification,

[
k∏

i=1

f(yi|θi)g(θi|β)
]
h(β)

Thus we can find full conditional distributions by
dropping irrelevant terms from this expression, and
normalizing!

Good news: BUGSwill do all this math for you! :)
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Example 3.6 (2.7 revisited)
BUGScan sample the {θ(t)i } and β(t) directly

If α were also unknown, harder for BUGSsince

p(α|{θi}, β,y) ∝
[

k∏

i=1

g(θi|α, β)
]
h(α)

is not proportional to any standard family. So resort to:
adaptive rejection sampling (ARS): provided
p(α|{θi}, β,y) is log-concave, or
Metropolis-Hastings sampling – IOU for now!

Note: This is the order the WinBUGSsoftware uses when
deriving full conditionals!

This is the standard “hybrid approach": Use Gibbs
overall, with “substeps" for awkward full conditionals

Bayesian Methods for Data Analysis, Clinical Trials, and Meta-Analysis – p. 61/132



Example 7.2: Rat data
Consider the longitudinal data model

Yij
ind∼ N

(
αi + βixij , σ

2
)
,

where Yij is the weight of the ith rat at measurement
point j, while xij denotes its age in days, for
i = 1, . . . , k = 30, and j = 1, . . . , ni = 5 for all i
(see text p.337 for actual data).

Adopt the random effects model

θi ≡
(
αi

βi

)
iid∼ N

(
θ0 ≡

(
α0

β0

)
, Σ

)
, i = 1, . . . , k ,

which is conjugate with the likelihood (see general
normal linear model in Section 4.1.1).
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Example 7.2: Rat data
Priors: Conjugate forms are again available, namely

σ2 ∼ IG(a, b) ,

θ0 ∼ N(η, C) , and

Σ−1 ∼ W
(
(ρR)−1, ρ

)
, (1)

where W denotes the Wishart (multivariate gamma)
distribution; see Appendix A.2.2.

We assume the hyperparameters (a, b,η, C, ρ, and R)
are all known, so there are 30(2) + 3 + 3 = 66 unknown
parameters in the model.

Yet the Gibbs sampler is relatively straightforward to
implement here, thanks to the conjugacy at each stage
in the hierarchy.
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Example 7.2: Rat data
Using vague hyperpriors, run 3 initially overdispersed
parallel sampling chains for 500 iterations each:

iteration
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The output from all three chains over iterations 101–500
is used in the posterior kernel density estimates (col 2)

The average rat weighs about 106 grams at birth, and
gains about 6.2 grams per day.
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Metropolis algorithm
What happens if the full conditional p(θi|θj 6=i,y) is not
available in closed form? Typically, p(θi|θj 6=i,y) will be
available up to proportionality constant, since it is
proportional to the portion of the Bayesian model
(likelihood times prior) that involves θi.

Suppose the true joint posterior for θ has unnormalized
density p(θ).

Choose a candidate density q(θ∗|θ(t−1)) that is a valid
density function for every possible value of the
conditioning variable θ(t−1), and satisfies

q(θ∗|θ(t−1)) = q(θ(t−1)|θ∗) ,

i.e., q is symmetric in its arguments.
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Metropolis algorithm (cont’d)
Given a starting value θ(0) at iteration t = 0, the algorithm
proceeds as follows:

Metropolis Algorithm: For (t ∈ 1 : T ), repeat:

1. Draw θ∗ from q(·|θ(t−1))

2. Compute the ratio
r = p(θ∗)/p(θ(t−1)) = exp[log p(θ∗)− log p(θ(t−1))]

3. If r ≥ 1, set θ(t) = θ∗;

If r < 1, set θ(t) =

{
θ∗ with probability r

θ(t−1) with probability 1− r
.

Then a draw θ(t) converges in distribution to a draw
from the true posterior density p(θ|y).
Note: When used as a substep in a larger (e.g., Gibbs)
algorithm, we often use T = 1 (convergence still OK).
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Metropolis algorithm (cont’d)
How to choose the candidate density? The usual
approach (after θ has been transformed to have
support ℜk, if necessary) is to set

q(θ∗|θ(t−1)) = N(θ∗|θ(t−1), Σ̃) .

In one dimension, MCMC “folklore” suggests choosing
Σ̃ to provide an observed acceptance ratio near 50%.

Hastings (1970) showed we can drop the requirement
that q be symmetric, provided we use

r =
p(θ∗)q(θ(t−1) | θ∗)

p(θ(t−1))q(θ∗ | θ(t−1))

– useful for asymmetric target densities!
– this form called the Metropolis-Hastings algorithm
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Convergence assessment
When it is safe to stop and summarize MCMC output?

We would like to ensure that
∫
|p̂t(θ)− p(θ)|dθ < ǫ, but

all we can hope to see is
∫
|p̂t(θ)− p̂t+k(θ)|dθ!

Controversy: Does the eventual mixing of “initially
overdispersed” parallel sampling chains provide
worthwhile information on convergence?

While one can never “prove” convergence of a
MCMC algorithm using only a finite realization from
the chain, poor mixing of parallel chains can help
discover extreme forms of nonconvergence

Still, it’s tricky: a slowly converging sampler may be
indistinguishable from one that will never converge
(e.g., due to nonidentifiability)!
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Convergence diagnostics
Various summaries of MCMC output, such as

sample autocorrelations in one or more chains:
close to 0 indicates near-independence, and so
chain should more quickly traverse the entire
parameter space :)
close to 1 indicates the sampler is “stuck” :(

Gelman/Rubin shrink factor,

√
R̂ =

√(
N − 1

N
+

m+ 1

mN

B

W

)
df

df − 2

N→∞−→ 1 ,

where B/N is the variance between the means from the
m parallel chains, W is the average of the m
within-chain variances, and df is the degrees of
freedom of an approximating t density to the posterior.
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Convergence diagnosis strategy
Run a few (3 to 5) parallel chains, with starting points
believed to be overdispersed

say, covering ±3 prior standard deviations from the
prior mean

Overlay the resulting sample traces for a representative
subset of the parameters

say, most of the fixed effects, some of the variance
components, and a few well-chosen random effects)

Annotate each plot with lag 1 sample autocorrelations
and perhaps Gelman and Rubin diagnostics

Investigate bivariate plots and crosscorrelations among
parameters suspected of being confounded, just as one
might do regarding collinearity in linear regression.
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Variance estimation
How good is our MCMC estimate once we get it?

Suppose a single long chain of (post-convergence)
MCMC samples {λ(t)}Nt=1. Let

Ê(λ|y) = λ̂N =
1

N

N∑

t=1

λ(t) .

Then by the CLT, under iid sampling we could take

V̂ ariid(λ̂N ) = s2λ/N =
1

N(N − 1)

N∑

t=1

(λ(t) − λ̂N )2 .

But this is likely an underestimate due to positive
autocorrelation in the MCMC samples.
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Variance estimation (cont’d)

To avoid wasteful parallel sampling or “thinning,”
compute the effective sample size,

ESS = N/κ(λ) ,

where κ(λ) = 1 + 2
∑∞

k=1 ρk(λ) is the autocorrelation
time, and we cut off the sum when ρk(λ) < ǫ

Then
V̂ arESS(λ̂N ) = s2λ/ESS(λ)

Note: κ(λ) ≥ 1, so ESS(λ) ≤ N , and so we have that
V̂ arESS(λ̂N ) ≥ V̂ ariid(λ̂N ), in concert with intuition.
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Variance estimation (cont’d)

Another alternative: Batching: Divide the run into m
successive batches of length k with batch means
b1, . . . , bm. Then λ̂N = b̄ = 1

m

∑m
i=1 bi, and

V̂ arbatch(λ̂N ) =
1

m(m− 1)

m∑

i=1

(bi − λ̂N )2 ,

provided that k is large enough so that the correlation
between batches is negligible.

For any V̂ used to approximate V ar(λ̂N ), a 95% CI for
E(λ|y) is then given by

λ̂N ± z.025

√
V̂ .
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Overrelaxation
Basic idea: Try to speed MCMC convergence by
inducing negative autocorrelation within the chains

Neal (1998): Generate {θi,k}Kk=1 independently from the
full conditional p(θi|θj 6=i,y). Ordering these along with
the old value, we have

θi,0 ≤ θi,1 ≤ · · · ≤ θi,r ≡ θ
(t−1)
i ≤ · · · ≤ θi,K ,

so that r is the index of the old value. Then take

θ
(t)
i = θi,K−r .

Note that K = 1 produces Gibbs sampling, while large
K produces progressively more overrelaxation.

Generation of the K random variables can be avoided if
the full conditional cdf and inverse cdf are available.
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Model criticism and selection

Three related issues to consider:
Robustness: Are any model assumptions having an
undue impact on the results? (text, Sec. 4.2)
Assessment: Does the model provide adequate fit to
the data? (text, Sec. 4.3)
Selection: Which model (or models) should we
choose for final presentation? (text, Secs. 4.4–4.6)

Consider each in turn...
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Sensitivity analysis
Make modifications to an assumption and recompute the
posterior; any impact on interpretations or decisions?

No: The data are strongly informative with respect to
this assumption (robustness)

Yes: Document the sensitivity, think more carefully
about it, and perhaps collect more data.

Examples of assumptions to modify: increasing/
decreasing a prior mean by one prior s.d.; doubling/
halving a prior s.d.; case deletion.

Importance sampling and asymptotic methods can
greatly reduce computational overhead, even if these
methods were not used in analysis of original model.
⇒ Run and diagnose convergence for “base” model;

use approximate method for robustness study
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Prior partitioning
– a “backwards” approach to robustness!

What if the range of plausible assumptions is
unimaginably broad, as in the summary of a
government-sponsored clinical trial?

Potential solution: Determine the set of prior inputs that
are consistent with a given conclusion, given the data
observed so far. The consumer may then compare this
prior class to his/her own personal prior beliefs.

Thus we are partitioning the prior class based on
possible outcomes.

Example: Find set of all prior means µ such that

P (θ ≥ 0|y) > .025

(for otherwise, we will decide θ < 0).
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Model assessment

Many of the tools mentioned in Chapter 2 are now easy to
compute via Monte Carlo methods!

Example: Find the cross-validation residual

ri = yi − E(yi|y(i)) ,

where y(i) denotes the vector of all the data except the
ith value, i.e.

y(i) = (y1, . . . , yi−1, yi+1, . . . , yn)
′
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Model assessment
Using MC draws θ(g) ∼ p(θ|y), we have

E(yi|y(i)) =

∫ ∫
yif(yi|θ)p(θ|y(i))dyidθ

=

∫
E(yi|θ)p(θ|y(i))dθ

≈
∫

E(yi|θ)p(θ|y)dθ

≈ 1

G

G∑

g=1

E(yi|θ(g)) .

Approximation should be adequate unless the
dataset is small and yi is an extreme outlier

Same θ(g)’s may be used for each i = 1, . . . , n.
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Bayes factors
the most basic Bayesian model choice tool!

Given models M1 and M2, computable as

BF =
p(y |M1)

p(y |M2)
.

Sadly, unlike posteriors and predictives, marginal
distributions are not easily estimated via MCMC! So...

♦ Direct methods: Since p(y) =
∫
f(y | θ)p(θ)dθ , we

could draw θ(g) ∼ p(θ) and compute

p̂(y) =
1

G

G∑

g=1

f(y | θ(g)) .

Easy, but terribly inefficient.
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Bayes factors
Better: Draw θ(g) ∼ p(θ|y) and compute the harmonic
mean estimate

p̂(y) =


 1

G

G∑

g=1

1

f(y | θ(g))



−1

,

But this is terribly unstable (division by 0)!

Better yet: try

p̂(y) =


 1

G

G∑

g=1

h(θ(g))

f(y|θ(g)) p(θ(g))



−1

,

where θ(g) ∼ p(θ|y) and h(θ) ≈ p(θ|y).
(If h equals the prior, we get the harmonic mean again.)
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Predictive Model Selection
Less formal approaches, useful when Bayes factor is
unavailable or inappropriate (e.g., when using improper
priors). These include:

Cross-validatory checks, such as
∑

i log f(y
obs
i |y(i)) or∑

i[yi − E(yi|y(i))]
2.

Expected predicted “model discrepancy,”

E[d(ynew,yobs)|yobs,Mi] ,

where d(ynew,yobs) is an appropriate discrepancy
function, e.g.,

d(ynew,yobs) = (ynew − yobs)
T (ynew − yobs) .

Choose the model that minimizes discrepancy!
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Predictive Model Selection
Likelihood criteria: think of ℓ ≡ logL(θ) as a parametric
function of interest, and compute

ℓ̂ ≡ E[logL(θ)|y] ≈ 1

G

G∑

g=1

logL(θ(g))

as an overall measure of model fit.

Penalized likelihood criteria: Subtract a “penalty” from
the likelihood score, in order to avoid flooding unhelpful
predictors into the model. Most common example: the
Bayesian Information (Schwarz) Criterion,

B̂IC = 2ℓ̂− p log n

where p is the number of parameters in the model, and
n is the number of datapoints.
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Extension to Hierarchical Models
Penalized likelihood criteria (BIC, AIC) trade off “fit”
against “complexity”

But what is the “complexity” of a hierarchical model?

Example: One-way ANOVA model

Yi|θi ind∼ N(θi, 1/τi) and θi
iid∼ N(µ, 1/λ), i = 1, . . . , p

Suppose µ, λ, and the τi are known. How many
parameters are in this model?

If λ = ∞, all θi = µ and there are 0 free parameters
If λ = 0, the θi are unconstrained and there are p free
parameters

In practice, 0 < λ < ∞ so the “effective number of
parameters” is somewhere in between! How to
define?....
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Hierarchical model complexity
Proposal: use the effective number of parameters,

pD = Eθ|y[D]−D(Eθ|y[θ]) = D̄ −D(θ̄) ,

where D(θ) = −2 log f(y|θ) + 2 log h(y)

is the deviance score, computed from the likelihood
f(y|θ) and a standardizing function h(y).

Example: For the one-way ANOVA model,

pD =

p∑

i=1

τi
τi + λ

,

Clearly 0 ≤ pD ≤ p as desired
If we place a hyperprior on λ, the effective model
size pD will depend on the dataset!
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Model selection via DIC
Given the pD measure of model complexity, suppose we
now summarize fit of a model by

D̄ = Eθ|y[D] ,

Compare models via the Deviance Information
Criterion,

DIC = D̄ + pD = D(θ̄) + 2pD ,

a generalization of the Akaike Information Criterion
(AIC), since AIC ≈ D̄ + p for nonhierarchical models.

Smaller values of DIC indicate preferred models.

While pD has a scale (effective model size), DIC does
not, so only differences in DIC across models matter.
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Issues in using DIC
pD and DIC are very broadly applicable provided p(y|θ)
is available in closed form

Both building blocks of DIC and pD, Eθ|y[D] and
D(Eθ|y[θ]), are easily estimated via MCMC methods

...and in fact are directly available within WinBUGS!

pD and DIC may not be invariant to reparametrization

pD can be negative for non-log-concave likelihoods, or
when there is strong prior-data conflict

pD and DIC will depend on our “focus” (i.e., what is
considered to be part of the likelihood):

f(y|θ): “focused on θ”

p(y|η) =
∫
f(y|θ)p(θ|η)dθ: “focused on η”
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Bayesian Software Options
BUGS: WinBUGS, OpenBUGS, R2WinBUGS, BRugs,
rbugs
http://www.openbugs.info/w/

JAGS: JAGS, rjags, R2jags, runjags
http://mcmc-jags.sourceforge.net/
http://cran.r-project.org/web/packages/rjags

R: mcmc (general purpose), JMBayes (Joint Modeling)
cran.r-project.org/web/packages/JMbayes

SAS: PROC MCMC
support.sas.com/rnd/app/da/Bayesian/MCMC.html

Other MCMC-based: Stan and RStan, WBDev, PyMC
http://www.mc-stan.org/

Other non-MCMC-based: INLA (Integrated Nested
Laplace Approx)
http://www.r-inla.org/
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Example usingR: Heart Valves Study
Goal: Show that the thrombogenicity rate (TR) is less
than two times the objective performance criterion

Data: From both the current study and a previous study
on a similar product (St. Jude mechanical valve).

Model: Let T be the total number of patient-years of
followup, and θ be the TR per year. We assume the
number of thrombogenicity events Y ∼ Poisson(θT ):

f(y|θ) = e−θT (θT )y

y!
.

Prior: Assume a Gamma(α, β) prior for θ:

p(θ) =
θα−1e−θ/β

Γ(α)βα
, θ > 0 .
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Heart Valves Study
The gamma prior is conjugate with the likelihood, so the
posterior emerges in closed form:

p(θ|y) ∝ θy+α−1e−θ(T+1/β)

∝ Gamma(y + α, (T + 1/β)−1) .

The study objective is met if

P (θ < 2× OPC | y) ≥ 0.95 ,

where OPC = θ0 = 0.038.

Prior selection: Our gamma prior has mean M = αβ

and variance V = αβ2. This means that if we specify M
and V , we can solve for α and β as

α = M2/V and β = V/M .
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Heart Valves Study
A few possibilities for prior parameters:

Suppose we set M = θ0 = 0.038 and
√
V = 2θ0 (so

that 0 is two standard deviations below the mean).
Then α = 0.25 and β = 0.152, a rather vague prior.
Suppose we set M = 98/5891 = .0166, the overall
value from the St. Jude studies, and

√
V = M (so 0

is one sd below the mean). Then α = 1 and
β = 0.0166, a moderate (exponential) prior.
Suppose we set M = 98/5891 = .0166 again, but set√
V = M/2. This is a rather informative prior.

We also consider event counts that are lower (1), about
the same (3), and much higher (20) than for St. Jude.

The study objective is not met with the “bad” data –
unless the posterior is “rescued” by the informative prior
(lower right corner, next page).
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Heart Valves Study
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S code to create this plot is available in
www.biostat.umn.edu/∼brad/hv.S
– try it yourself in S-plus or R (http://cran.r-project.org)
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Alternate hierarchical models
One might be uncomfortable with our implicit
assumption that the TR is the same in both studies. To
handle this, extend to a hierarchical model:

Yi ∼ Poisson(θiTi), i = 1, 2,

where i = 1 for St. Jude, and i = 2 for the new study.

Borrow strength between studies by assuming

θi
iid∼ Gamma(α, β),

i.e., the two TR’s are exchangeable, but not identical.

We now place a third stage prior on α and β, say

α ∼ Exp(a) and β ∼ IG(c, d).

Fit in WinBUGS using the pump example as a guide!
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BUGS Example 1: Poisson Failure Rates
Example 2.7 revisited again!

Yi|θi ind∼ Poisson(θiti),

θi
ind∼ G(α, β),

α ∼ Exp(µ), β ∼ IG(c, d),

i = 1, . . . , k, where µ, c, d, and the ti are known, and Exp
denotes the exponential distribution.

We apply this model to a dataset giving the numbers of
pump failures, Yi, observed in ti thousands of hours for
k = 10 different systems of a certain nuclear power
plant.

The observations are listed in increasing order of raw
failure rate ri = Yi/ti, the classical point estimate of the
true failure rate θi for the ith system.
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Pump Data
i Yi ti ri

1 5 94.320 .053

2 1 15.720 .064

3 5 62.880 .080

4 14 125.760 .111

5 3 5.240 .573

6 19 31.440 .604

7 1 1.048 .954

8 1 1.048 .954

9 4 2.096 1.910

10 22 10.480 2.099

Hyperparameters: We choose the values µ = 1, c = 0.1, and
d = 1.0, resulting in reasonably vague hyperpriors for α and β.
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Pump Example

Recall that the full conditional distributions for the θi and
β are available in closed form (gamma and inverse
gamma, respectively), but that no conjugate prior for α
exists.

However, the full conditional for α,

p(α|β, {θi},y) ∝
[

k∏

i=1

g(θi|α, β)
]
h(α)

∝
[

k∏

i=1

θα−1
i

Γ(α)βα

]
e−α/µ

can be shown to be log-concave in α. Thus WinBUGS
uses adaptive rejection sampling for this parameter.
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WinBUGS code to fit this model

model {

for (i in 1:k) {

theta[i] ˜ dgamma(alpha,beta)

lambda[i] <- theta[i] * t[i]

Y[i] ˜ dpois(lambda[i])

}

alpha ˜ dexp(1.0)

beta ˜ dgamma(0.1, 1.0)

}

DATA:

list(k = 10, Y = c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22),

t = c(94.320, 15.72, 62.88, 125.76, 5.24, 31.44,

1.048, 1.048, 2.096, 10.48))

INITS:

list(theta=c(1,1,1,1,1,1,1,1,1,1), alpha=1, beta=1)
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Pump Example Results
Results from running 1000 burn-in samples, followed by
a “production” run of 10,000 samples (single chain):

node mean sd MC error 2.5% median 97.5%

alpha 0.7001 0.2699 0.004706 0.2851 0.6634 1.338

beta 0.929 0.5325 0.00978 0.1938 0.8315 2.205

theta[1] 0.0598 0.02542 2.68E-4 0.02128 0.05627 0.1195

theta[5] 0.6056 0.315 0.003087 0.1529 0.5529 1.359

theta[6] 0.6105 0.1393 0.0014 0.3668 0.5996 0.9096

theta[10] 1.993 0.4251 0.004915 1.264 1.958 2.916

Note that while θ5 and θ6 have very similar posterior
means, the latter posterior is much narrower (smaller sd).

This is because, while the crude failure rates for the two
pumps are similar, the latter is based on a far greater
number of hours of observation (t6 = 31.44, while
t5 = 5.24). Hence we “know” more about pump 6!
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BUGS Example 2: Linear Regression
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For n = 27 captured samples of the sirenian species
dugong (sea cow), relate an animal’s length in meters,
Yi, to its age in years, xi.

To avoid a nonlinear model for now, transform xi to the
log scale; plot of Y versus log(x) looks fairly linear!
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Simple linear regression in WinBUGS

Yi = β0 + β1 log(xi) + ǫi, i = 1, . . . , n

where ǫi
iid∼ N(0, τ) and τ = 1/σ2, the precision in the data.

Prior distributions:
flat for β0, β1
vague gamma on τ (say, Gamma(0.1, 0.1), which
has mean 1 and variance 10) is traditional

posterior correlation is reduced by centering the log(xi)
around their own mean

Andrew Gelman suggests placing a uniform prior on σ,
bounding the prior away from 0 and ∞ =⇒ U(.01, 100)?

Code:
www.biostat.umn.edu/∼brad/data/dugongs_BUGS.txt
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BUGS Example 3: Nonlinear Regression
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Model the untransformed dugong data as

Yi = α− βγxi + ǫi, i = 1, . . . , n ,

where α > 0, β > 0, 0 ≤ γ ≤ 1, and as usual ǫi
iid∼ N(0, τ)

for τ ≡ 1/σ2 > 0.
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Nonlinear regression in WinBUGS
In this model,

α corresponds to the average length of a fully grown
dugong (x → ∞)
(α− β) is the length of a dugong at birth (x = 0)
γ determines the growth rate: lower values produce
an initially steep growth curve while higher values
lead to gradual, almost linear growth.

Prior distributions: flat for α and β, U(.01, 100) for σ, and
U(0.5, 1.0) for γ (harder to estimate)

Code:
www.biostat.umn.edu/∼brad/data/dugongsNL_BUGS.txt

Obtain posterior density estimates and autocorrelation
plots for α, β, γ, and σ, and investigate the bivariate
posterior of (α, γ) using the Correlation tool on the
Inference menu!
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BUGS Example 4: Logistic Regression
Consider a binary version of the dugong data,

Zi =

{
1 if Yi > 2.4 (i.e., the dugong is “full-grown”)
0 otherwise

A logistic model for pi = P (Zi = 1) is then

logit(pi) = log[pi/(1− pi)] = β0 + β1log(xi) .

Two other commonly used link functions are the probit,

probit(pi) = Φ−1(pi) = β0 + β1log(xi) ,

and the complementary log-log (cloglog),

cloglog(pi) = log[− log(1− pi)] = β0 + β1log(xi) .
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Binary regression in WinBUGS
Code:
www.biostat.umn.edu/∼brad/data/dugongsBin_BUGS.txt

Code uses flat priors for β0 and β1, and the phi function,
instead of the less stable probit function.

DIC scores for the three models:

model D pD DIC
logit 19.62 1.85 21.47
probit 19.30 1.87 21.17
cloglog 18.77 1.84 20.61

In fact, these scores can be obtained from a single run;
see the “trick version” at the bottom of the BUGS file!

Use the Comparison tool to compare the posteriors of
β1 across models, and the Correlation tool to check the
bivariate posteriors of (β0, β1) across models.
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Fitted binary regression models
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The logit and probit fits appear very similar, but the
cloglog fitted curve is slightly different

You can also compare pi posterior boxplots (induced by
the link function and the β0 and β1 posteriors) using the
Comparison tool.
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BUGS Example 5: Hierarchical Models
Extend the usual two-stage (likelihood plus prior)
Bayesian structure to a hierarchy of L levels, where the
joint distribution of the data and the parameters is

f(y|θ1)π1(θ1|θ2)π2(θ2|θ3) · · · πL(θL|λ).

L is often determined by the number of subscripts on
the data. For example, suppose Yijk is the test score of
child k in classroom j in school i in a certain city. Model:

Yijk|θij
ind∼ N(θij , τθ) (θij is the classroom effect)

θij|ηi ind∼ N(ηi, τη) (ηi is the school effect)

ηi|λ iid∼ N(λ, τλ) (λ is the grand mean)

Priors for λ and the τ ’s now complete the specification!
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Cross-Study (Meta-analysis) Data
Data: estimated log relative hazards Yij = β̂ij obtained
by fitting separate Cox proportional hazards
regressions to the data from each of J = 18 clinical
units participating in I = 6 different AIDS studies.

To these data we wish to fit the cross-study model,

Yij = ai + bj + sij + ǫij , i = 1, . . . , I, j = 1, . . . , J,

where ai = study main effect
bj = unit main effect
sij = study-unit interaction term, and

ǫij
iid∼ N(0, σ2ij)

and the estimated standard errors from the Cox
regressions are used as (known) values of the σij.

Bayesian Methods for Data Analysis, Clinical Trials, and Meta-Analysis – p. 115/132



Cross-Study (Meta-analysis) Data
Estimated Unit-Specific Log Relative Hazards

Toxo ddI/ddC NuCombo NuCombo Fungal CMV

Unit ZDV+ddI ZDV+ddC

A 0.814 NA -0.406 0.298 0.094 NA

B -0.203 NA NA NA NA NA

C -0.133 NA 0.218 -2.206 0.435 0.145

D NA NA NA NA NA NA

E -0.715 -0.242 -0.544 -0.731 0.600 0.041

F 0.739 0.009 NA NA NA 0.222

G 0.118 0.807 -0.047 0.913 -0.091 0.099

H NA -0.511 0.233 0.131 NA 0.017

I NA 1.939 0.218 -0.066 NA 0.355

J 0.271 1.079 -0.277 -0.232 0.752 0.203

K NA NA 0.792 1.264 -0.357 0.807
...

...
...

...
...

...
...

R 1.217 0.165 0.385 0.172 -0.022 0.203
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Cross-Study (Meta-analysis) Data
Note that some values are missing (“NA”) since

not all 18 units participated in all 6 studies
the Cox estimation procedure did not converge for
some units that had few deaths

Goal: To identify which clinics are opinion leaders
(strongly agree with overall result across studies) and
which are dissenters (strongly disagree).

Here, overall results all favor the treatment (i.e. mostly
negative Y s) except in Trial 1 (Toxo). Thus we multiply
all the Yij ’s by –1 for i 6= 1, so that larger Yij correspond
in all cases to stronger agreement with the overall.

Next slide shows a plot of the Yij values and associated
approximate 95% CIs...

Bayesian Methods for Data Analysis, Clinical Trials, and Meta-Analysis – p. 117/132



Cross-Study (Meta-analysis) Data
1: Toxo
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Cross-Study (Meta-analysis) Data
Second stage of our model:

ai
iid∼ N(0, 1002), bj

iid∼ N(0, σ2b ), and sij
iid∼ N(0, σ2s)

Third stage of our model:

σb ∼ Unif(0.01, 100) and σs ∼ Unif(0.01, 100)

That is, we
preclude borrowing of strength across studies, but
encourage borrowing of strength across units

With I + J + IJ parameters but fewer than IJ data
points, some effects must be treated as random!

Code:
www.biostat.umn.edu/∼brad/data/crprot_BUGS.txt
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Plot of θij posterior means
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♦ Unit P is an opinion leader; Unit E is a dissenter

♦ Substantial shrinkage towards 0 has occurred: mostly
positive values; no estimated θij greater than 0.6
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Model Comparision via DIC
Since we lack replications for each study-unit (i-j)
combination, the interactions sij in this model were only
weakly identified, and the model might well be better off
without them (or even without the unit effects bj).

As such, compare a variety of reduced models:
Y[i,j] ˜ dnorm(theta[i,j],P[i,j])

# theta[i,j] <- a[i]+b[j]+s[i,j] # full model

# theta[i,j] <- a[i] + b[j] # drop interactions

# theta[i,j] <- a[i] + s[i,j] # no unit effect

# theta[i,j] <- b[j] + s[i,j] # no study effect

# theta[i,j] <- a[1] + b[j] # unit + intercept

# theta[i,j] <- b[j] # unit effect only

theta[i,j] <- a[i] # study effect only

Investigate pD values for these models; are they consistent
with posterior boxplots of the bi and sij?
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DIC results for Cross-Study Data:
model D pD DIC
full model 122.0 12.8 134.8
drop interactions 123.4 9.7 133.1
no unit effect 123.8 10.0 133.8
no study effect 121.4 9.7 131.1
unit + intercept 120.3 4.6 124.9
unit effect only 122.9 6.2 129.1
study effect only 126.0 6.0 132.0

The DIC-best model is the one with only an intercept (a role
played here by a1) and the unit effects bj .

These DIC differences are not much larger than their
possible Monte Carlo errors, so almost any of these models
could be justified here.
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BUGS Example 6: Nonlinear w/Random Effects

Wakefield et al. (1994) consider a dataset for which

Yij = plasma concentration of the drug Cadralazine
xij = time elapsed since dose given

where i = 1, . . . , 10 indexes the patient, while
j = 1, . . . , ni indexes the observations, 5 ≤ ni ≤ 8.

Attempt to fit the one-compartment nonlinear
pharmacokinetic (PK) model,

ηij(xij) = 30α−1
i exp(−βixij/αi) .

where ηij(xij) is the mean plasma concentration at time
xij.
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PK Example

This model is best fit on the log scale, i.e.

Zij ≡ log Yij = log ηij(xij) + ǫij ,

where ǫij
ind∼ N(0, τi).

The mean structure for the Zij ’s thus emerges as

log ηij(xij) = log
[
30α−1

i exp(−βixij/αi)
]

= log 30− logαi − βixij/αi

= log 30− ai − exp(bi − ai)xij ,

where ai = logαi and bi = log βi.
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PK Data
no. of hours following drug administration, x

patient 2 4 6 8 10 24 28 32

1 1.09 0.75 0.53 0.34 0.23 0.02 – –

2 2.03 1.28 1.20 1.02 0.83 0.28 – –

3 1.44 1.30 0.95 0.68 0.52 0.06 – –

4 1.55 0.96 0.80 0.62 0.46 0.08 – –

5 1.35 0.78 0.50 0.33 0.18 0.02 – –

6 1.08 0.59 0.37 0.23 0.17 – – –

7 1.32 0.74 0.46 0.28 0.27 0.03 0.02 –

8 1.63 1.01 0.73 0.55 0.41 0.01 0.06 0.02

9 1.26 0.73 0.40 0.30 0.21 – – –

10 1.30 0.70 0.40 0.25 0.14 – – –
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PK Data, original scale
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PK Data, log scale
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PK Example
For the subject-specific random effects θi ≡ (ai, bi)

′,

θi
iid∼ N2(µ,Ω) , where µ = (µa, µb) .

Usual conjugate prior specification:

µ ∼ N2(λ, C)

τi
iid∼ G(ν0/2 , ν0τ0/2)

Ω ∼ Wishart((ρR)−1, ρ)

Note that the θi full conditional distributions are:
not simple conjugate forms
not guaranteed to be log-concave

Thus, the Metropolis capability of WinBUGSis required:
www.biostat.umn.edu/∼brad/data/PKNL_BUGS.txt
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PK Results (WinBUGS vs. Fortran)
BUGS Sargent et al. (2000)

parameter mean sd lag 1 acf mean sd lag 1 acf

a1 2.956 0.0479 0.969 2.969 0.0460 0.947

a2 2.692 0.0772 0.769 2.708 0.0910 0.808

a7 2.970 0.1106 0.925 2.985 0.1360 0.938

a8 2.828 0.1417 0.828 2.838 0.1863 0.934

b1 1.259 0.0335 0.972 1.268 0.0322 0.951

b2 0.234 0.0648 0.661 0.239 0.0798 0.832

b7 1.157 0.0879 0.899 1.163 0.1055 0.925

b8 0.936 0.1458 0.759 0.941 0.1838 0.932

τ1 362.4 260.4 0.313 380.8 268.8 0.220

τ2 84.04 57.60 0.225 81.40 58.41 0.255

τ7 18.87 12.07 0.260 15.82 11.12 0.237

τ8 2.119 1.139 0.085 1.499 0.931 0.143

Y2,8 0.1338 0.0339 0.288 0.1347 0.0264 –

Y7,8 0.00891 0.00443 0.178 0.00884 0.00255 –
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Homework: InterStim Example
Device that uses electrical stimulation of the brain to
prevent urinary incontinences. For patients i = 1, . . . , 49:

X1i = number of incontinences per week at baseline
X2i = number of incontinences per week at 3 months
X3i = number of incontinences per week at 6 months
X4i = number of incontinences per week at 12 months

patient X1i X2i X3i X4i

1 60 0.7 0 16

2 8 0 0 0

...

8 9 0.7 12 NA

9 3 0 0.7 0

...

49 16 NA NA NA
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InterStim Example
Goal 1: Obtain full predictive inference for all missing X
values (point and interval estimates)

Goal 2: Obtain measure of percent improvement
(relative to baseline) due to InterStim at 6 and 12
months

Model: Let Xi = (X1i, X2i, X3i, X4i)
′ and

θ = (θ1, θ2, θ3, θ4)
′. Clearly the Xij ’s are correlated, but

an ordinary longitudinal model does not seem
appropriate (we can’t just use a linear model here). So
instead, maintain the generality:

Xi|θ,Υ iid∼ N4(θ,Υ
−1)

θ ∼ N4(µ,Ω
−1)

Υ ∼ Wishart4(R, ρ)
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InterStim Example
WinBUGSwill generate all missing X ’s (“NA”s in the
dataset) from their full conditional distributions as part
of the Gibbs algorithm. Thus we will obtain samples
from p(Xij|Xobs) for all missing Xij (achieving Goal 1).

Re: Goal 2 (percent improvement from baseline), let

α =
θ1 − θ3

θ1
and β =

θ1 − θ4
θ1

Then p(α|Xobs) and p(β|Xobs) address this issue!

Hyperparameters: all vague: Ω = Diag(10−6, . . . , 10−6),
µ = 0, ρ = 4 (the smallest value for which the Wishart
prior for Υ is proper) and R = Diag(10−1, . . . , 10−1).

Code and Data:
www.biostat.umn.edu/∼brad/data/InterStim.txt
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Basics of Model Building Recommendations

Brad Carlin and Harrison Quick

Data Type Likelihood Parameters Prior
Continuous Data1, Yi ∈ (−∞,∞)

No Covariates Yi ∼ N (µ, σ2)
µ ∈ (−∞,∞) µ ∼ N (0, big)

σ2 > 0 σ2 ∼ IG(ε, ε)

With Covariates Yi ∼ N (µi, σ
2) βj ∈ (−∞,∞) βj ∼ N (0, big)

— Identity Link µi = x′iβ σ2 > 0 σ2 ∼ IG(ε, ε)
Binary Data, Yi = {0, 1}

No Covariates Yi ∼ Bern(θ) θ ∈ [0, 1] θ ∼ Beta(a, b)

With Covariates2 Yi ∼ Bern (θi)

— Logit Link logit (θi) = log
(

θi
1−θi

)
= x′iβ βj ∈ (−∞,∞) βj ∼ N (0,medium)

Count Data34, Yi = {0, 1, . . . , }
No Covariates Yi ∼ Pois(λ) λ > 0 λ ∼ Gamma(a, b)

With Covariates5 Yi ∼ Pois (λi)
— Log Link log (λi) = x′iβ βj ∈ (−∞,∞) βj ∼ N (0,medium)

Time-to-Event Data, ti > 0

With Covariates, Cox PH
h (ti) = h0 (ti) exp [x′iβ] βj ∈ (−∞,∞) βj ∼ N (0,medium)
h0 (ti) unspecified

With Covariates, Weibull PH
h (ti) = h0 (ti) exp [x′iβ] βj ∈ (−∞,∞) βj ∼ N (0,medium)

h0 (ti) = ptp−1i p > 0 p ∼ Gamma(a, b)

Table 1: Basic model recommendations for various data types. In the case of simple linear regression,
x′iβ = β0 + xiβ1. For multiple linear regression, we could have x′iβ = β0 + xi1β1 + . . .+ xiJβJ .

1For some types of data, it may be more appropriate to model a transformation of Yi as being normally distributed; e.g.,
if Yi is household income, we may want to model log Yi ∼ N

(
µ, σ2

)
2Because P (Yi = 1) ∈ [0, 1], we require the logit link function: logitP (Yi = 1) = x′

iβ ∈ (−∞,∞)
3While it is possible to model count data using a Bin(n, θ) distribution, the Poisson distribution is preferred when n is

large and θ is small (e.g., the number of deaths due to heart disease in a state).
4Oftentimes (as presented in Harrison’s slides), we want to account for the population size, ni, in our Poisson model. This

could be done by letting Yi ∼ Pois (niλ) or (equivalently) Yi ∼ Pois (Eiλ), as shown in the slides.
5Because E (Yi) > 0, we require the log link: logE (Yi) = x′

iβ ∈ (−∞,∞)
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